

The Software Product Management Workbench:
An Integrated Environment for Managing Product

Releases in a Distributed Development Context

Richard Nieuwenhuis, Inge van de Weerd, Lex Bijlsma,
Sjaak Brinkkemper, Johan Versendaal

Department of Information and Computing Sciences
Utrecht University, The Netherlands

{ rnieuwen, i.vandeweerd, a.bijlsma, s.brinkkemper, j.versendaal }@cs.uu.nl

Abstract. Product management in software product companies is complex due
to the many intertwined information flows on releases, products and require-
ments, and the high number of different stakeholders that are involved. We pro-
pose the Software Product Management Workbench for operational support of
requirements management, release planning, product roadmapping, and portfo-
lio management. In this paper, we describe the functional design, architectural
design, and show the requirements similarity functionality in the prototype.

1 Introduction

In product software companies, product management is an important function. The
product manager (PM) has a lot of responsibilities regarding the content of upcoming
releases of the various products. Nonetheless, he does not have management authority
over the development teams, and thus the project progress, which makes this job com-
plex. Every day, the PM is confronted with several stakeholders in and outside the
company, like customers, sales, development teams and services, who all have their
own wishes. We developed a reference framework for software product management
[3], in which all interactions of the functionalities and stakeholders are modeled. Parts
of this framework are supported by tools, for example requirements organizing, or re-
lease planning. However, no tools exist that integrate all features dedicated to product
management. To support the PM with all daily activities, we propose the Software
Product Management Workbench (SPMW).

2 Functional Design

The SPMW is designed to support five types of users in a product software company:
1. The PM is the main user of the SPMW, and uses it in his everyday work for

organizing requirements, planning product releases, scheduling teams, etc.

2. Developers use the system to acquire or add the latest development details
on releases and requirements.

3. The Core Asset Developer is responsible for attaching core assets to releases,
 so that the PM and the developers have easy access to the latest core assets.
4. The customer is an optional user. When a company wishes to integrate its

website with the SPMW, the customer can use it to submit requirements. The
SPMW also provides self service look-ups to the clients, enabling the clients
to view the status of their submitted requirement.

5. The System Administrator is responsible for giving access to new users, such
as board members, marketing and sales representatives and selected custom-
ers and facilitating the product manager in starting up new products.

In Figure 1, we visualized the key users and the four main modules of the SPMW.

Fig. 1: Functional Design of the SPMW

In the requirements management module the PM can add, edit and organize require-
ments. The strength of this module is that it is capable of giving suggestions of re-
quirements that may be referring to the same functionality automatically. The release
planning module is used by the PM to develop new releases. This module is able to
suggest requirements that should preferably be put in a next release based on parame-
ters provided by the PM. Change and status management is also possible in this mod-
ule. The product roadmapping module is used for monitoring the roadmap of a prod-
uct. Finally, the portfolio management module is used by the PM and by the Core
Asset Developer to manage the product portfolio and product lines.

3 Architectural Design

Building Enterprise Applications is a difficult and daunting task [4]. These types of
applications need to be designed carefully to provide good performance. The J2EE
platform [1] takes care of many of the difficulties, thus making the creation of it eas-
ier. At the heart of J2EE lie the so called Enterprise Java Beans (EJB). The architec-
ture uses two different types of EJBs, namely: Entity and Session beans. One Entity
bean represents one row, for example a requirement, in a database table. Session
beans perform work for their clients (the users mentioned in Sec. 2), and are often
used to provide coarse grained access to other beans, shielding the client from the
complex business logic. The architecture of the SPMW uses J2EE design patterns [1],
giving the SPMW the desirable performance and maintainability.

A high level overview of the system, is shown in Fig. 2, together with a small part
of the architecture showing some of the key patterns used throughout the system. An
application client runs on the client machine. This has as advantage that heavy calcu-

lations, for example the suggesting of requirements that refer to the same functional-
ity, can be performed here without affecting the server. In general, only the PM uses
the application client, since he is the only one who executes heavy calculations. All
other users login through the web client with a browser from anywhere in the world,
so that they are always up-to-date with the latest release and the current contents.

Fig. 2: High level architecture of the SPMW

 Session Façades provide coarse-grained access to the entity beans, making the cli-
ents less dependent on the EJB tier. Calls from the application client and the web tier
to the EJB tier are fairly slow. Data is therefore sent back and forward from the clients
to the EJB tier using Transfer Objects, containing all data the client possibly wants to
get a hold on, instead of having one remote call for every piece of data. Locating ob-
jects residing on another machine is done by performing lookups using the Java Nam-
ing and Directory Interface, which are relatively slow. Extracting all the lookup code
into a singleton object not only removes duplicated lookup code, but when different
objects need a reference to the same objects, caching mechanisms for object refer-
ences can be used to improve system performance. The clients are designed following
the Model View Controller pattern.

The SPMW architecture is designed such that new product management innova-
tions, which are likely to be introduced in future releases, can easily be incorporated.

4 Prototype

Presently, we have realized the requirements and the release planning module of the
SPMW. The function shown in fig. 3 refers to the selection of similar requirements
based on the input of a given requirements using techniques of linguistic engineering
[2]. This technique transforms a text by performing several pre-preprocessing steps on
it and then calculates the similarity between requirements using the vector-space
model. These steps are: flattening, tokenizing, stop word removal, and stemming. Re-
quirements are flattened by merging the label and the description of it. After this a re-
quirement is tokenized into a sequence of tokens by removing capitals, punctuations
etc. Common stop words are removed, followed by performing stemming on the
words to remove affixes and other lexical components. After this the requirements are
represented as vectors so that the “angle” between them can be calculated. This re-
sults in a number between 0-1 indicating how similar they are. When this process is
complete, the SPMW displays the requirements ordered by their similarity. This proc-

ess is not bound to English requirements alone, but requirements in Dutch, French,
and German can also be processed.

Fig. 3: Requirement similarity suggestion

5 Future Work

Building on the SPMW will continue, and studies on more efficient support of prod-
uct management processes are performed, and if found useful, they will surely make
their way as extensions into the support tool. For example, studies on improving the
requirements linking process [2] are performed. The next step is extending the SPMW
with the product roadmapping and portfolio management modules. The SPMW is
therefore not only innovative at the present time, but is also built for the future.

6 References

[1] Armstrong, E., Ball, J., Bodoff, S., Carson, D.B., Evans, I., Green, D., Haase, K., Jendrock,
E.: The J2EE 1.4 Tutorial, 2nd ed. Sun Microsystems and Addison-Wesley (2004)

[2] Natt och Dag, J., Regnell, B., Gervasi, V., Brinkkemper, S.: A linguistic-Engineering Ap-
proach to Large-Scale Requirements Management. IEEE Software, Vol. 22 (2005) 32-39

[3] Weerd, I, van de, Brinkkemper, S., Nieuwenhuis, R., Versendaal, J., Bijlsma, L.: A
Reference Framework for Software Product Management. Accepted for publication in the
14th International Requirements Engineering Conference, Minneapolis/St. Paul, Minne-
sota, USA (2006)

[4] Fowler, M.: Patterns of Enterprise Application Architecture. Addison-Wesley Boston, MA,
USA (2003)

