
A Framework for the Behavior Based Integration of
Business Processes

Georg Grossmann, Michael Schrefl, and Markus Stumptner

University of South Australia, Advanced Computing Research Centre, Mawson Lakes, SA 5095,
Adelaide, Australia. E-mail: {cisgg, cismis, mst}@cs.unisa.edu.au. ?

Abstract. We propose a meta-meta framework architecture for supporting the behav-
ior based integration of two business processes. The meta-meta level provides basic in-
tegration operators to the system administrator to create integration options for specific
domains. Based on semantic relationships between nodes of two business processes
these integration options are executed and transform parts of the business processes.
The outcome of the model transformation is an integrated business process. The main
advantage of this framework is the support of integration on multiple levels of varying
domain independence as supported by the Model Driven Architecture.
Keywords: Behavior based integration, business process.

1 Introduction

Recent research initiatives such as a special issue of Advanced Engineering Informatics on
Enterprise Modelling and System Support [2] have pointed out the potential of enterprise
systems to support integration of various functions in an organisation as well as in value
chains and business networks. The implementation, however, is not without problems and
failures can be costly. A variety of models, tools and techniques have been developed to
address this problem by supporting the analysis of business process structure and perfor-
mance.

Our contribution to this topic is a framework for behavior based integration of business
processes with an underlying metaclass architecture [6]. It represents a generic approach
where high-level integration operators can adapt and produce individualized integration op-
tions, i.e., groups of operations, for the integration of processes from a particular domain.

The framework uses instantiation relationships in a metaclass architecture to implement
context-dependent integration patterns. The application of the integration approach is shown
in Figure 1 and consists of the meta model level and the model level. The meta model pro-
vides a set of basic integration tools which are instantiated on the model level. On the meta
level, three steps are undertaken to provide the necessary context for model level integration.

1. Definition of semantic relationships: On the meta level, the system administrator de-
fines semantic relationships between element types of a business process.

2. Definition of integration options: The second task of the system administrator is
the definition of integration options. Several predefined basic integration operators are
available for the development of integration options.

3. Definition of integration choices: The last step on the meta level covers the definition
of integration choices. Each relationship defined in the first step must be associated with
at least one integration option created before.

? This research was partially supported by the Australian Research Council under Discovery Grant
DP0210654 and by the CIEAM CRC Project “Integrated Reliability Management”.



On the model level, 4 steps must be performed to lead from two separated models given
as input to an integrated business process:

1. Modeling of business processes: On the model level, the software developer creates or
imports two business processes which are to be integrated into one model.

2. Set semantic relationships: The developer subsequently inserts the semantic relation-
ships defined in step 1 on the meta level between nodes of the two business processes.

3. Choose integration option: Depending on the defined integration choices, there exist
either one or more integration options for each semantic relationship. In the latter case,
the developer has to decide which option is the proper one for the following model
transformation. At the end, each semantic relationship refers to one integration option.

4. Model transformation: In the last step, the developer executes the model transfor-
mations. This implies the execution of all integration options that are related to the
semantic relationships identified in the second step on the model level.

Two business processes

INPUT

Semantic relationships

�����������������������������������������������������������������

�����������������������������������������������������������������

Integration options

MAPPING

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Integrated business process

Fig. 1. The concept of the integration framework.

The main advantages of this framework is the support of integration being specified
in multiple levels of varying domain independence, i.e., independent from system environ-
ment, and domain specific on the meta model level, as supported by Model Driven Ar-
chitecture (MDA) techniques [4]. It assists the development of an integration application
that can be used in a specific domain, e.g., supply chain management or e-commerce. The
framework also supports the reuse of integration options which might be applied in different
integration situations in a specific domain.

In the following section we give a short introduction to the diagram notation that we are
using in Section 3. We assume that the reader is familiar with Petri net semantics and UML
Activity Diagrams (UML-AD) notation.



2 Diagram notation

The proposed integration framework operates on the level of diagrammatic representations
of the processes. Our diagram notation is derived from the UML 2.0 Activity Diagrams
(UML-AD) [5]. However, we have adapted activity diagrams to our needs as a result of the
experience with our earlier work in this area. We use a simplified subset of the nodes defined
by the UML 2.0 AD standard which is sufficient to express business process semantics
and preserves or even enhances the underlying Petri-net-resembling semantics of Activity
Diagrams. On the other hand, we have made two significant extensions.

is ok (S5)is damaged (S4)

CAR WHEEL

check set of tyres (A4)

set of tyres is ok (S7)

set of rims is damaged (S8) set of rims is ok (S9)

set of tyres is damaged (S6) check set of rims (A5)

check wheels (A1)

wheels are checked (S1)

check steering rod (A2)

steering rod checked (S2)

check results (A3)

results checked (S3)

send report (A6)

report sent (A7)

no damage founddamage found

no damage found

damage found no damage found

damage found

disable

disable

invoke

finished

Fig. 2. An integrated model for CAR and WHEEL.

First, we found that both “state-biased” or “activity-biased” diagrams impose limitations
on the integration process, and explicitly dealing with states significantly facilitates the clear
separation between the different integration options in a number of cases. Therefore we
introduce an explicit representation of states and include the additional node type state.

Second, as described in [1] activity edges are not sufficient for modelling composition
and association relationships between business processes, because they always imply pass-
ing of tokens, but situations exist where only checking for token existence should occur.
We have introduced a new edge type, links, to handle this situation. We use 6 different link
types which are sufficient for modeling of composite business processes. We refer to the
diagrams resulting from these extensions as Activity State Diagrams (ASDs). For a more
detailed discussion and examples of ASDs, see [1].



3 Example

We demonstrate the output of our integration framework on two simple business processes
of a garage CAR and a wheels store WHEEL. CAR decided to outsource the wheels branch
and to cooperate with WHEEL. In the example a customer brings his vehicle to CAR
because he feels vibrations on the steering wheel while driving. The search for the reason
of the vibration consists of checking the wheels (A1) and the steering rod (A2), where A1

should be performed by the business process WHEEL. This circumstance is defined by
the semantic relationship sub act between A1 and WHEEL [1]. One integration option
for sub act would be that A1 invokes A4 and the token in A1 is blocked until the token
in WHEEL arrives at the activity “send report” (A6), i.e., checking the tyres (A4) and
rims (A5) is finished as shown in Figure 2. This integration option is called blocking [1].
An alternative option would be the future synchronization, where a token is not blocked
in an activity, e.g., A1, but can continue execution until another activity is reached, e.g.,
A3. In this case the steering rod can be checked (A2) while the checking of wheels is being
executed. The software developer chooses the proper integration option which are created by
the system administrator previously. Between the states S5, S8, and S9 exists an interprocess
dependency, meaning that a process cannot enter a specific state, e.g., S5, if another process
is or was in another specific state, e.g., S8 or S9. The dependency is realised through disable
links.

4 Conclusion and Future Work

This paper has presented an integration framework for two business processes on different
meta levels [1]. We are currently implementing the framework in the meta modelling tool
DoME [3]. In future we are going to verify integration options by checking the consistency
of the integrated model in respect to the input models similar to research in [7, 9, 8].

References

1. Georg Grossmann, Yikai Ren, Michael Schrefl, and Markus Stumptner. Behavior Based Integration
of Composite Business Processes. In Proc. BPM 2005, volume 3649 of LNCS, pages 186–204,
September 2005.

2. Elsevier North Holland. Special Issue on Enterprise Modelling and System Support. Advanced
Engineering Informatics, 18(4):191–253, October 2004.

3. Honeywell Inc. Domain Modeling Environment (DoME) . http://www.htc.honeywell.com/dome.
4. Anneke Kleppe, Jos Warmer, and Wim Bast. MDA explained - The Model Driven Architecture:

Practice and Promise. Object Technology. Addison-Wesley, 2003.
5. James Rumbaugh, Ivar Jacobson, and Grady Booch. The Unified Modeling Language Reference

Manual, 2nd edition. Object Technology Series. Addison-Wesley, 2004.
6. Markus Stumptner, Michael Schrefl, and Georg Grossmann. On the road to behavior-based inte-

gration. In Proc. of APCCM 2004, pages 15–22. Australian Computer Society, 2004.
7. W. M. P. van der Aalst. Verification of workflow nets. In Proc. of ICATPN 1997, volume 1248 of

LNCS, pages 407–426, London, UK, June 1997. Springer.
8. Kees van Hee, Lou Somers Natalia Sidorova, and Marc Voorhoeve. Consistency in model integra-

tion. Data and Knowledge Engineering, 56(1):4–22, January 2006.
9. S. J. Woodman, D. J. Palmer, S. K. Shrivastava, and S. M. Wheater. Notations for the Specification

and Verification of Composite Web Services. In Proc. of EDOC 2004. IEEE Computer Society
Press, 2004.


