
XML Schema Mappings in the Presence of Key
Constraints and Value Dependencies ?

Tadeusz Pankowski1,2, Jolanta Cybulka1, and Adam Meissner1

1 Institute of Control and Information Engineering,
Poznań University of Technology, Poland

2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland

tadeusz.pankowski@put.poznan.pl

Abstract. Schema mappings play a central role in both data integra-
tion and data exchange, and are understood as high-level specifications
describing the relationships between data schemas. Based on these speci-
fications, data structured under a source schema can be transformed into
data structured under a target schema. During the transformation some
structural constraints, both context-free (the structure) and contextual
(e.g. keys and value dependencies) should be taken into account. In this
work, we present a new formalism for the schema mapping specification.
We propose a new class of tree-pattern formulas in order to extend se-
mantics of XML schema mappings by specification of key constraints and
value dependencies. We discuss foundations of the method and propose
a key-preserving transformation algorithm.

1 Introduction

Many problems in information integration and data exchange need schema map-
pings, which are high-level specifications describing the relationships between
source and target data schemas. A schema mapping over a pair of schemas ex-
presses a relation on the set of instances of these two schemas. The mapping
should produce an instance of the target schema for a given instance of the
source schema. The target instance should correctly represent the information
contained in the source instance under the constraints imposed by the target
schema [3, 11, 19, 29]. The problem of schema mapping arises in many areas of
data management systems. Recently, this problem has received considerable at-
tention in the context of data exchange [3, 10], data integration [16], schema
evolution [18], P2P databases [5, 20], life science databases [21] or e-commerce
[6], where data comes from many different sources with different schemas. In
data management [18] such operations on mappings as composition [17, 11, 19]
and inversion [9] has been considered.

Schema mappings between relational schemas are usually defined by means of
the source-to-target dependencies [1, 12, 19]. Recently, this method was adapted
? The work was supported in part by the Polish Ministry of Science and Higher Edu-

cation under Grant N516 015 31/1553.

to XML data and tree-patterns are used to capture the context-free structure of
XML trees [3]. However, the approach does not take (contextual) key constraints
into account.

In this paper we assume that the definition of a schema is specified in XSD
(XML Schema Definition [27]) language, and except for context-free constraints
the following three classes of contextual constraints are taken into account: keys,
key references, and value dependencies.

1. Key constraints state that a subtree is uniquely identified by a tuple of values
of key paths [4, 27]. They are specified within the <xs:key> elements.

2. Keyref constraints assert a correspondence of the tuples of values resulting
from evaluating a referencing key (a foreign key) with those of the referenced
key [27]. They are specified within the <xs:keyref> elements.

3. Value dependency constraints impose that a text value of a text node de-
pends on a tuple of values of other nodes (resembling functional dependen-
cies in relational databases [1]). The value dependencies are declared in the
<xs:valdep> section of XSD (this section can be included in <xs:annotation>
element of XSD).

We introduce key-pattern formulas which are intended to represent keys de-
fined within XSD, and are used to control mapping execution. It makes the pro-
cess of XML data mappings and transformations semantically richer. We propose
algorithms that construct an intended key-preserving target instance, we also for-
mulate a theorem that is the basis for the presented method. In our approach,
we distinguish among three kinds of mappings: automappings which are auto-
matically generated from XSD specifications and capture both context-free and
contextual properties; c-mappings that express correspondences between source
and target schemas; t-mappings which are derived from auto- and c-mappings
and define key-preserving transformations. The advantage of this approach is
that the management of these mappings and the reasoning over them can be
carried out independently.

The structure of the paper is as follows. In Section 2 formal definitions con-
cerning XML trees and XML schemas are given and a running example is pre-
sented. The fundamentals of schema mappings are reviewed in Section 3. In this
section we also characterize the existing approaches. In Section 4 we propose
a formalism for defining key-preserving XML schema mappings. The theorem
and the algorithm concerning the mapping execution are presented in Section 5.
Section 6 concludes the work and formulates directions of the future research.

2 XML trees and XML schemas

We consider XML data as a node-labeled unranked and ordered tree (XML tree)
[28]. For simplicity, attribute nodes are represented by text nodes.

Let L ⊂ Lab be a finite set of labels, Str be a set of string values (with the
distinguished null values ⊥,⊥1,⊥2, ... in Str), and DId be a set of document
identifiers (e.g. URI addresses).

Definition 1. An XML tree I is a tuple (r,Ne, N t,≤, child, λ, ν, σ), where:

– r is a distinguished root node, Ne is a finite set of element nodes, and N t is
a finite set of text nodes;

– ≤ – a total ordering relation on the set of nodes;
– child ⊆ ({r}∪Ne)× (Ne ∪N t) – an acyclic binary relation introducing tree

structure into (r,Ne, N t) such that the root has only one child (this child is
the top element) and each element node must have a child;

– λ : Ne → L – a function labeling element nodes (the label is the type of the
node);

– ν : N t → Str – a function labeling text nodes with their text values;
– σ : {r} → DId – a function that assigns a document identifier to the root.

¤

The XML trees will be considered as instances of XML schemas. We will
restrict ourselves to context-free and contextual (key) constraints specified by
an XML schema. The context-free constraints are given by regular expressions
describing types of children for any element node type. Keys specify how subtrees
are identified within an XML tree by means of text values of key paths.

A path P is defined by the grammar P ::= /l | //l | l | P/l | P//l, where: /l
denotes a set of children of type l of the root, //l denotes all descendent nodes
of type l of the root, P/l denotes a set of nodes of type l which are children of
the nodes denoted by P , P//l denotes all ”descendent-or-self” nodes of type l
of the nodes denoted by P .

We assume that there is a key for any node type. Following [4], we assume
the following definition of a key for XML:

Definition 2. A key is an expression of the form (P, (P ′, (P1, ..., Pk))), where
every P/P ′/Pi is a valid path. The path P is the context path, P ′ is the target
path, and P1, ..., Pk are key paths of the key. ¤

Definition 3. An XML schema S over a set L of labels is a tuple

S = (top, ContFree,KeyDep,KeyrefDep, V alDep),

where:

– top is the the distinguished label of the top (outermost) element;
– ConFree is a function from L to regular expressions over L−{top} defined

by the grammar e ::= ε | l | e|e | e, e | e? | e+ | e∗;
– KeyDep assigns a key (P, (l, (P1, ..., Pk))) to any label l ∈ L− {top}.
– KeyRefDep assigns referential constraints, i.e. expressions of the form,

(P, l, (P1, ..., Pk)) ref KeyDep(l′), to some labels in L; l, l′ ∈ L−{top}. The
expression defines a foreign key (P, l, (P1, ..., Pk)) that refers to a primary
key KeyDep(l′).

– V alDep assigns a set of value dependencies to some labels in L. A value
dependency is an expression of the form (P/l, P ′) = f(P/l/P1, ..., P/l/Pm).

Definition 4. An XML tree I = (r,Ne, N t,≤, child, λ, ν, σ) conforms to the
XML schema S = (top, ConFree, KeyDep, KeyRefDep, V alDep), if:

1. σ(r) is defined, and for any text node n ∈ N t, ν(n) is defined.
2. If (r, n) ∈ child, then λ(n) = top.
3. For any node n in Ne with children (n1, ..., nm) such that n1 < ... < nm, if

λ(n) = l, then the sequence λ(n1)...λ(nm) is a word of the language defined
by the regular expression ConFree(l).

4. If KeyDep(l) = (P, (l, (P1, ..., Pk))), then each subtree rooted in a node n of
type l in an context denoted by the context path P , is uniquely identified by a
tuple of text values (v1, ..., vk) of the key paths (P1, ..., Pk), k ≥ 0. For k = 0,
(P, (l, ())) indicates that n is unconditionally unique in the context of P .

5. If KeyRefDep(l) = (P, l, (P1, ..., Pk)) ref (P ′, (l′, (P ′1, ..., P
′
k))), then for any

tuple (v1, ..., vk) of values such that P [l[P1 = v1 ∧ · · · ∧Pk = vk]] there exists
exactly one node n ∈ [[P ′/l′]] such that the tuple (P ′1, ..., P

′
k) of key paths on

n has the value equal to (v1, ..., vk).
6. If (P/l, P ′) = f(P/l/P1, ..., P/l/Pn) ∈ V alDep(l), then text values of the

path P/l/P ′ are functionally dependent on the set of tuples of text values
determined by (P/l/P1, ..., P/l/Pn). We use the name f to distinguish two
different dependencies having the same set of determining paths. ¤
An XML tree I is called an instance of a schema S, denoted I |= S, iff

conforms to S, i.e. satisfies all the constraints imposed by S.

Example 1. Sample XML trees and XML schema trees are given in Fig. 1. The
XML trees in Fig. 1 represent the bibliographical data. The node labels are as
follows: paper (P) and title (T) of the paper; author (A), name (N) and the
affiliation (U) of the author; year (Y) of publication and the conference (C)
where the paper was presented; R and K are used to join authors with their
papers.

If we restrict ourselves to the context-free structure only, then definitions of
S1, S2 and S3 can be given as DTDs in Fig. 2. In order to specify contextual
constraints, we will use the schema definition language XSD. In Fig. 4 the com-
plete XSD definitions for S1 and fragments for S2 and S3 are given. It can be
seen that the XML tree I1 is an instance of S1, whereas I2 and I ′2 are instances
of S2 with respect to the DTDs D1 and D2, respectively. Moreover, I1 and I2 are
instances of schemas specified by XSDs SD1 and SD2, since they satisfy keys,
respectively:

(S1, (P, (T))), (S1/P, (T, ())), (S1/P, (A, (N))),
(S1/P/A, (N, ())), (S1/P/A, (U, ())), (1)

and
(S2, (A, (N))), (S2/A, (N, ())), (S2/A, (U, ())),
(S2/A, (P, (T))), (S2/A/P, (T, ())), (S2/A/P, (Y, ())). (2)

Note, that I ′2 satisfies the context-free constraints specified in SD2 but does
not satisfy keys. In fact, it satisfies the following key:

(S2, (A, (N, P/T))), (S2/A, (N, ())), (S2/A, (U, ())),
(S2/A, (P, (T))), (S2/A/P, (T, ())), (S2/A/P, (Y, ())). (3)

For example, each subtree in I ′2 denoted by /S2/A is uniquely identified by a pair
of text values of the pair of key paths (N, P/T). In Figure 3 there are constraints
assigned to elements of the schema S3. ¤

S2

A*

N P+

T Y?

U?

S2:S1

P*

T A+

N U?

S1:

S1

P

A

N U
a1 u1

A

N U
a2 u2

P

T
t2

A

N
a1

T
t1

I1 : S2

A

N PU

A

N U
a1 u1 a2 u2

P

T
t1

YT
t1

Y

P

T
t2

Y
⊥ 2

I2:

⊥ 1 ⊥ 1
Y
⊥ 1

S2

A

N PU
a1 u1

T
t1

Y
⊥ 1

A

N PU
a1 u1

T
t2

Y
⊥ 2

A

N PU
a2 u2

T
t1

I2’:

S3

A*

N R*

P+

K Y? T C?

S3:

Fig. 1. Sample XML trees and XML schema trees

D1 : <!DOCTYPE S1 [
<!ELEMENT S1 (P*)>
<!ELEMENT P (T, A+)>
<!ELEMENT T (#PCDATA)>
<!ELEMENT A (N, U?)>
<!ELEMENT N (#PCDATA)>
<!ELEMENT U (#PCDATA)>]>

D2 : <!DOCTYPE S2 [
<!ELEMENT S2 (A*)>
<!ELEMENT A (N, U, P+)>
<!ELEMENT N (#PCDATA)>
<!ELEMENT U (#PCDATA)>
<!ELEMENT P (T, Y?)>
<!ELEMENT T (#PCDATA)>
<!ELEMENT Y (#PCDATA)>]>

D3 : <!DOCTYPE S3 [
<!ELEMENT S3 (A*, P+)>
<!ELEMENT A (N, R*)>
<!ELEMENT N (#PCDATA)>
<!ELEMENT R (#PCDATA)>
<!ELEMENT P (K, T, Y?, C?)>
<!ELEMENT K (#PCDATA)>
<!ELEMENT T (#PCDATA)>
<!ELEMENT Y (#PCDATA)>
<!ELEMENT C (#PCDATA)>]>

Fig. 2. Context-free structure of S1, S2 and S3 defined by DTDs

3 Schema mappings of relational and XML data

In data exchange [11], we meet the problem of computing target instances from
source instances: let S be a source schema, T a target schema and M a schema
mapping, i.e. a formula expressing a relationship between S and T . For a given
instance I of S, find an instance J of T such that 〈I, J〉 |= M. Such an instance
J is called a solution for I under M.

In the relational data exchange setting, source-to-target dependencies (STDs)
[1] are usually used to express schema mappings [12, 19]. The STD is a first-order
formula:

∀x(Φ(x) ⇒ ∃yΨ(x,y)),

that after skolemization has the form of the following second-order STD (SO
STD):

∃f∀x(Φ(x) ∧ χ(x,y) ⇒ Ψ(x,y)), (4)

l ConFree KeyDep KeyRefDep V alDep

S3 A∗P∗
A NR∗ (/S3, (A, (N))) (/S3, A, (R)) ref KeyDep(P)

P KTY ?C? (/S3, (P, (K))) (/S3/P, Y) = fy(/S3/P/T)
(/S3/P, C) = fc(/S3/P/T)

N ε (/S3/A, (N, ()))

...

Fig. 3. Schema S3 = (S3, ConFree, KeyDep, KeyRefDep, V alDep), (labels R, K, T ,
Y , and C are constrained similarly to that of N)

where: (1) f is a vector of function symbols, x, y are vectors of variables; (2) Φ
is a conjunction of atoms over source schemas; (3) χ(x,y) is a conjunction of
equalities of the form t = t′ where t and t′ are terms over f , x and y; (4) Ψ is a
conjunction of atoms over target schema; (5) each variable is safe.

In [11] it was shown that SO STDs are strictly more expressive then STDs
and are closed under composition. It means that the composition of two SO
STD mappings, M13 = M12 ◦ M23, is also a SO STD mapping (this is not
true for first-order STD mappings). The semantics of the composition of schema
mappings is defined by means of the composition of two binary relations.

For schemas containing nested data (such as XML schemas) extensions of the
above mentioned formalism were proposed [22, 29, 13]. In [3], tree-pattern formu-
las [2] are used in STDs instead of the relational atoms. Further on, such SO
STDs with tree-pattern formulas will be referred to as SO XSTDs (second-order
XML source-to-target dependencies). In this way correspondences between XML
data can be expressed. However, such mappings do not take key constraints
into consideration and they are not capable of ensuring that the target instance
conforms to a target schema with key specification. Specification in [3] is re-
stricted to DTD schemas only. To illustrate this problem suppose that we want
to restructure the instance I1 (Fig. 1) of D1 under D2 (Fig. 2).

The following XSTD formula specifies a mapping from D1 to D2:

M := ∀xT , xN , xU (/S1[P [T = xT ∧A[N = xN ∧ U = xU]]]
⇒ ∃xY /S2[A[N = xN ∧ U = xU ∧ P [T = xT ∧ Y = xY]]]).

Using the specification, two possible target instances, I2 and I ′2 (Fig. 1) can
be produced. These instances conform to D2. However, I2 and I ′2 conforms to
difficult sets of keys – given in (2) and (3), respectively. In [3], a repair process
is also proposed which allows for inventing null values in the final XML tree and
to state that some null values should be equal.

In the next sections we will show how both key constraints and value depen-
dencies can be captured by mappings.

4 Key-preserving XML schema mappings

In this paper we propose key-pattern formulas, which are a kind of tree-pattern
formulas intended to reflect keys in the target schema. A key-pattern formula

SD1:

<schema xmlns="http://www.w3.org/2001/XMLSchema">
<element name="S1">

<complexType>
<sequence>

<element ref="P" minOccurs="0"
maxOccurs="unbounded" />
</sequence>

</complexType>
</element>
<element name="P">

<complexType>
<sequence>

<element name="T" type="string" />
<element ref="A" minOccurs="1"

maxOccurs="unbounded" />
</sequence>

</complexType>
<key name="PKey">

<selector xpath="." />
<field xpath="T" />

</key>
</element>
<element name="A">

<complexType>
<sequence>

<element name="N" type="string" />
<element name="U" type="string"

minOccurs="0" />
</sequence>

</complexType>
<key name="AKey">

<selector xpath="." />
<field xpath="N" />

</key>
<valdep>

<target name="U" />
<function name="fu" />
<source xpath="N" />

</valdep>
</element>

</schema>

SD2:

<schema xmlns="http://www.w3.org/2001/XMLSchema">
<element name="S2">

<complexType>
<sequence>

<element ref="A" ... />
</sequence>

</complexType>
</element>
<element name="A">

...
</element>
...

</schema>

SD3:

<schema xmlns="www.w3.org/2001/XMLSchema">
<element name="S3">

<complexType>
<sequence>

<element ref="A" ..." />
<element ref="P" ..." />

</sequence>
</complexType>

</element>
<element name="A">

...
<keyref name="AKeyref" refer="PKey">
<selector xpath="." />
<field xpath="R" />

</keyref>
</element>
<element name="P">

...
<key name="PKey">
<selector xpath="." />
<field xpath="K" />

</key>
...

</element>
</schema>

Fig. 4. XSD specification for S1, S2 and S3; keys, key references and value dependencies
are defined by means of <key>, <keyref>, and <valdep> elements, respectively

is used in a chasing algorithm to control computation of the expected solution.
Tree-patterns are in fact predicates of XPath 2.0 [26] with variables in patterns
ranging over possible text values. Our definition extends tree-pattern formulas
discussed in [3].

If L is a set of labels, then a tree-pattern formula is defined as follows:

Definition 5. A tree-pattern formula π over L is an expression conforming to
the following syntax (P is a path):

π ::= P [E] | π/P [E]
E ::= x | C
C ::= P = x | π | C ∧ C ¤

A tree-pattern formula is evaluated in a node of an XML tree I under a
valuation ω, where ω is a total function from the set of all variables occurring

in π to Str. We denote by ω(x) the value of ω on x (we assume ω(x) = ⊥, if
there is not any text value for x in I – this is possible because of semistructured
nature of XML).

Further on, by [[π]] and n[[π]] we will denote a value of π according to semantics
of XPath expressions [25, 14], i.e. a set of nodes reachable from the root or from
the context node n, respectively, via π.

Definition 6. The satisfaction of a tree-pattern formula under a valuation ω in
a node n of an XML tree I, is defined as follows (val(n) is the text value of the
text node n):

1. (I, n) |= (x)(ω) iff val(n) = ω(x).
2. (I, n) |= (P = x)(ω) iff there is a node n′ ∈ n[[P]] such that (I, n′) |= (x)(ω).
3. (I, n) |= (C1 ∧ C2)(ω) iff (I, n) |= (C1)(ω) and (I, n) |= (C2)(ω).
4. (I, n) |= (P [E])(ω) iff there is a node n′ ∈ n[[P]] such that (I, n′) |= (E)(ω).
5. (I, n) |= (π/P [E])(ω) iff (I, n) |= (π)(ω) and there is a node n′ ∈ n[[π/P]]

such that (I, n′) |= (E)(ω).

We say that a formula φ is satisfied in (I, n), or that (I, n) satisfies φ, denoted
(I, n) |= φ, iff (I, n) |= φ(ω) for some valuation ω over φ into I. I |= φ denotes
that φ is satisfied in the root of I. ¤

Definition 7. A key-pattern formula δ is a tree-pattern formula restricted to
the syntax:

δ ::= /top/l[E] | δ/l[E]
E ::= x | C
C ::= P = x | C ∧ C ¤

Lemma 1. Let δ/l[E] be a key-pattern formula, and I be an XML tree. Then:

I |= δ/l[E] ⇔ I |= δ ∧ ∃n ∈ [[δ]]((I, n) |= l[E]). (5)

Proof. The lemma follows from (4) and (5) in Definition 6.

The above lemma will be used in Section 5 as the basis of an algorithm creat-
ing key-preserving target instances. Key-pattern formulas can be automatically
generated from keys defined in a schema S = (top, ConFree,KeyDep,
KeyRefDep, V alDep) over a set
L of labels, by means of the following recursive algorithm:
Algorithm 1 key-patt(key), generation of a key-pattern formula representing
the given key.
Input : Schema S = (top, ConFree,KeyDep, KeyRefDep, V alDep)

over a set L of labels,
label l ∈ L− {top},
key κ = KeyDep(l) = (P, (l, (P1, ..., Pk))), k ≥ 0.

Output : Key-pattern formula key-patt(κ).
key-patt(κ) = case of (κ)

(/top, (l, ())) : /top/l[x]

(/top, (l, (P1, ..., Pk))) : /top/l[P1 = x1 ∧ · · · ∧ Pk = xk]
(P/l′, (l, ())) : key-patt(KeyDep(l′))/l[x]
(P/l′, (l, (P1, ..., Pk))) : key-patt(KeyDep(l′))/l[P1 = x1 ∧ · · · ∧ Pk = xk]

endcase
¤

For keys of S1 specified in (1), Algorithm 1 generates key-pattern formulas
presented in Table 1.

Table 1. Key-pattern formulas generated by Algorithm 1 for S1

l KeyDep(l) key-patt(KeyDep(l))

P (S1, (P, (T))) /S1/P [T = xT]
T (S1/P, (T, ())) /S1/P [T = xT]/T [xT]
A (S1/P, (A, (N))) /S1/P [T = xT]/A[N = xN]
N (S1/P/A, (N, ())) /S1/P [T = xT]/A[N = xN]/N [xN]
U (S1/P/A, (U, ())) /S1/P [T = xT]/A[N = xN]/U [xU]

Among schema mappings, we will distinguish:

– automappings – a special kind of mappings from a schema onto itself (a
special kind of t-mappings),

– c-mappings – mappings defining the correspondences between schemas;
– t-mappings – mappings defining the key-preserving transformations of schema

instances.

4.1 Automappings

The automappings are identity mappings over schemas that describe how in-
stances of the schema are transformed onto themselves. An automapping cap-
tures constraints specified within a schema by means of SO XSTD of the form:

π(x) ∧ ψ(x) ⇒ ∆(x), (6)

where: π(x) is a tree-pattern formula capturing the structure of the schema;
ψ(x) is a conjunction of atoms of the form x = x′ and x = f(x1, ..., xn), where
the former captures a key reference and the latter – a value dependence; ∆(x) is
a conjunction of key-pattern formulas, where every formula represents a key in
the schema. We assume that function symbols are quantified existentially, while
variables – universally.

Example 2. Automappings of S1, S2 and S3, referring to XSDs in Fig. 4, have
the following specifications:

1. A1 := π1(xT , xN , xU) ∧ ψ1(xT , xN , xU) ⇒ ∆1(xT , xN , xU), where
– π1 := /S1[P [T = xT ∧A[N = xN ∧ U = xU]]]

– ψ1 := xU = fU (xN)
– ∆1 := /S1/P [T = xT]

∧ /S1/P [T = xT]/T [xT]
∧ /S1/P [T = xT]/A[N = xN]
∧ /S1/P [T = xT]/A[N = xN]/N [xN]
∧ /S1/P [T = xT]/A[N = xN]/U [xU]

2. A2 := π2(yT , yN , yU , yY) ∧ ψ2(yT , yN , yU , yY) ⇒ ∆2(yT , yN , yU , yY), where
– π2 := /S2[A[N = yN ∧ U = yU ∧ P [T = yT ∧ Y = yY]]]
– ψ2 := yU = fU (yN) ∧ yY = fY (yT)
– ∆2 := /S2/A[N = yN]

∧ /S2/A[N = yN]/N [yN]
∧ /S2/A[N = yN]/U [yU]
∧ /S2/A[N = yN]/P [T = yT]
∧ /S2/A[N = yN]/P [T = yT]/T [yT]
∧ /S2/A[N = yN]/P [T = yT]/Y [yY]

3. A3 :=
/S3[A[N = zN ∧R = zR] ∧ P [K = zK ∧ T = zT ∧ Y = zY ∧ C = zC]]
∧zR = zK ∧ zY = fY (zT) ∧ zC = fC(zT) ⇒ /S3/A[N = zN]∧
/S3/A[N = zN]/N [zN] ∧ /S3/A[N = zN]/R[zR] ∧ /S3/P [K = zK]∧
/S3/P [K = zK]/T [zT] ∧ /S3/P [K = zK]/Y [zY] ∧ /S3/P [K = zK]/C[zC]

4.2 C-mappings

A c-mapping specifies the correspondence between source and target schemas,
and states how patterns in the source tree correspond to patterns in the target
tree. They are SO XSTDs of the form:

πS(x) ∧ φS,T (x,y) ⇒ πT (x,y), (7)

where: x and y are source and target variables, respectively; πS(x) is a tree-
pattern formula over a source schema S and defines source variables; φS,T (x,y)
is a conjunction of atoms of the form x = x′, y = y′ and y = f(x1, ..., xn), where
x = x′ and y = y′ are restrictions over variables, and y = f(x1, ..., xn) defines a
target variable by means of the source ones; πT (x,y) is a tree-pattern formula
over a target schema T .

Discovering c-mappings or correspondences between schemas is a crucial
problem in schema mappings and may involve variety of methods and tools [23,
7, 8]. However, formal methods for representing mappings based on well estab-
lished formal languages enable inferring new mappings in a repository of accepted
mappings [17, 11, 19, 9, 20]. In this way user attention [15] can be utilized.

Example 3. A c-mapping from S1 into S2 has the following specification:

M12 := π1(zT , zN , zU) ∧ φ12(zT , zN , zU , zY) ⇒ π2(zT , zN , zU , zY),

where π1(zT , zN , zU) and π2(zT , zN , zU , zY) are tree-pattern formulas specified
in automappings of S1 and S2, respectively, and φ12(zT , zY) is the atom formula
zY = fY (zT) defining target variable zY . ¤

4.3 T-mappings

A t-mapping or a transformation is a specification that describes how data struc-
tured under the source schema is to be transformed into data structured under
the target schema preserving keys in the target. A t-mapping TST from a source
schema S into a target schema T is a SO XSTD formula of the form

πS(x) ∧ ψS,T (x,y) ⇒ ∆T (x,y), (8)

and can be automatically derived from the c-mapping MST from S to T and
the automappings AT over T . Then the following rule is used:

MST = πS(x1) ∧ φST (x1,y1) ⇒ πT (x1,y1)
AT = πT (x2) ∧ ψT (x2,y2) ⇒ ∆T (x2,y2)

TST = (πS(x1) ∧ φST (x1,y1))[(x1,y1) 7→ x2] ∧ ψT (x2,y2) ⇒ ∆T (x2,y2)

The formula (πS(x1)∧φST (x1,y1))[(x1,y1) 7→ x2] arises from πS(x1)∧φST (x1,y1)
by replacing variables in (x1,y1) with corresponding variables in x2. The re-
placement is made according to occurrences of variables within πT (x1,y1) and
πT (x2).

Example 4. From the c-mapping M12 (Example 3) and the automapping A2

(Example 2), the following t-mapping T12 from S1 into S2 can be obtained:

T12 := π1(yT , yN , yU) ∧ φ12(yT , yN , yU , yY) ∧ ψ2(yT , yN , yU , yY)
⇒ ∆2(yT , yN , yU , yY)

5 Creation of key-preserving target instances

In this section we propose an algorithm generating a target instance for a given
t-mapping. The left-hand side of the t-mapping provides a set Ω of variable
valuations, and the right-hand side consists of a set of key-pattern formulas.
Each key-pattern formula is used to create a Skolem term that for valuations in
Ω delivers nodes of the expected target XML tree. We will show that the created
instance satisfies keys represented by key-pattern formulas.

Let δ be a key-pattern formula with variables in x. If for each valuation ω
over δ into I the set [[δ(ω)]] has exactly one element, then a key represented by δ
is satisfied in I. If δ′ is satisfied in I and δ is a key-pattern formula of the form
δ′/l[E] then, using Lemma 1, we can recursively analyze whether δ represents a
key satisfied in I or not.

The following theorem formulates a necessary condition for satisfaction of a
key in an XML tree I. We will show that if the condition is satisfied in I by
a key-pattern formula δ, then the key represented by δ is satisfied in I. That
observation will be the base of our implementation (Algorithm 2).

Theorem 1. Let δ = δ′/l[E] be a key-pattern formula and I be an XML tree:

– δ′ = /top/l1[E1]/.../lm[Em];
– E = (P1 = x1 ∧ · · · ∧ Pk = xk);
– Ω – a set of all variable valuations over δ into text values in I.

If for any valuation ω ∈ Ω

count([[δ′/l(ω)]]) = count{ω ∈ Ω | I |= δ(ω)} (9)

then the key represented by δ is satisfied in I, i.e.

I |= (/top/l1/.../lm, (l, (P1, ..., Pk))).

Proof. (Sketch) The key represented by δ′ is satisfied in I if for each valuation
ω ∈ Ω, a set [[δ′(ω)]] has exactly one element. By structural induction we will
proof that for any ω ∈ Ω the equality (9) implies count([[δ(ω)]]) = 1. Indeed:

1. The thesis holds for δ = /top/l[P1 = x1 ∧ · · · ∧ Pk = xk], since:
– count([[/top(ω)]]) = 1, for any ω ∈ Ω,
– if the number of nodes of type l determined by /top/l is equal to the

number of different valuations of variables (x1, ..., xk), then the key
(/top, (l, (P1, ..., Pk))) represented by δ is satisfied in I.

2. Let δ = δ′/l[P1 = x1 ∧ · · · ∧ Pk = xk]. Then from the induction hypothesis
count([[δ′(ω)]]) = 1, for each ω ∈ Ω. Now it is easy to see that the equality (9)
implies that count([[δ(ω)]]) = 1, for each ω ∈ Ω; hence the key represented
by δ is satisfied in I. ¤

The theorem states that if the number of nodes in [[δ′/l]] is equal to the num-
ber of different valuations of variables in δ satisfying I, then the key represented
by δ is satisfied in I.

This observation is the basis of our algorithm for generation of key-preserving
instances in data exchange. The one-to-one (bijective) correspondence between
sets mentioned in the thesis of the theorem, equality (9), can be achieved by
means of node-valued Skolem functions. The list of arguments of a Skolem func-
tion Fl consists of all variables x occurring in δ=key-patt(KeyDep(l)). Then
every valuation ω ∈ Ω creates a unique element node Fl(ω(x)) of type l. Simi-
larly for text nodes.

Now, we shall define the semantics for t-mappings. The left-hand side:

πS(x) ∧ ψS,T (x,y)

of a t-mapping (8), determines a totally ordered set Ω of variable valuations.
The ordering of valuations in Ω is induced by the lexicographic ordering

of tuples of text nodes whose values are assigned to the vector x of variables.
By ord(ω) we denote the ordering position of ω in Ω. To order nodes in a
result target tree, we will use the Dewey order encoding [24], where each node
n is assigned a sequence Pos(n) that represents position of n in the tree. For
example, Pos(n) = 1.3.2 says that n is the second child of the third child of the
top element.

We assume:

– Pos(r) = 0, if r is the root; Pos(n) = 1, if n is the top element;
– Pos(n) = Pos(n′).ord(ω), where n′ is the parent of n and n′ is obtained

under a valuation ω ∈ Ω.

Let Ω be a set of valuations, and ∆ = {δ1, ..., δp} be a set of key-pattern
formulas occurring in the right-hand side of a t-mapping (8).

Then an XML tree J = semT (∆)(Ω), where J = (r,Ne, N t,≤, child, λ, ν, σ),
is created as follows:

semT (∆)(Ω) = {semT (δ)(ω) | δ ∈ ∆,ω ∈ Ω},
where semT (δ)(ω) is computed by means of the following recursive algorithm:
Algorithm 2 semT (δ)(ω) – generation of XML tree fragment corresponding to
a key-pattern formula δ under valuation of ω.
Input : δ = /top/l1[E1](x1)/.../lm[Em](xm) – a key-pattern formula,

&doc – identifier of the result tree.
Output : A fragment of XML tree.
semT (δ)(ω) = case of (δ)

/top/l1 :
begin

r = newNode(&doc); σ(r) = &doc; Pos(r) = 0;
n = newNode(top); λ(n) = l1; Pos(n) = 1;
Ne = Ne ∪ {n}; child := child ∪ {(r, n)};

end;
δ′/li−1[Ei−1](xi−1)/li[Ei](xi) :

begin
n = Fli−1(ω(xi−1)); n′ = Fli(ω(xi));
λ(n′) = li; Pos(n′) = Pos(n).ord(ω);
Ne = Ne ∪ {n′}; child := child ∪ {(n, n′)};
semT (δ′/li−1[Ei−1](xi−1))(ω);

end;
δ′/li−1[Ei−1](xi−1)/li[x](xi) :

begin
n = Fli−1(ω(xi−1)); n′ = Fli(ω(xi)); n′′ = newNode();
λ(n′) = li; Pos(n′) = Pos(n).ord(ω);
Ne = Ne ∪ {n′}; child := child ∪ {(n, n′)};
ν(n′′) = ω(x); Pos(n′′) = Pos(n′).ord(ω);
N t = N t ∪ {n′′}; child := child ∪ {(n′, n′′)};
semT (δ′/li−1[Ei−1](xi−1))(ω);

end;
endcase

According to the proposed semantics, one can show that for mappings in
Example 1 we have T12(I) = I2 (see Fig. 1). Some null values in I2 are equal in
force of the value dependency xY = fY (xT) specified in φ12. Value dependencies
specified within mappings may be used to infer some missing data. It is especially
useful when we integrate data from many different sources, for example using a
method proposed in [20].

6 Conclusions

We proposed a new approach to use XML schema mappings in data exchange.
To this aim we introduced a new class of tree-pattern formulas called key-
pattern formulas that provide a natural way to express contextual constraints
in XML schema mappings and are used to perform key-preserving mappings.
We distinguished among three classes of mappings: automappings (transforma-
tions of a schema onto itself), c-mappings (correspondences) and t-mappings
(key-preserving transformations). The distinction is justified by different ways
in which they are obtained: automatically from a schema specification (automap-
pings), quasi-manually (c-mappings), or by deriving from another mappings (t-
mappings). In our formalism, mappings capture three kinds of contextual con-
straints: keys, key references and value dependencies. We demonstrated benefits
of this formalism including increased specification accuracy, and the ability to
manage mappings and reasoning on them. In the future we plan to consider op-
eration on key-preserving mappings, as well as on mappings capturing another
constraints. For this purpose we need reasoning procedures on tree-patterns and
ontological knowledge describing the semantics of XML schemas which may be
applied for finding correspondences between different schemas [6].

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases , Addison-Wesley,
Reading, Massachusetts, 1995.

2. Amer-Yahia, S., Cho, S., Lakshmanan, L. V. S., Srivastava, D.: Tree pattern query
minimization., VLDB Journal , 11(4), 2002, 315–331.

3. Arenas, M., Libkin, L.: XML Data Exchange: Consistency and Query Answering,
PODS Conference, 2005, 13–24.

4. Buneman, P., Davidson, S. B., Fan, W., Hara, C. S., Tan, W. C.: Reasoning about
keys for XML, Information Systems , 28(8), 2003, 1037–1063.

5. Calvanese, D., Giacomo, G. D., Lenzerini, M., Rosati, R.: Logical Foundations of
Peer-To-Peer Data Integration., Proc. of the 23rd ACM SIGMOD Symposium on
Principles of Database Systems (PODS 2004), 2004, 241–251.

6. Cybulka, J., Meissner, A., Pankowski, T.: Schema- and Ontology-Based XML Data
Exchange in Semantic E-Business Applications, Business Information Systems,
BIS 2006, Lecture Notes in Informatics, Vol.85 , 2006, 429–441.

7. Doan, A., Domingos, P., Halevy, A.: Reconciling Schemas of Disparate Data
Sources: A Machine-Learning Approach, ACM SIGMOD 2001 , ACM, 2001, 509–
520.

8. Doan, A., Noy, N. F., Halevy, A. Y.: Introduction to the Special Issue on Semantic
Integration., SIGMOD Record , 33(4), 2004, 11–13.

9. Fagin, R.: Inverting schema mappings., PODS Conference, 2006, 50–59.
10. Fagin, R., Kolaitis, P. G., Miller, R. J., Popa, L.: Data Exchange: Semantics and

Query Answering., ICDT 2003 , Lecture Notes in Computer Science 2572, Springer,
2002, 207–224.

11. Fagin, R., Kolaitis, P. G., Popa, L.: Data exchange: getting to the core., ACM
Trans. Database Syst., 30(1), 2005, 174–210.

12. Fagin, R., Kolaitis, P. G., Popa, L., Tan, W. C.: Composing schema mappings:
Second-order dependencies to the rescue., ACM Trans. Database Syst., 30(4),
2005, 994–1055.

13. Fuxman, A., Hernández, M. A., Ho, C. T. H., Miller, R. J., Papotti, P., Popa, L.:
Nested Mappings: Schema Mapping Reloaded., VLDB , 2006, 67–78.

14. Gottlob, G., Koch, C., Pichler, R.: Efficient Algorithms for Processing XPath
Queries, Proc. of the 28th International Conference on Very Large Data Bases,
VLDB 2002, Hong Kong, China, 2002, 95–106.

15. Halevy, A. Y., Rajaraman, A., Ordille, J. J.: Data Integration: The Teenage Years.,
VLDB , 2006, 9–16.

16. Lenzerini, M.: Data Integration: A Theoretical Perspective., PODS , 2002, 233–246.
17. Madhavan, J., Halevy, A. Y.: Composing Mappings Among Data Sources., VLDB ,

2003, 572–583.
18. Melnik, S., Bernstein, P. A., Halevy, A. Y., Rahm, E.: Supporting Executable

Mappings in Model Management., SIGMOD Conference, 2005, 167–178.
19. Nash, A., Bernstein, P. A., Melnik, S.: Composition of Mappings Given by Em-

bedded Dependencies., PODS , 2005.
20. Pankowski, T.: Management of executable schema mappings for XML data ex-

change, Database Technologies for Handling XML Information on the Web, EDBT
2006 Workshops, Lecture Notes in Computer Science 4254, Springer, 2006, 264–
277.

21. Pankowski, T., Hunt, E.: Data Merging in Life Science Data Integration Systems,
Intelligent Information Systems, New Trends in Intelligent Information Processing
and Web Mining , Advances in Soft Computing, Springer Verlag, 2005, 279–288.

22. Popa, L., Velegrakis, Y., Miller, R. J., Hernández, M. A., Fagin, R.: Translating
Web Data., VLDB , 2002, 598–609.

23. Rahm, E., Bernstein, P. A.: A survey of approaches to automatic schema matching,
The VLDB Journal , 10(4), 2001, 334–350.

24. Tatarinov, I., Viglas, S., Beyer, K. S., Shanmugasundaram, J., Shekita, E. J.,
Zhang, C.: Storing and querying ordered XML using a relational database sys-
tem., SIGMOD Conference, 2002, 204–215.

25. Wadler, P.: Two Semantics for XPath, Available on:
http://homepages.inf.ed.ac.uk/wadler/papers/xpath-semantics/xpath-
semantics.pdf, 2000. 26 July 1999, revised 4 January 2000

26. XML Path Language (XPath) 2.0: 2006. www.w3.org/TR/xpath20
27. XML Schema Part 1: Structures 2d Edition: 2004. www.w3.org/TR/xmlschema-1
28. XQuery 1.0 and XPath 2.0 Data Model.: 2002. www.w3.org/TR/query-datamodel
29. Yu, C., Popa, L.: Constraint-Based XML Query Rewriting For Data Integration.,

SIGMOD Conference, 2004, 371–382.

