
Implementing Modular Ontologies with
Distributed Description Logics

Heiner Stuckenschmidt

University of Mannheim
A5, 6, 68159 Mannheim, Germany

heiner@informatik.uni-mannheim.de

Abstract. In an earlier paper, we presented a logical framework for rep-
resenting and reasoning with modular ontologies with a special focus on
supporting localized reasoning and integrity in the face of changes. This
framework while being based on a formal semantics, was not specific to a
particular logic used to specify ontologies and links between modules. As
a result, no system was provided that implemented the ideas presented in
that paper. In this work, we close this gap by explaining, how the general
framework for modular ontologies can be mapped onto distributed de-
scription logics and implemented using the DRAGO reasoning system. In
particular, we refine the notion of modular ontologies to the case where
local ontologies are represented in SHIQ. We define a sound and com-
plete inference rule for modular ontologies based distributed decsription
logic and analyze the worst case complexity of reasoning in the frame-
work. We also briefly discuss the DRAGO system and describe how our
framework can be mapped on the representations supported by DRAGO.

1 Motivation

The benefits of modularization have been acknowledged in many area of com-
puter science. With the increasing use of ontologies in real applications, the need
for modular representations that support selective reuse, easier maintenance
and efficient localized reasoning has been recognized by a number of researchers
(e.g. [2], [1], [5]). In [12] we proposed a representational framework for modular
ontologies and discussed the problem of maintaining integrity in a system of
connected modules. In particular, we proposed to extend description logics
with the notion of external concepts that are defined in terms of conjunctive
queries over the vocabulary of other modules. We proposed to compile implied
subsumption relations to facilitate local reasoning and defined the notion of
integrity of compiled knowledge. While a number of abstract definitions and
algorithms were given in that paper, there was no clear indication of how
to implement the approach using existing technologies. In this paper, we fill
this gap by explicitly linking the notion of modular ontologies to Distributed
Description Logics were the language of the local models is SHIQ. This enables
us to use existing technology, in particular the DRAGO reasoning system [10]

to implement the abstract definitions provided in [12].

This paper contains the following contributions that go beyond the work
published in [12]:

– We formally relate the notion of a modular ontology to distributed descrip-
tion logics

– We formally characterize reasoning in modular ontologies in terms of the
relation to DDL

– We show that the worst-case complexity of reasoning in modular ontologies
is the same as for reasoning in the local ontologies

– We extend the compilation algorithm given in [12] to cover all possible in-
ferences of subsumption relations

– We explain how the approach can be implemented in the DRAGO system.

The paper is structured as follows: We first briefly recall basic definitions of
description logics and formally introduce the language SHIQ. We then recall
distributed description logics as introduced in [4]. Equipped with these defini-
tions, we formally define modular ontologies in terms of a subset of DDL and
provide rationales for the restrictions applied. We then discuss the problem of
reasoning in DDL in general and in modular ontologies in particular stating a
complete inference rule and providing teh complexity result. We also discuss
the special reasoning task of compilation and provide a definition of integrity
equivalent to the one presented in [12]. We finally describe how the formal frame
work can be implemented in the DRAGO system and close with an in depth
discussion of the design decisions made and the implications of compilation as a
means for improving reasoning performance.

2 Description Logics

In this paper, we consider ontologies represented in the description logic SHIQ.
This choice is motivated by the fact that SHIQ covers a large part of the
expressive power of the Web Ontology Language OWL [6], more specifically
of the language OWL-DL, a decidable sublanguage of OWL that directly
corresponds to the logic SHOIQ that extends SHIQ with nominals [8]. We
omit this extension in order to be able to base our framework on recent results
on Distributed Description Logics [4, 11] that provide us with basic mechanisms
for specifying links between concepts in different ontologies in a loose way.
Before defining our notion of modular ontologies, we briefly introduce the
logic SHIQ as well as the basic notions of Distributed Description Logics. For
further information about notation and naming in Description Logics, we refer
to [3].

Let C be a set of concept names and RN a set of role names. Further let
there be a set R+ ⊆ RN of transitive roles (i.e. for each r ∈ R+ we have
r(x, y)∧ r(y, z) ⇒ r(x, z)). If now r− denotes the inverse of a role (i.e. r(x, y) ⇒

r−(y, x)) then we define the set of roles R as RN∪{r−|r ∈ RN}. A role inclusion
axiom is an expression r v s where r and s are roles. A role is called a simple
role if it is not transitive and does not have transitive subroles with respect to
the transitive closure of the role inclusion relation. Concept expressions are now
formed by applying special operators to concept and role names. In particular,
new concept expressions can be formed from existing ones using the Boolean
operators or by imposing constraints on the type and number of objects related
to objects of the described concept. The corresponding operators are summarized
below.

Expression Intuition
¬C All objects that are not of type C

C uD All objects that are of type C and of type D
C tD All Objects that are of type C or of type D
∃r.C All Objects that related to some objects of type C via relation r
∀r.C All Objects that are only related to objects of type C via relation

r
(≥ n r.C) All objects that are related to at least n objects of type C via

relation r
(≤ n r.C) All objects that are related to at most n objects of type C via

relation r

Formally, the set of concepts (or concept expressions) in SHIQ is the smallest
set such that:

– > and ⊥ are concept expressions for the most general concept and the un-
satisfiable concept, respectively;

– every concept name A is a concept expression;
– if C and D are concept expressions, r is a role, s is a simple role and n is

a non-negative integer, then ¬C, C u D, C t D,∀r.C, ∃r.C, (≥ n r.C) and
(≤ n r.C) are concept expressions.

A general concept inclusion axiom is an expression C v D where C and
D are concepts. A terminology is a set of general concept inclusion and role
inclusion axioms.

The semantics of SHIQ is defined in terms of an interpretation I = (∆I , .I)
where .I is a function that maps every concept on a subset of ∆I and every role
on a subset of ∆I ×∆I such that for all concepts C and D and for roles r where
#M denotes the cardinality of M and (rI)+ the transitive closure of rI we have:

– >I = ∆I and ⊥I = ∅
– rI = (rI)+ for r ∈ R+ and r− = {(y, x)|(x, y) ∈ rI}
– (¬C)I = ∆I − CI , (C uD) = CI ∩DI and (C tD)I = CI ∪DI

– (∀r.C)I = {x|∀y.(x, y) ∈ rI ⇒ y ∈ CI}
– (∃r.C)I = {x|∃y.(x, y) ∈ rI ∧ y ∈ CI}
– (≥ n r.C)I = {x|#{y.(x, y) ∈ rI ∧ y ∈ CI} ≥ n}

– (≤ n r.C)I = {x|#{y.(x, y) ∈ rI ∧ y ∈ CI} ≤ n}

An interpretation satisfies a terminology T if CI ⊆ DI for all general concept
inclusions C v D in T and rI ⊆ sI for all role inclusion axioms r v s in T . In
this case we call I a model for T . A concept D subsumes a concept C in T if
C v D holds for all models of T . In the remainder of the paper we will focus on
the task of deciding whether a concept subsumes another one.

3 Distributed Description Logics

Distributed Description Logics as proposed in [4] provide a language for
representing sets of terminologies and semantic relations between them. For
this purpose DDLs provide mechanisms for referring to terminologies and for
defining rules that connect concepts in different terminologies. On the semantic
level, DDLs extend the notion of interpretation introduced above to fit the
distributed nature of the model and to reason about concept subsumption
across terminologies.

Let I be a non-empty set of indices and {Ti}i∈I a set of terminologies. We
prefix inclusion axioms with the index of the terminology they belong to (i.e. i : C
denotes a concept in terminology Ti and j : C v D a concept inclusion axiom
from terminology Tj). Note that i : C and j : C are different concepts. Semantic
relations between concepts in different terminologies are represented in terms of
axioms of the following form, where C and D are concepts in terminologies Ti

and Tj , respectively:

– i : C
v−→ j : D (into-rule)

– i : C
w−→ j : D (onto-rule)

These axioms are also called bridge-rules. The into-rule states that concept C
in terminology Ti is intended to be more specific than concept D in terminology
Tj . Conversely, the onto-rule states that concept C in terminology Ti is intended
to be more general than concept D in terminology Tj . An additional rule
i : C

≡−→ j : D is defined as the conjunction of the two rules above, stating
that the two concepts are intended to be equivalent. A distributed terminol-
ogy T is now defined as a pair ({Ti}i∈I , {Bij}i 6=j∈I) where {Ti}i∈I is a set of
terminologies and {Bij}i 6=j∈I is a set of bridge rules between these terminologies.

The semantics of distributed description logics is defined in terms of a
global interpretation I = ({Ii}i∈I , {rij}i 6=j∈I) where Ii is an interpretation
for terminology Ti as defined above and rij ⊆ ∆Ii × ∆Ij is a domain relation
connecting elements of the interpretation domains of terminologies Ti and Tj .
We use rij(x) to denote {y ∈ ∆Ij |(x, y) ∈ rij} and rij(C) to denote

⋃
x∈C rij(x).

A distributed interpretation I satisfies a distributed terminology T if:

– Ii satisfies Ti for all i ∈ I

– rij(CIi) ⊆ DIj for all i : C
v−→ j : D in Bij

– rij(CIi) ⊇ DIj for all i : C
w−→ j : D in Bij

In this case we call I a model for T. A concept i : D subsumes a concept i : C
(i : C v D) if for all models of T we have CIi ⊆ DIi .

4 A Framework for Modular Ontologies

We can now define our notion of a modular ontology in terms of Distributed
Description Logics. In fact, our notion of a modular ontology is a restricted form
of distributed terminology as defined above. The restrictions we impose concern
the architecture of the distributed terminology as well as the expressiveness of
semantic relations between terminologies. These restrictions are motivated by the
aims of (1) providing an alternative to the standard notion of import in OWL
and (2) the goal of providing support for localized reasoning and maintenance
of the modular ontology. In the following, we will first discuss the architecture
of a modular ontology and then introduce the restrictions imposed on semantic
relations.

4.1 Architecture

As described above, DDL makes a clear distinction between terminologies and
semantic mappings between them in terms of bridge rules, which in principle
are independent of the terminologies. This makes the model quite flexible;
for example, it permits having different sets of mapping rules connecting the
same set of ontologies. In this way it is possible to encode different views on
how the terminologies relate to each other. In contrast, our aim is to enable
the use of external knowledge in a terminology similar to the ability of OWL
to use concept and role names defined in different terminologies. This view
is different from the model of Distributed Description Logics as it makes the
semantic links to other models part of the terminology. Being part of the
terminology implies that there is only one way of connecting to these external
definitions which is assumed to be agreed on by the users of the local terminology.

We achieve this localization of semantic relations by introducing the notion
of externally defined concepts in a terminology. We divide the set of concept
names in a terminology into internally defined concepts CI and externally
defined concepts CE resulting into the following description of the set of all
concept names C (C = CI ∪ CE , CI ∩ CE = ∅).

We consider externally defined concepts to be concept names linked to a
concept expression defined in another terminology using bridge rules. An exter-
nal concept definition in terminology Ti is an axiom of the form: i : C ≡ Tj : D
where C is a concept name in Ti, Tj is a terminology different from the one

in which the external concept is defined and D is a concept expression in Tj .
Note that although D is syntactically represented in Ti it actually represents a
concept in Tj . In particular the expression D is only allowed to contain concepts
defined in Tj . This definition is very close to the OWL mechanism of using
concept and role names from other name spaces in definitions.

We give external concept definitions a semantics in terms of distributed de-
scription logics by defining external concept definitions to be an alternative no-
tation for a pair of bridge rules:

i : C ≡ Tj : D ⇔ j : D
v−→ i : C ∧ j : D

w−→ i : C

The correspondence between external concept definitions and bridge rules
allows us to base our further investigations on the formal results that have been
established for distributed SHIQ terminologies.

4.2 Restricting Mapping Expressiveness

In Distributed Description Logics, there are no restrictions on the the antecedent
of a bridge rule—except that it has to be a valid concept of the source termi-
nology. In our framework, we restrict this freedom for the sake of an easier
maintenance of the semantic relations between terminologies. This restriction
is motivated by our earlier work on keeping integrity in modular ontologies re-
ported in [12]. In that work, we proposed a heuristic approach for determining
the impact of changes in other modules on the correctness of local subsumption
reasoning. The approach relied on the fact that changes were only monotonically
propagated to other modules. In order to achieve this effect also in the frame-
work of distributed description logics, we restrict the language used to specify
externally defined concepts to a sublanguage of SHIQ that does not contain
operators that can have a non-nonotonic effect, in particular negation, universal
restrictions and qualified number restrictions that limit the number of related
concepts. More precisely, we allow concept expressions that are defined in the
following sublanguage of SHIQ:

C,D −→ >|⊥ |A |C uD |C tD | ∃r.C | ∃r−.C | ≥ n r.C | ≥ n r−.C

In order to restrict the semantic correspondences between terminologies in
our model, we now only allow the concept expressions D in the definition of
external concepts to be valid concepts over terminology Tj with respect to the
sublanguage defined above. We denote such concepts as DQ and consider exter-
nal concept expressions of the form i : C ≡ j : DQ.

5 Reasoning in Modular Ontologies

The direct correspondence of our framework to Distributed Description Logic
allows us to base inference in modular ontologies on known results for the

corresponding DDL. In particular, we can provide completeness and complexity
results for reasoning in modular ontologies. We extend the existing work on
reasoning in DDL with the notion of compilation of implied subsumption
relations. Specifically, we use reasoning methods for Distributed Description
Logics to derive subsumption relations between externally defined concepts in
modules and explicitly add the derived subsumption relations as axioms to the
module. The results of [11] guarantee that after this compilation step reasoning
can be performed locally without considering other modules unless there are
changes in the system.

In the following, we first briefly review basic definitions of reasoning in dis-
tributed description logics and prove that it has the same worst-case complexity
as reasoning in SHIQ. We then present the compilation of subsumption rela-
tions and discuss conditions for completeness and consistency.

5.1 Reasoning based on DDL

Reasoning in DDL differs from reasoning in traditional Description Logics by
the way knowledge is propagated between T-Boxes by certain combinations of
bridge rules. The simplest case in which knowledge is propagated is the following:

i:A
w−→j:G,i:B

v−→j:H,i:AvB
j:GvH (1)

This means that the subsumption between two concepts in a T-Box can
depend on the subsumption between two concepts in a different T-Box if the
subsumed concepts are linked by the onto- and the subsuming concepts by an
into rule. In languages that support disjunction, this basic propagation rule can
be generalized to subsumption between a concept and a disjunction of other
concepts in the following way:

i:A
w−→j:G,i:Bk

v−→j:Hk(1≤k≤n),i:Av
nF

k=1
B

j:Gv
nF

k=1
Hk

(2)

It has been shown that this general propagation rule completely describes
reasoning in DDLs that goes beyond well known methods for reasoning in De-
scription Logics. To be more specific, adding the inference rule in equation 2 to
existing tableaux reasoning methods leads to a correct and complete method for
reasoning in DDLs. A corresponding result using a fixpoint operator is given in
[11]. Based on these results, we can define a general inference rule for the case
of modular ontologies in the following way:

i:A≡j:G,i:Bk≡j:Hk(1≤k≤n),i:Av
nF

k=1
B

j:Gv
nF

k=1
Hk

(3)

There are a number of consequences of this result for reasoning in modular
ontologies.

Correctness and Completeness From the basic propagation rule, we can see that
subsumption between externally defined concepts follows from subsumption of
their definitions in the (same) external module. This is because each external
concept definition corresponds to an into and an onto rule between the concept
name and its definition. The language we consider is SHIQ and therefore we
have to consider the general propagation rule because we have disjunction in our
language. This means that it is not enough to simply check whether subsumption
between the definitions of two externally defined concepts in the external module
is complete, but we have to consider all subsets of the set of external concepts.
We will discuss this point in more detail in the next section.

Complexity As we reduce reasoning in modular ontologies to reasoning in DDLs
with SHIQ as a local language, complexity results can be derived from known
results on reasoning in SHIQ and Distributed Description Logics. In particuar,
reasoning in modular ontologies is at least as hard as reasoning in SHIQ: in
the extreme case a modular ontology consists only of a single module without
external concepts, thus reasoning in modular ontologies is equivalent to reasoning
in SHIQ. Further, reasoning in modular ontologies is not harder than reasoning
in SHIQ because we reduce reasoning in modular ontologies to reasoning in
DDLs. There exists a reduction of reasoning in DDLs with SHIQ as a local
language to SHIQ[?]. Both reductions are linear in the size of the resulting
terminology and therefore do not change the complexity class. This shows that
the complexity of reasoning in modular ontologies is not worse than reasoning
in the web ontology language. Using the reduction of DDL to SHIQ it is even
possible to use existing OWL reasoners for reasoning with modular ontologies.
Although practical implementations of OWL reasoners have shown that good
average case performance can be achieved, the worst case complexity is still very
high and asks for further optimization.

5.2 Compilation and Integrity

Existing reasoners for expressive Description Logics are highly optimized with
respect to deciding subsumption in the context of a single T-Box. Serafini and
Tamilin present a distributed reasoning system that extends existing reasoners
to distributed T-Boxes [10]. In theory, this system is complete with respect to
the propagation rules described above and has—as we have argued—the same
worst-case complexity. In practice, however, reasoning with multiple, possible
distributed modules, brings some new problems with respect to completeness
and reasoning performance. First of all the completeness of the distributed
reasoners depends on the availability of local reasoners for all T-Boxes in
the system. In a loosely coupled network without central control this cannot
always be guaranteed as network nodes can be unreachable or even leave the
network. In this case, necessary subsumption tests cannot be performed at

these nodes leading to a possible incompleteness. Another problem currently
not addressed in the work of Serafini and Tamilin are performance problems
due to communication costs between the different nodes in the system. Work
in the area of distributed databases has shown that communication costs often
become serious bottlenecks in distributed systems.

In order to overcome these problems we propose to compute subsumption
relations between external concepts offline and store them as explicit axioms in
the local ontologies. If we compute these relations using the reasoner mentioned
above we have the guarantee that reasoning about subsumption in each module
can be done without caring about the availability of other nodes in the network.
This also has the advantage that no communication costs occur as part of online
reasoning.

Of course these runtime benefits have their price in terms of computational
complexity of the compilation step. The completeness of the propagation rule
given in equation 2 tells us that to be independent from other modules we only
have to consider subsumption relations between externally defined concepts, as
only such subsumption relations can be propagated from outside. What we have
to check is subsumption between each external concept and the disjunction of
all combinations of other external concepts. For a local module, this process is
defined in algorithm 1.

Algorithm 1 compile
Require: An T-Box T with external concepts CE

for all c ∈ CE do
candidates := P(CE − {c})
for all d ∈ candidates do

if I |= c v
F

e∈d

e then

T := T ∪ {c v
F

e∈d

e}

end if
end for

end for

If we denote the number of external concepts CE as n, the worst-time
complexity of the compilation method is O(n · 2(n−1)) as can easily be seen
from the algorithm. As deciding the subsumption relation in the conditional
statement of the algorithm itself is already Exp-Time and this test has to be
carried out an exponential number of times with respect to the number of
external concepts, compiling all implied statements is computationally very
expensive. We therefore do not want to perform the compilation step more often
than absolutely necessary to guarantee that local reasoning is still complete.

While the results of Serafini and others [10] guarantee that local reasoning
is correct and complete at the time the compilation is carried out, a problem
occurs when changes are made to the system. Changes in the definitions of the
external concepts, but also changes in the definitions of concepts and relations
in other modules can make local reasoning incomplete or inconsistent. In order
to prevent situations in which local reasoning is not correct and complete any
more we introduce the notion of integrity of a modular ontology.

Definition 1 (Integrity). Let T = ({Ti}i∈I , {Bij}i 6=j∈I) be a modular ontology
with interpretation I = ({Ii}i∈I , {rij}i 6=j∈I) then we say that integrity holds for
T if for all T ′i = compile(Ti) with interpretation I ′i we have:

I ′i |= C v D ⇔ I |= i : C v D

for any pair of legal concept expressions C and D in T ′i .

The notion of integrity gives us a criterion for deciding whether compiled
results are still valid. What the definition does not provide is an operational
account for checking it. A direct use of the definition would involve a complete
check of all derivable subsumption relations. As we have argued above this ap-
proach is extremely expensive. In the following, we therefore present a heuristic
approach for checking integrity in modular ontologies that is driven by changes
made to the ontology. The approach is capable of determining situations in
which changes to a modular ontology do not affect integrity and therefore no
re-compilation is necessary.

6 Implementing Modular Ontologies in DRAGO

DRAGO is a reasoning system for Distributed Ontologies that supports reason-
ing in distributed description logics with the limitation that bridge rules might
only be specified between concept names. The DRAGO System consists of a
set of reasoners each implemented as an independent peer. Each of the peers
has a local ontology represented in the subset of OWL-DL that corresponds
to the description logic SHIQ (i.e. OWL-DL without enumerated classes and
datatypes). The different peers are connected to form a peer network by means of
mappings (sets of bridge rules) connecting the individual ontologies and forming
a distributed T-Box [10]. Given a distributed T-Box, T, the following reasoning
services are available in the DRAGO system:

– Local/global satisfiability: check if Ti |= C ≡ ⊥, and T |= i :C ≡ ⊥
– Local/global subsumption: check if Ti |= C v D, and T |= i :C v D
– Local/global classification: Produce a classification on the atomic concepts

of Ti. A classification on a set of atomic concepts C, is directed acyclic graph
〈C,≺,∼〉, where C is the set of atomic concepts of the language of Ti and
≺ constitute a directed acyclic graph on C, and ∼ is an equivalence relation
on C. And the following properties holds, C ∼ D iff Ti |= C ≡ D (resp

T |= i :C ≡ D), C ≺ D if and only if Ti |= C v D and Ti 6|= C v D, (resp.
T |= i :C v D and T 6|= i :C v D). Furthermore if C ≺ D then for no E ∈ C,
C ≺ E ≺ D

Based on the correspondence between our notion of modular ontologies and
a subset of distributed description logics, we can use the functionality of the
DRAGO system to implement reasoning in modular ontologies. In the following,
we briefly explain the steps necessary for implementing a modular ontology using
the DRAGO system.

step 1: Distributing Ontology Modules In the first step, we instantiate a
reasoning peer for each module of the ontology. For each peer an ontology
is created consisting of the internal concept definitions of the respective
module.

step 2: Create Mappings For each pair of modules Mi,Mj we create the
mapping set. This is done by looking at the external concept definitions
in module Mi. For each external defintion i : C ≡ Mj : D we create a
new concept name D (note that in the external defintion D′ can be a com-

plex concept expression) and add the two bridge rule i : C
v−→ j : D′ and

i : C
w−→ j : D′ to the mapping set Bij .

step 3: Enrich Local Ontologies For externally defined concept i : C ≡ Mj :
D, we create a new concept definition D′ ≡ D and add it to the ontology
created for module Mj . This step is necessary for cope with the limitation
of DRAGO system to mappings between concept names.

step 4: Connect Local Ontologies Finally, we connect the different modules
by loading the mappings created in step 2 into the system thereby connecting
the different modules.

This implementation of modular ontologies allows us to use the reasoning
services provided by DRAGO to compute implied subsumption relations and to
store them locally to support local reasoning as explained in the previous sec-
tions. If we restrict our approach to the simplified inference relation shown in
equation 1 we can directly use the global classification method of DRAGO to
compute all implied subsumption relations and store them locally. If the goal is
completeness, we have to add another control structure that checks subsump-
tion between a concept and all combinations of disjunctions of other concept
names. This is computationally quite expensivem but can easily be done using
the DRGAO API.

7 Conclusions

Reasoning in modular ontologies is complex. We have seen that the complexity
is essentially the same as for reasoning in classical Description Logics which are
the basis for OWL. We cannot escape this complexity, but we can move parts
of the reasoning effort offline by compiling implied subsumption relations as

described in Section 5.2. This approach, however, is only feasible if there are
phases where the offline computation necessary to compile the implied relations
can be done without affecting the performance of the system. Typically, such
computations are done ‘overnight’ when the system load can be assumed to be
low. An alternative for situations where this approach is not possible is to do
the compilation on the fly. In particular, we can compile implied subsumption
relations whenever they are computed in order to answer a user query to the
system. This kind of ‘lazy compilation’ has the advantage that the enormous
effort for compiling implied knowledge is done as part of the normal reasoning
process. In the beginning, users will not benefit much from this approach, but
the time savings increase with each query answered. In this way, we also prevent
the compilation of knowledge that is never used.

The main problem connected with the compilation approach, is the integrity
of the compiled knowledge. In general compilation approaches only pay off
if the computation time saved by being able to use compiled knowledge is
not larger than the effort of updating the compiled knowledge. This means
that compilation only makes sense in rather stable systems. In principle, we
can assume that knowledge on the terminological level as it is represented in
ontologies is normally more stable than instance data as normally found in
databases. While changes to ontologies will occur less frequently they can still
have a significant impact on the system. For this reason, our work focussed
on heuristics for efficiently updating the system when changes occur. In this
context, the feasibility of the approach relies on the adequacy of the heuristics
chosen.

A final point for discussion is the generality of the approach described.
Throughout this paper, we based our discussions on Description Logics as a rep-
resentation language for ontologies, Distributed Description Logics for providing
the semantics of mappings as well as the equivalent of conjunctive queries for
describing relations between different modules. All of these choices are carefully
made and are motivated by practical as well as theoretical considerations.
Probably the most uncontroversial choice is that of Description Logics for
encoding ontologies. In the context of semantic web research, Description Logics
have become the primary language for describing terminological knowledge
mostly in terms of the Web Ontology Language OWL. Our approach covers
most of the expressiveness of OWL-DL with the exception of nominals. As a
result, most existing OWL ontologies will fit in our framework and could easily
be turned into modular ontologies by adding external concepts.

A choice that is less obvious is Distributed Description Logics as a basis for
the semantics of mappings. In a recent survey, we compared different approaches
for describing mapping semantics [9]. One result of this comparison was that
Distributed Description Logics provide the highest degree of de-coupling
between different T-Boxes. This is important for our purposes as we want to

support localized reasoning. A generalization of Distributed Description Logics
in terms of a distributed version of first order logic has been described by
Serafini and Ghididi [7]. We could have chosen this more general framework
as the basis for our work, however, the drawback of this is the lack of existing
reasoning methods. Distributed Description Logics come with a well investigated
and implemented proof system that can be used to implement our approach.

The most controversial choice is to restrict the language that can be used
to define external concepts. The framework of Distributed Description Logic
allows us to use arbitrary SHIQ expressions in the definitions. A corresponding
more general approach would have the same properties with respect to logical
consequence, compilation and local reasoning. The restriction to the sublanguage
was motivated by the importance of the monotonicity property for the definition
of update heuristics defined in [12]. This means that external concepts can be
defined using a more expressive language. This, however, would come at the
price that implied subsumption relations concerning this concept would have
to be recomputed every time a change occurs. We believe that the restriction
proposed in this paper is reasonable as it allows the use of update heuristics and
also resembles view-based information integration, the dominant approach for
describing mappings between database schemata.

References

1. Philippe Adjiman, Philippe Chatalic, Francois Goasdoue, Marie-Christine Rousset,
and Laurent Simon. Distributed reasoning in a peer-to-peer setting: Application
to the semantic we. Journal of Artificial Intelligence Research, 25:269–314, 2006.

2. E. Amir and S. McIlraith. Partition-based logical reasoning. In 7th International
Conference on Principles of Knowledge Representation and Reasoning (KR’2000),
2000.

3. F. Baader, D. Calvanese, D. McGuiness, D. Nardi, and P. Patel-Schneider, edi-
tors. The Description Logic Handbook - Theory, Implementation and Applications.
Cambridge University Press, 2003.

4. A. Borgida and L. Serafini. Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153–184, 2003.

5. Bernardo Cuenca-Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Modu-
larity and web ontologies. In Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR2006), 2006.

6. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D.L. McGuinness,
P.F. Patel-Schneider, and L.A. Stein. Web ontology language (owl) reference ver-
sion 1.0. Working draft, W3C, November 2002. http://www.w3.org/TR/owl-ref/.

7. Chiara Ghidini and Luciano Serafini. Distributed first order logic - revised seman-
tics. Technical report, ITC-irst, January 2005.

8. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with individuals for
the description logic SHIQ. In Proceedings of the 17th International Conference on
Automated Deduction (CADE-17), Lecture Notes in Computer Science. Springer
Verlag, 2000.

9. L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping
languages for terminological knowledge. In Proceedings of the 19th International
Joint Conference on Artificial Intelligence - IJCAI05, Edingurgh, UK, August
2005.

10. L. Serafini and A. Tamilin. DRAGO: Distributed reasoning architecture for the
semantic web. In In Proceedings of the Second European Semantic Web Conference
(ESWC’05). Springer-Verlag, 2005.

11. Luciano Serafini, Alex Borgida, and Andrei Tamilin. Aspects of distributed and
modular ontology reasoning. In Proceedings of the International Joint Conference
on Artificial Intelligence - IJCAI-05, Edinburgh, Scotland, 2005.

12. H. Stuckenschmidt and M. Klein. Integrity and change in modular ontologies.
In Proceedings of the International Joint Conference on Artificial Intelligence -
IJCAI’03, pages 900–905, Acapulco, Mexico, 2003. Morgan Kaufmann.

