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Abstract. Modularization for ontologies and thus for logical theories
is receiving increasing interest, but a clear presentation of requirements
for solutions is still missing. This paper presents a collection of such
requirements. Some of these are derived as desiderata in the context
of applying modularization to the axiomatization of a top-level ontol-
ogy, whereas others are determined by analyzing the notion of module
in software engineering. Given these requirements, their relationship to
current proposals for modularizing ontologies is briefly discussed, with
a focus on our application. In a wider context, the paper represents an
initial step towards a notion of module for logical languages, which is
applicable to the creation and maintenance of large axiomatizations.

1 Introduction

Expedited by the Semantic Web in general, and the Web Ontology Language
(OWL) [31] in particular, the use of logical formalisms has become widespread
over recent years, even if this may be hidden for many users.1 The new dimen-
sions of usage of these formalisms, e.g., as concerns the size of ontologies/theories,
creates a number of novel problems which have to be tackled also in the formal
framework. Mapping and merging ontologies was recognized as a problem of
that kind some years ago, and it has seen some progress already [19], while the
problem of modularization is still in its beginning, with a limited number of
publications addressing this problem explicitly. One might even say that a clear
definition of the problem is missing, apart from the rough idea of interrelat-
ing large ontologies with a number of smaller components, in order to keep the
overall system “better manageable”.

Concerning modularization in the context of OWL, the lack of a sophis-
ticated notion of module has already been criticized with its advent, because
of the simplicity of means which it provides for combining OWL ontologies.
The owl:imports statement is the only available element of OWL to achieve a

1 In all cases of referring to OWL, we actually refer to OWL-DL which corresponds
closely to the description logic SHOIN (D) (see [9, p. 27–32] for a clear presentation
of minor differences between these two, which are irrelevant for this paper).



syntax-level splitting of ontologies. The semantics of this statement corresponds
to a simple union of the axioms of the importing ontology and the imported
ones, which is insufficient for supporting modularized ontologies.

The specific background for our interest in logical modularization is given
by the development of the top-level ontology General Formal Ontology (GFO)
[18], which is to be presented by means of axiomatic theories in several logical
languages. For reasons of expressiveness, our primary axiomatization is based on
first order logic, but we also provide an OWL version. Independently of which
particular logical formalism is chosen, such axiomatizations will comprise at least
hundreds of non-uniform axioms, i.e., axioms which do not follow one or a few
common schemes, like simple subsumption statements. We will argue that the
task of developing and maintaining these axiomatizations can be compared to en-
gineering software artifacts. Currently, we are not aware of any formalism which
has been equipped with a notion of module which supports dealing with such
theories in an appropriate manner. This paper shall clarify our understanding of
“appropriate” by introducing and discussing requirements for modularization.

Among other purposes, this can support the evaluation of existing approaches.
Indeed, some extensions for OWL and other logical languages have been pro-
posed which offer ways for modularizing theories (for example, [12, 7, 3]). How-
ever, in most cases these have been derived from approaches developed with dif-
ferent motivations. Their characteristics should therefore be examined against
modularization requirements, which we do briefly for three approaches.

The overall structure of the paper is as follows. Firstly, we collect our desider-
ata for modules, which arise directly from working with logical formalisms, in
section 2, preceded by a short introduction to the application setting. In sec-
tion 3, further requirements are obtained by considering the notion of module
in software engineering. Section 4 presents a brief analysis of the properties of
current proposals in relation to our requirements, before the paper concludes
with the fifth section.

A note on the formal setting is due. Much of what follows is independent of
a particular logic, like first order logic (FOL) or any specific description logic
(DL). We refer to a logic L as a triple L = (L,M, |=) of a language L, understood
as a set of sentences2, a set of model structures M , and a satisfiability relation
|= ⊆ M × L between model structures and sentences. By standard definitions,
the latter generalizes to model and consequence relations between models, model
classes, and theories, all of which are likewise denoted by |=. Cn(T ) denotes
the deductive closure of T . Grammatical definitions of a language L usually
distinguish sentence constructions and a vocabulary/signature V . We sometimes
speak of the same language even for different vocabularies, and L(V ) denotes
all sentences which can be built from V in a given grammatical framework. Any
subset T ⊆ L(V ) is called a theory. The vocabulary of T is denoted by V (T ),
the corresponding language is L(T ) =df L(V (T )).

2 We are not interested in formulas with free variables in the case of a language with
variables.



2 Requirements From an Application Perspective

2.1 General Setting: Distinguishing Basic and Complex Modules

The current axiomatization of the General Formal Ontology (GFO) comprises
about three hundred sentences in FOL, circa one hundred of which are explicit
definitions. These are roughly organized into axiomatic fragments with respect to
several topics in GFO, like Time, Space, Part-of Relations, etc. This organization
is useful for analyzing the resulting theories with respect to their logical proper-
ties, most prominently consistency and completeness. However, statements about
the system of these fragments, seen as a single theory, are hard to make in the
case of FOL, because the vocabularies of these fragments overlap.

In the current situation, one may view these fragments as modules, which
should be combined in a sensible manner. Note that in general, given some
notion of module, two kinds of usage become available, namely composition and
decomposition. Composition refers to studying the relation between a module
and a system built from several modules, whereas decomposition starts with a
theory or system and tries to determine an “appropriate” collection of modules.
The latter is often called “partitioning” in recent approaches [3, 12]. Currently,
our own focus is compositional rather than decompositional.

Another view on GFO is as a ready-made component for the development
of domain ontologies, so that GFO as a whole appears as a module of domain
ontologies. Under this perspective, GFO should behave like a logical theory in
order to fit formalizations of domain ontologies.

According to these views one can distinguish two kinds of modules (or even
logics). Modules in the first sense are called basic modules, and their core com-
ponent is some theory T ⊆ L, usually provided as a finite axiomatization in a
language L. Given a number of basic modules (Ti)i∈I (where I is an arbitrary
index set), these can be combined into a system S. Such a system may serve
itself as a complex module for a larger system. If the applied combination oper-
ation departs from set-theoretical union, this yields potentially different logics
for basic and complex modules. Let us assume that all basic modules Ti adhere
to a common logic L = (L,M, |=bas), where L = L

(⋃
i∈I V (Ti)

)
. Even then

the composition operation for creating S out of the Ti may form a new kind of
entailment and hence a different logic for S, L′ = (L′,M ′, |=comp), with respect
to which S represents a theory S ⊆ L′ ⊇ L.

2.2 Requirements

With this general setting in mind, we formulate and discuss the following require-
ments for logical modules. At this stage, we do not impose any pre-established
constraints on ourselves with respect to feasibility, computability, or the ques-
tion of whether a single, formal notion of module can satisfy all of them. In this
sense, the following is to be seen as a collection of desiderata, rather than a set
of requirements which must be met necessarily.



Inclusion/ Local Correctness and Completeness It appears natural that
a system S composed of modules should provide the information contained ex-
plicitly in its modules. If S is composed of basic modules (Ti)i∈I , this requires
S |=comp φ for every φ ∈ Ti, for all i ∈ I. A strengthening of this requirement
would also include implicit information, replacing φ ∈ Ti above by Ti |=bas φ.
This is called local correctness in [12], which is traced back to [14]. The “inverse”
notion is local completeness of a module Ti with respect to S. It requires for every
ψ with S |=comp ψ and ψ ∈ L(Ti) that it follows already from Ti, Ti |=bas ψ.

Compositionality If certain logical properties are proved for modules, there
should be general means to derive these properties for the overall system. For
example, the consistency of a set of modules may immediately result in the con-
sistency of their combination, i.e., due to the combination operation defined for
modules. Compositionality would be very valuable for undecidable logics such as
FOL, because one could then concentrate on attempts to prove logical proper-
ties for much smaller theories. Decidable logics allow for computing consistency
in principle, however, compositionality would be helpful in practice, because at
present, large ontologies can still take reasoners far beyond their capabilities.

Classically Closed Composition A system S composed of modules, viewed
as a deductive system, should be deductively closed with regard to classical logic.
The rationale behind this is to feed information from S into classical systems,
i.e., such which are based on (fragments of) classical logic. This includes OWL
and many description logics, as well as rule languages which are currently being
adapted to the Semantic Web.

For instance, S should satisfy the deduction theorem (in case of a classical
logic being used for its basic modules; or an equivalent for other kinds of logics).
If it does not, assume that S |=comp φ and S |=comp φ → ψ, but S 6|=comp ψ.
A classical system querying S and receiving φ and φ → ψ could then derive ψ,
which is in conflict with S. The requirement means to avoid such situations for
arbitrary classical deductions.

Directionality Composition should allow for a directed information flow among
modules, such that a module may use another without having an impact on it.
This requirement is motivated by the second use case from above, where a domain
ontology is based on a top-level ontology. Of course, one would not want effects
from the domain ontology to be transferred to the top-level ontology (in the
worst case, causing inconsistency where there was none). Formally, if T1 and T2

are components of S and composition assures a directed information flow from
T1 to T2 within S, then T2 may take sentences from T1 into account, but not
vice versa. A very similar requirement is stated in [16].

Comprehensibility A module should remain “comprehensible”, with the pur-
pose of supporting maintainability. Two options in order to achieve this for basic
modules are (a) to have a rather small vocabulary and small set of axioms of arbi-
trary form, or (b) to have a possibly large, structured vocabulary equipped with
only simple axioms, which furthermore follow one or a few common schemes.



For complex modules, comprehensibility should derive from the way they are
composed of basic modules.

Stability A system composed of modules should remain stable if a single module
evolves, or loosely related modules are added. Especially, the system structure
should remain stable, i.e., the addition of a module does not change the pre-
viously established structure among other modules. Furthermore, side effects of
evolution should be reduced to a minimum. This criterion has also been proposed
in [25].

These requirements arise naturally in our application setting. We are aware of
the fact that most of them have been mentioned in different circumstances, as
indicated according to our knowledge. Distributed First Order Logic (DFOL)
[16] is motivated with a list of properties which has the strongest overlap with
ours we are aware of (see also section 4.3).

Concerning the interrelations among these requirements, one can already no-
tice that there are some which are likely to prevent attempts to satisfy all of
them. For example, directionality is a requirement which interferes with local
correctness and completeness as well as classically closed composition. For ex-
ample, let S answer queries in L(T1) only by means of its module T1, but queries
in L(T2) ⊃ L(T1) by means of T1 ∪ T2. This can easily create a situation where
S loses classically closed composition, e.g., by no longer satisfying the deduc-
tion theorem. Local correctness and completeness are problematic even without
other requirements. Both conditions are very restrictive, and the question arises
whether a non-trivial composition operation can be found, which is different
from set-theoretical union but satisfies local correctness and completeness.

Based on these requirements, one could now start to develop a notion of
module. However, so far this is rather an ad hoc collection of requirements. In
order to put the overall approach onto firmer ground, we will next consider the
notion of module in software engineering.

3 Modules in Software Engineering

The reason for considering software engineering as an appropriate source relies
on the assumption that the development of large axiomatizations in some as-
pects resembles software engineering, where we have come to this view based
on our current experiences. Moreover, modules and modularization have proved
as concepts of much success in software engineering. Note that a broad reading
of module applies here, because several specialized fields have created their own
basic notions which contain the general idea of modularization, e.g., “object”
in object-oriented approaches, or “component” in component-based software de-
velopment.

3.1 Basic Notions: Interface and Service

Starting with some general definitions, Siedersleben defines a module as “a closed
software unit with a well-defined interface”, which forms “the smallest unit of



software design” [28, p. 97, own translation]. He refers to [24] in stating that
data abstraction is the primary means to split systems into modules, where the
distinction between interface and an implementational body of a module forms
the central idea. An interface defines the services (or tasks) of a module.

Given this general characterization, interface and service form two central
elements of modules in software engineering, which should be migrated to a log-
ical understanding. The immediate services a logical module could provide are
reasoning services. For example, [4, primarily ch. 1] mentions some reasoning
types for description logics, like concept inclusion, concept satisfiability, or con-
sistency checking. However, in this generality, it seems hard to fix an analogue
for the notion of interface. In the sequel we therefore focus on answering entail-
ment queries, i.e., queries of the form T |= φ. This is the most relevant kind of
query for our application purpose, and several other query types can be reduced
to it (in many logics).

For the entailment service, a number of options for defining an interface of
a theory T ⊆ L appear. Two general approaches would be to view an interface
either as a query language Q ⊆ L, or, considering the set of answers, again as
a theory. The query language approach allows for restrictions of both, the lan-
guage grammar as well as the vocabulary. A special case of this is to just restrict
the language by means of the vocabulary, i.e., to use a subset V ′ ⊆ V (T ) of
the given vocabulary as interface specification. The theory-based understanding
of interface is even more general. It can integrate the query language approach
by defining T ′ =df Cn(T ) ∩ Q, but it may also allow for transformations of
the formulas of T . Currently, for reasons of comprehensibility and for simplicity
of specification, we advocate the query language view of what a logical inter-
face should be. Independent of this choice, a theory may provide several such
interfaces, like in software engineering.

The notion of a body degenerates to some extent in the declarative setting,
where a dynamics like program execution is missing or at least not more in-
formative than the semantics. In the query language view, the overall theory
appears as the body, which at least allows for information hiding (see below).

3.2 Key Features of Software Engineering Modules

There are some key features of modules in software engineering (cf., for instance,
[5, 13, 1, 26]) which can now be considered with respect to their logical counter-
parts. (Italics mark software engineering formulations.)

Structured into explicit interface and body Modules define explicit inter-
faces over which they communicate and the interface is the only way to com-
municate. Apart from that the module comprises a body which is accessed only
internally by a module.

This feature has already been covered by the above discussion of interpreta-
tions of “interface”. In the query language approach to interfaces, communication
between modules means that one module queries another in a query language
provided by the latter. This is very similar to the message passing metaphor
between theories employed in [3], see section 4.2.



Information hiding, encapsulation and visibility Internal information and
information handling is hidden for other modules. Therefore, a module provides
encapsulated functionality and / or data.

It depends on the relation between the language L(T ) of a module T and
the query language Q, serving as interface, to what extent information hiding
and visibility are realized. A problem with this feature is that it is not clear, in
a declarative setting, why some aspects of a theory should be generally hidden.
That is, why should certain vocabulary elements appear in no interface for T?
With respect to a single interface, it is useful to think of information hiding
and encapsulation. For example, given a top-level ontology TTLO, one may be
interested to use just the theory of time built into it, so let TTLO |= TTime. For
this purpose, TTLO may provide L(TTime) as a time interface. With our stability
criterion in mind, changes to the top-level ontology must be transferred to some
domain ontology which uses TTime only then if they affect the service accessible
via the time interface.

Let us now consider the case of multiple interfaces. In general, a theory T with
a number of logical interfaces defined by means of query languages Q1, . . . , Qn

yields a family of theories, namely (Cn(T ) ∩Qi)1≤i≤n. Note that these theories
cannot by default be seen as modules of T themselves, because two such theories
may be related in arbitrary ways with respect to entailment, in dependence of
the relations among the Qi. In software engineering, this freedom is constrained
for modules by means of the next criterion.

Independence The tasks a module has in the overall architecture are (to an
appropriate degree) independent from those of other modules.

With respect to the entailment service, which means to answer queries in a
specific language, we interpret this in such a way that different modules answer
questions with respect to different “topics”, which is naturally reflected by the
use of different languages. Starting with the grammar level, it is not obvious
to us how differences among the grammar would capture this criterion well. In
contrast, different vocabularies can reasonably be seen to refer to different topics.
A clear but strong notion of independence would require different vocabularies
to be disjoint. However, less restrictive interpretations will be needed to achieve
communication among modules.

It is important to note two axes of vocabulary differences, regarding the
ontological relations of the intended meaning of the vocabulary elements. Hori-
zontally (the term borrows from a hierarchical image of taxonomies), two vocab-
ularies may be concerned with distinct concepts in the sense that those concepts
do not share any instances. Trees, walks, and numbers are distinct in this read-
ing. In contrast, the vertical axis relates to the generality of notions. For instance,
vocabularies of top-level and domain ontologies are usually disjoint, but top-level
concepts classify the same entities referred to by domain entities. For predicate
logics and description logics, these types of differences interact with the corre-
sponding model structures, if these languages are used in a way which allows
for an ontological interpretation of relations between entities in model struc-
tures. For example, predication may reflect instantiation. OWL, in particular, is



exposed to this problem because of its very nature as an ontology language. Ac-
cordingly, modularization approaches based on or with specific effects on model
structures should be examined for implications on the contents expressed onto-
logically (see also section 4.1). In general, a solution for modularization which
handles both types of differences appears to be preferable over another dealing
with only one of them.

Due to interfaces as query languages, we have provided a language-oriented
interpretation of independence for modules. Another approach could consider
reasoning inside modules to be independent, rather than the languages used.
However, complete independence would then mean to not exchange any formulas.
Otherwise, the communication of formulas from one module to another creates
interdependences of reasoning. Hence, we claim that a better analogue for this
is interaction among modules rather than independence. Of course, interaction
is likewise observed in software engineering, and constrained for modules by the
subsequent characteristic.

Cohesion vs. coupling Modules should behave differently regarding cohesion
and coupling. Cohesion refers to interconnections within a module, whereas cou-
pling names interconnection among modules. Cohesion should be maximized in
modules, coupling minimized.

Sentences in a logical theory may have an impact concerning entailments on
each other, without any structural restrictions. This can be understood as cohe-
sion. Combining theories by set-theoretical union yields a theory whose sentences
are in the same way closely interconnected. Thus, this form of composition does
not adopt the distinction between cohesion and coupling. Compared to our re-
quirements above, directionality can be seen as a means to achieve a notion of
coupling.

Substitutability without side-effects Ideally, a module can be exchanged by
a module of equal character (i.e. which supports the same functionality) without
unexpected side-effects concerning coupled modules and the overall system. In
practice, usually some restrictions apply to the ideal case.

Given the query-language view of interface, “equal character” would literally
mean that a substitute module T ′ provides the same answers to queries in Q as
the original module T . Accordingly, this criterion can be met perfectly even by
standard theories, yet for a seemingly uninteresting special case. Logically equiv-
alent axiomatizations, i.e., given Cn(T ′) ∩Q = Cn(T ) ∩Q, would form distinct
modules which are perfectly interchangeable without any side-effects. However,
due to the fact that composition may yield a different form of entailment, this
depends on the inclusion requirements. For example, the above equation may
fail for a system comprising T , and later T ′, if only the inclusion of explicit
information is provided.

Another relevant case regards multiple interfaces: one may refer “equal char-
acter” to a single interface. Returning to the time-example, TTime may remain
constant while TTLO is changed in some other respects. Again, this connects to
our stability requirement.



There are further features, like readability, reuse status, or separate editability,
which do not contribute as much to an understanding of “module” as those
we have discussed so far. What can be observed is that there is hardly any
overlap between our ad hoc requirements and those transferred from software
engineering. By no means should this be interpreted negatively for the latter.
Instead, implicit assumptions could be explicated by this approach. With a more
profound set of requirements available, we can now start to evaluate the adequacy
of related work for our purposes.

4 Discussion of Existing Proposals

Modularization of logical theories is a rather young research interest, but it is
related to a number of fields which seem to provide good starting points. The
most direct approaches to modularization we are aware of and which moreover fit
the context of logic-based ontologies are that of Bernardo Cuenca Grau and col-
leagues [9, 12, 11, 10], which we will call the “semantic encapsulation” approach
(based on [9]); “partition-based reasoning” of Eyal Amir et al. [3, 22, 2], and the
“distributed logic” approach developed by Luciano Serafini and colleagues [7, 16,
6]. For each of these, we provide a short contextual placement and sketch their
main ideas, followed by a selective evaluation against the presented requirements.
The latter is driven by the question of which approach may suit a structured
axiomatization of GFO. Finally, further related work is briefly mentioned.

4.1 Semantic Encapsulation

This approach was initially based on ε-connections [20], which is a method of
combining certain kinds of logics, and thus belongs to the field of combining,
fibring, and fusing logics. For ε-connections, there is the general result that
the combination of decidable logics yields a possibly more expressive, but still
decidable formalism.

The semantic encapsulation approach started as an application of ε-connec-
tions to combining ontologies based on description logics [11], which is motivated
by the idea of an integrated use of independently developed OWL ontologies on
the web. Recently, it has been extended in a way which departs from ε-connec-
tions [12].

Nevertheless, it still shares a central feature with the ε-connections method,
for a certain class of SHOIQ theories: [12] introduces a partitioning algorithm
for such a theory T in which the resulting set of partitions “reflects” a group of
specific models of T . These models have a partitioned domain themselves, and
each single partition of T is evaluated in a partition of the domain of the model.
It is this property which may justify the name “semantic encapsulation”. Note
that each single partition has the property that, using OWL terminology, two
concepts which entail another always belong to the same partition. Modules in
the sense of [12] can be computed based on unions of such partitions. Thus they
“inherit” this property.



This property has an effect which we find problematic, all the more against
our background of developing a top-level ontology: given a domain ontology
which can be modularized according to [12], the introduction of a top-level on-
tology on top of that domain ontology would cause all modules to collapse into
one. This has practically been observed in tests with the GALEN ontology, which
is equipped with its own top-level [9]. In terms of the presented requirements,
modules in [12] do not satisfy stability and independence. The latter is due to
the fact that modules are defined with respect to concepts in the initial ontology,
and modules of two concepts can overlap arbitrarily. Due to this problem and
the fact that directionality is not satisfied either, semantic encapsulation is not
applicable to the second of our use cases, where a top-level ontology should serve
as a component of domain ontologies.

Nevertheless, [12] may be useful for the analysis of monolithic fragments of
a top-level ontology, in order to guide modularization. Here, it is advantageous
that semantic encapsulation satisfies local correctness and completeness, because
this requirement is desirable with respect to the internals of a top-level ontology.

4.2 Partition-based reasoning

The goals of this approach are to support reasoning over multiple theories with
overlapping content and vocabularies, as well as the improvement of the efficiency
of reasoning by means of partitions. [3] is the latest introduction to the theoretical
framework, which is based on earlier publications [22, 2]. The results apply to
propositional logic as well as FOL.

Neglecting the algorithmic details of [3], the main idea of this approach is to
use a message passing metaphor from the object-oriented paradigm in software
engineering for reasoning over a partitioning of some theory. More precisely,
given a theory T and a partitioning (Ti)1≤i≤n of T , message passing algorithms
are specified which employ “standard” reasoning within each Ti, but use message
passing between certain Ti and Tk, i.e., if L(Ti)∩L(Tk) 6= ∅, they can exchange
formulas in L(Ti) ∩ L(Tk). The specified algorithms are proved to be sound
and complete with respect to classical reasoning over T , where these results are
heavily based on Craig interpolation [8, Lemma 1].

Moreover, a decomposition algorithm is presented in [3] which tries to mini-
mize three parameters, ranked by importance. With respect to a single partition
Ti, firstly, this is the number of symbols which are exchanged with other parti-
tions and, secondly, the number of unshared symbols within Ti. With respect to
the overall partitioning, the number of partitions should be kept to a minimum,
which is the third and least enforced parameter.

Taking partitions as modules and set-theoretical union as the composition
operation, this approach satisfies inclusion of explicit information and classically
closed composition. The intersection languages for message passing correspond
properly to a specific type of interface specification. Moreover, the decompo-
sition approach minimizes coupling, module size, and the number of modules,
which is adequate also according to our setting. However, having union as com-
position is rather weak and prevents directionality. Therefore, utility for our



purposes is primarily seen in the decomposition algorithm, similarly to semantic
encapsulation.

4.3 Distributed Logics

This branch comprises works of Luciano Serafini et al. on developing Distributed
First Order Logic (DFOL) [16], Distributed Description Logics (DDL) [6] and
a contextualized form of OWL, called C-OWL [7]. Moreover, these approaches
have been developed based on work in the contextual reasoning community, more
precisely based on Local Model Semantics (LMS) and Multi-Context Systems
(MCS), cf. [15, 27].

The major idea of LMS/MCS, which conveys to the more recent approaches,
is to have a collection of theories (possibly in different logical systems) each
of which is first of all interpreted locally, i.e., with respect to the semantics of
its associated logic. On top of this, bridge rules specify interconnections among
these theories, i.e., given T1 and T2, a bridge rule is a pair (φ, ψ) with φ ∈ L(T1),
ψ ∈ L(T2), which states that T1 |= φ allows one to assume ψ in T2.

The distributed logic approach is compositional rather than decompositional,
and it is equipped with a non-trivial composition operation, because bridge rules
provide directionality. Therefore, it appears to match some of our needs better
than the previous approaches, which are oriented towards decomposition. This
impression is further augmented by considering the list of properties required
for DFOL in [16]. However, some properties are problematic, e.g. “hypothetical
reasoning across subsystems” is prevented, which contradicts our requirement of
classically closed composition. Further, local correctness and completeness is not
guaranteed, which would be more relevant for certain cases than directionality.
On a more technical level, the approach of keeping everything local and indepen-
dent (by disjoint languages for modules) causes some inconvenience (at least),
due to the fact that the representation of overlapping vocabularies implies the
addition of many bridge rules.

4.4 Further Related Work

Certainly the most prominent approach aiming at reasoning and structuring the-
ories, which has not been discussed here, is the solution provided for structuring
the CYC knowledge base [21] in terms of microtheories. The theoretical solution
has primarily been developed by Rahmanathan Guha [17], also in the field of
contextual reasoning. It remains a future task to analyze this in detail.

Another line of research provides less logic-oriented approaches for decom-
posing ontologies, among them [29, 30]. Moreover, Alan Rector also tackles the
problem, yet at a different, more methodological end. [25] presents methodolog-
ical guidance for constructing ontologies based on a set of disjoint taxonomies
(understood as trees of concepts), which may be related by axioms afterwards.
It seems to be open whether or how this affects reasoning with ontologies con-
structed in this way.



5 Conclusion

Modularization is about to attract focused research interests, in particular with
respect to formal logical approaches. However, requirements, i.e., clearly defined
properties which a solution should satisfy are rarely provided. In this paper,
we introduce and discuss a collection of requirements for modules/modulariza-
tion in logical settings, on a fairly language-independent level. On the one hand,
these requirements are motivated directly from an application perspective, which
involves the manual construction and maintenance of large axiomatizations. On
the other hand, we hold that these tasks bear analogy to software engineering,
and therefore we study a logical interpretation of requirements for modules in
that field. The overall set of requirements is best understood as a catalog of
properties – nevertheless, not meant to be complete – which can be used to
analyze existing proposals, as briefly exemplified for three approaches, or to
guide the design of new work on modularization.

There are three major conclusions which we draw from the discussion of the
requirements. Firstly, the theory of modules in software engineering has turned
out to be useful for our purposes. By means of this analysis we have identified
a number of requirements which are applicable and desirable in the logical case,
and which have not had much overlap with those requirements specified on an
ad hoc basis. So these form a useful extension of our initial list.

Secondly, in the course of the discussion it has become clear that some of
the requirements will hardly be implemented by a single approach to modular-
ization. In particular, the requirements of local correctness and completeness,
classically closed composition, independence, and directionality form an area of
conflict. Note that this applies independently from the actual logical framework.
Accordingly, we feel that a unique solution to modularization will remain insuffi-
cient, but specialized methods should be applied in dependence on the intended
application.

Thirdly, it seems that the requirement of compositionality has not been taken
into account thus far. Admittedly, of those properties presented, this one is cer-
tainly the one which is closest to be termed “wishful thinking”, especially if local
correctness and completeness should be maintained. However, compositionality
would be very beneficial, and there may be ways to achieve it if certain other
requirements must be abandoned anyway, as part of some trade-off.

The presented requirements analysis is just an initial step for further work on,
ultimately, implementing the top-level ontology GFO in a modular way. A direct
continuation of this paper would be a more formal analysis of the interrelations
of those requirements that can be captured formally, as well as relating them to
properties of the logical system used. Moreover, the paper is a starting point for
work on modularization which provides compositionality. In a longer term, one
may consider extensions to different logics used for the modules (similar to the
general LMS/MCS approach), hence moving to hybrid logics. In this direction,
the lack of a natural “reference logic”, with which the resulting systems could be
compared, forms another interesting topic, which we further consider to relate
back to ontology, here as a source of justification.
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