
Separation and Modularization of Crosscutting Social

Patterns in Detailed Architectural Design

Carla Silva
1
, Jaelson Castro

1, 2, γ, João Araújo
3
, Ana Moreira

3
,

Fernanda Alencar
 4, ∗ and Ricardo Ramos

1

1 Centro de Informática, Universidade Federal de Pernambuco, 50732-970, Recife, Brazil
{ctlls, jbc, rar2}@cin.ufpe.br

2 Istituto Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecnologica,

Trento-Povo, Italy
jaelson@itc.it

3 Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
{ja, amm}@di.fct.unl.pt

4 Dept. Eletrônica e Sistemas, Univ. Federal de Pernambuco, 50732-970, Recife, Brazil
fmra@ufpe.br

Abstract. This paper outlines an aspect-oriented approach to support separation

and modularization of crosscutting concerns in multi-agent systems. Aspects

are used as abstractions to capture social patterns as concerns that crosscut

software agents in multi-agent systems, whose separation and modularization

are not taken into account in current agent-oriented software engineering. So-

cial patterns are described using a template and UML-based diagrams to repre-

sent the pattern’s structure and behaviour in an aspect-oriented context.

1 Introduction

Agent-oriented design patterns have been proposed to support the development of

more reusable, flexible, understandable and maintainable multi-agent systems (MAS)

[1]. In particular, the Tropos framework [2] has defined a set of design patterns,

named social patterns [3], which includes booking, subscription, monitor, broker,

matchmaker, mediator and wrapper. Traditional software development paradigms do

not address the crosscutting nature of some design patterns which are scattered among

different functional modules, making these tangled concerns [4]. Design patterns con-

cerns are, therefore, crosscutting issues that can be better addressed by adopting as-

pect-oriented software development (AOSD) techniques [5].

In our previous work we proposed an approach to describe social patterns in the

context of the Tropos project [1]. However, we did not take into account the benefits

of separating pattern concerns from application concerns. Hence, in this paper we

advocate the use of aspects as abstractions for cleanly separating the social patterns

γ Currently on leave of absence from UFPE.
∗ Currently on leave of absence at FCT / Universidade Nova de Lisboa, Portugal.

concerns from the core system functionality modules (i.e. agent roles) in MAS. We

start by introducing an approach to describe social patterns (in the next section) and

finish by summarising the main contribution of our work and pointing out open issues

that need to be investigated further.

2 Describing Social Patterns

Tropos offers some social patterns [3] described using dimensions, such as social,

intentional, structural, communicational and dynamic, which reflect particular aspects

of MAS architectures, but do not provide a detailed description of each pattern. To

address this issue, in [1] we present a template based in GoF’s [6] to describe in more

detail the social patterns. This template includes the description of pattern’s Intent,

Applicability, Motivation Example and Participants. In this work, we present a com-

plement of that template (Table 1) which illustrates the description of the Matchmaker

pattern.

Table 1. The Partial Template for a Pattern Description

Element Description

Name Matchmaker Pattern

Problem How can clients locate unknown providers which offer a specific service?

Solution The solution involves an intermediary agent (matchmaker) that receives requests from ser-

vice providers to subscribe/unsubscribe its services into the yellow pages maintaned by it.

An agent (client) may need a specific service provided by an unknown agent (provider). The

Matchmaker also receives requests from client agents to locate some provider agent which

offers a specific service. If there is some provider for the requested service, the Matchmaker

informs that provider’s ID to the client which, in its turn, can directly interact with it.

Furthermore, to achieve a more complete description of a pattern we must provide

a description of its structure and behavior. In this paper, we propose an approach

which uses abstractions and mechanisms of AOSD to describe social patterns in order

to promote separation and modularization of social patterns’ concerns. In particular,

we adopt an extension of the aSideML notation [7].

The aSideML class diagram has been extended to support organizational architec-

tural features [8] and agency features [9], as well as the notion of model roles [10]. In

our approach we support the following modeling elements: agent role classes, plans,

actions, ports and attributes. The agent role class, which is our base unit, is stereo-

typed by <<Role>>. Simmilarly, a plan the agent has to achieve a goal is stereotyped

by <<Plan>>, while an action, which composes a plan, is stereotyped by <<Action>>.

Organizational architectural ports are stereotyped by <<Port>> [8]. Thus, in our ex-

tended aSideML class diagram (Fig. 1), model element roles are added for two main

reasons: to define generic model elements and to facilitate aspectual composition.

In Fig. 1, Matchmaking is an “aspect” that describes the Matchmaker design pat-

tern [3] and includes three crosscutting interfaces (CI) [7] which are: Matchmaker,

Client and Provider. Crosscutting features are listed in different compartments of CIs:

Additions lists data and operations to be introduced in classes; Refinements lists cross-

cutting operations to be combined before, after or before/after class operations; Re-

definitions lists crosscutting operations that override class operations. For example,

the Client is a CI modularizing features that affect arbitrary base units in such a way

that they become clients. The Client CI declares six additions: the matchmaker attrib-

ute, the portZ and portA ports, as well as locateProvider, getMatchmaker and set-

Matchmaker actions. It also declares one refinement: the _requestService() operation,

which denotes a behaviour to be executed before the |performAction agent behaviour.

Fig. 1. Pattern Structure

The “crosscuts” relationships (stereotype <<crosscut>>) connect the Matchmaking

aspect to |Matchmaker (binding receiveMessage to |receiveMsg), |Client (binding

requestService to |performAction) and |Provider (binding newAgent to |createAgent).

We also need to describe the composition of the aspect (i.e. the pattern’s features)

with the agent roles, which are going to be improved by the pattern’s features.

An aspectual interaction [7] is a behavioural specification which incorporates a

communication sequence exchanged by a set of instances of base units (agent roles)

and an aspect instance in order to accomplish the implementation of a crosscutting

behaviour (see Fig. 2). A small gray diamond symbol shaded in the base unit (agent

role) instance lifeline denotes the weaving point [7].

Fig.2. Aspectual Interaction of the Matchmaker Pattern

3 Conclusion

Our approach supports both the separation of social patterns concerns and its later

composition with the agent roles present in the MAS. By doing so, we promote an

easier way to apply the social patterns to the MAS design, since we only need to spe-

cialize the model roles present in the pattern description with specific agent roles of

the MAS under development. However, further work is required to define a process

for guiding the selection of proper social patterns to refine the MAS architecture. In

fact, work is underway to describe a process that considers non-operationalized

croscutting concerns as criteria to choose the patterns to be applied to a specific MAS.

Acknowledgements

This work was supported by several research grants (CNPq Proc. 304982/2002-4,

CAPES Proc. BEX 1775/2005-7, Proc. BEX 3003/05-1, Proc. BEX 3014/05-3 &

CAPES/ GRICES Proc. 129/05).

References

1. Silva, C., Castro, J., Tedesco, P., Silva, I.: Describing Agent-Oriented Design Patterns in

Tropos. In Proceedings of the 19th Brazilian Symposium in Software Engineering. Uberlan-

dia, Minas Gerais, Brazil (2005) 10 – 25

2. Giorgini, P., Kolp, M., Mylopoulos, J., Castro, J.: Tropos: A Requirements-Driven Method-

ology for Agent-Oriented Software. Book Chapter in Agent-Oriented Methodologies. ed.:

Idea Group (2005) 20 – 45

3. Kolp, M., Do, T. T., Faulkner, S., Hoang, H. T. T.: Introspecting Agent Oriented Design

Patterns. In S. K. Chang (Eds), Advances in Software Engineering and Knowledge Engi-

neering, vol. III, World Publishing (2005)

4. Noda, N. and Kishi, T.: Implementing Design Patterns Using Advanced Separation of Con-

cerns. In Proceedings of OOPSLA 2001, Workshop on Advanced Separation of Concerns in

Object-Oriented Systems. Tampa Bay, FL (2001)

5. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J., Irwin, J.:

Aspect-Oriented Programming. In Proceedings of the 11th European Conference on Object-

Oriented Programing. Springer-Verlag, Finland (1997) 220 – 242

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley (1995)

7. Chavez, C.: A Model-Driven Approach to Aspect-Oriented Design. PhD Thesis, Computer

Science Department, PUC-Rio (2004)

8. Castro, J., Silva, C., Mylopoulos, J.: Detailing Architectural Design in the Tropos Methodol-

ogy. In Proceedings of the 15Th CAiSE. Klagenfurt/Velden, Austria (2003) 111 – 126

9. Silva, C., Castro, J., Alencar, F. and Ramos, R.: Extending UML to Support Both Agency

and Organizational Architectural Features. In IX Workshop Iberoamericano de Ingeniería de

Requisitos y Ambientes de Softare (IDEAS’06) (to appear).

10. Kim, D. K.: A Metamodeling Approach to Specifying Patterns. PhD Thesis, Colorado State

University (2004)

