
“BPEL-Mora”: Lightweight Embeddable
Extensible BPEL Engine

Thilina Gunarathne, Dinesh Premalal, Tharanga Wijethilake ,
Indika Kumara, and Anushka Kumar

Department of Computer Science and Engineering,
University of Moratuwa, Sri Lanka

{thilina.gunarathne,dinesh.premalal,tharanga.wijeithilake,
indika.kumara, anushka.kumar}@cse.mrt.ac.lk

Abstract. Web Services have become the de-facto standard for architecting and
implementing business collaborations within and across organization bounda-
ries. Web service composition refers to the creation of new (Web) services by
combining the functionalities provided by existing ones. A process-oriented
language for service composition has been proposed as WSBPEL. WSBPEL
specification defines an XML based formal language and provides a general
overview of the framework. However no design and implementation issues are
described in it. Most of the available BPEL compliant process engines are
heavy weight, complex and not extensible. This paper describes the design and
implementation of an embeddable, scalable and extensible WSBPEL compliant
process engine. This paper highlights the concepts and strategies that were fol-
lowed during the design and implementation. Primary contribution of this paper
is the design of stateless process model and the design of run time core engine
using a multi-processor scheduler.

1 Introduction

Service Oriented Architecture (SOA) together with web services have become the de-
facto standard for architecting and implementing business collaborations within and
across organization boundaries. SOA takes a “software as a service” approach and
exposes the functionality of software components as services. These isolated and
opaque service components need to be able to collaborate in order to realize more
complex functionality. There exists several web service based workflow models such
as Web Services Business Processing Execution Language (WSBPEL) [1] in order to
cater the above requirement.

WSBPEL is an XML based language that is intended to facilitate the building of
more portable business process based on Web Service Description Language
(WSDL)[2]. WSBPEL defines how multiple services can be composed together to
create new services by combining the functionalities provided by those existing ser-
vices in a coordinated way. Architecture of a workflow based application typically
consists of two programming model abstraction layers denoted by the process model
and the individual components. Web services architecture naturally provides the com-
ponent layer abstraction while WSBPEL provides the process model.

Almost all the available WSBPEL compliant process engines are found to be com-
plex and heavy weigh, while very few are extensible. Objective of BPEL-Mora was to
design and implement a lightweight embeddable, extensible WSBPEL compliant en-
gine. BPEL-Mora engine was designed to facilitate service composition, service or-
chestration, non service orchestrations as well as execution of client side workflows
based on WSBPEL model. BPEL-Mora engine is designed to be embeddable in
Apache Axis2 [3].

BPEL-Mora consists of four major modules. (1) Process Model (2) Kernel (3) In-
formation model (4) Web service layer. Process Model is used to represent the busi-
ness process inside the engine. Process model tree for a business process can be cre-
ated either programmatically or by deploying a WSBPEL document. In order to
maintain low memory foot prints we separated out the process model (Meta data
about process) and run time state data of process instances. An Information model
consisting of a context hierarchy was introduced to store the run time state data of the
process instances. Scalability of the engine was achieved by introducing a kernel
based on a multi processor, single queue, non pre emptive, priority based scheduler to
execute the activities given in a process model. BPEL-Mora kernel was designed to
minimize the resource requirement per process instance by avoiding thread prolifera-
tion. BPEL-Mora gives empowers user with the ability to write and add custom ac-
tivities to the engine. This can be achieved very easily by using the by using the pro-
vided abstract classes for activities and complex activities. BPEL-Mora is integrated
with the Apache Axis2 web services engines through an abstraction layer. Each and
every process in BPEL-Mora is registered & exposed as a service through the web
services engine. An interface similar to that of WSIF [4] is used for dynamic invoca-
tions based on WSDL bindings, with plans to migrate to WSIF later.

Rest of the paper is structured as follows. Section 2 and 3 reviews the background
and related work for the subject of this paper. Section 4, 5, 6, 7 and 8 BPEL-Mora de-
sign and architecture is discussed deeply with respect to the four major architectural
modules. Sections 9 and 10 conclude the discussion with evaluation, conclusion and
future work.

2 Background

2.1 WSBPEL

Web Services Business Processing Execution Language– WSBPEL or BPEL for short
is a Turing complete XML based programming language that is intended to build
more portable business process based on WSDL. WSBPEL is created by merging two
existing workflow languages, Microsoft’s XLANG[5] and IBM's WSFL (Web Ser-
vices Flow Language)[6]. Architecture of a workflow based applications typically
consist of two layers of programming model abstractions denoted by the process
model (also called orchestration layer) and by the individual components. Web ser-
vices architecture natively provides an abstraction layer which separates out the im-
plementations from the service definitions. This abstraction can be considered as the
component layer of the workflow based applications. WSBPEL fits to the web ser-

vices architecture as the orchestration layer or the process model for web services.
BPEL was originally created by BEA, IBM, and Microsoft. Now it is undergoing
standardization process at the OASIS consortium.

WSBPEL can be used to define two kinds of processes, namely executable proc-
esses and abstract processes. Abstract process is a protocol which specifies message
exchange between different parties without revealing the internal behavior of them.
Executable process specifies execution order of number of activities.

The building block or each element of a process is known as an activity. An activ-
ity can either be a primitive activity or a structured activity. Examples for primitive
activities defined in WSBPEL are Invoke,Receive,Wait,Assign, etc. Structured activi-
ties are defined in WSBPEL in order to enable the presentation of complex structures
by composing the primitive activities. Sequence, Switch, While, Flow are examples
for structured activities.

2.2 Apache Axis2

Apache Axis2[3] is a complete re-design and a re-write of the widely used Apache
Axis SOAP stack. Apache Axis2 is more efficient, more modular and more XML-
oriented than the older version. Apache Axis2 is compliant with most of the new ver-
sions of core web services specifications and provides ws* support through its sub
projects.

Apache Axis2 supports SOAP 1.1 [7] and SOAP 1.2 [8] and has integrated support
for the REST style of Web services too. Hence, the same business logic implementa-
tion can offer both a WS-* style interface as well as a REST style interface simulta-
neously. Axis2 engine is based on a one way message processing model where the
engine either perform send or receive functions with respect to a particular SOAP
message. Apache Axis2 has the ability to support any Message Exchange Pattern.
Axis2 has complete asynchronous messaging support ranging from API level asyn-
chronous support to transport level asynchronous support.

Apache Axis2 is built on Apache Axiom, a new high performing, pull-based XML
object model, which provides a simple API for SOAP and XML info-set. Axis2 en-
gine contains a context hierarchy accessible to all services and handlers. All the run
time state data are kept in this information model. Apache Axis2 further improves the
popular handler architecture introduced by Axis 1.x by adding the concept of phases.
In addition Axis2 introduce a concept called Message Receiver[9] which represent a
service inside Axis2 and designated as the ultimate recipient of a particular SOAP
message from the architecture point of view of the Axis2 engine.

Apache Axis2 is carefully designed to support the easy addition of plug-in "mod-
ules" that extend its functionality for features such as security and reliability. Apache
Axis2 has a more improved versatile deployment model with support for hot deploy-
ment. This deployment model introduces a service archive format and a module ar-
chive format for easy deployment of services and modules.

3 Related Work

In this section we’ll look at some of the other commercial and open source BPEL im-
plementations along with some research literature.

The ActiveBPEL[10] engine is a widely used open source BPEL engine. It is de-
signed to be deployed as a servlet in a standard servlet container such as Apache
Tomcat. Apache Axis1.x[11] Web service engine is embedded internally in ActiveB-
PEL. ActiveBPEL is designed around the visitor pattern [12]. Active BPEL does not
claim to provide a way to add custom activities in addition to BPEL activities.

Interesting study about the scalability of ActiveBPEL engine has been presented in
an earlier study [13].According to that ActiveBPEL engine requires two OS threads
for the creation of a new BPEL process instance. This shows that when the number of
process instances increases in ActiveBPEL, the number of threads may go well be-
yond what most systems can handle, eventually making the workflow to be aborted.
Also users may run in to deadlocks if they try to limit the size of the thread pool of the
servlet container [13]. The above study concludes by deciding that the scalability of
ActiveBPEL is limited only by the limited hardware resources, which will be not an
acceptable remark for an embeddable engine.

IBM WebSphere Process Server (Version 6 as of 2006) is a proprietary BPEL
compliant process server running on top of the WebSphere Application Server.
WebShpere Process Server is a part of huge software with a wide range of functional-
ity. WebSphere Process Server needs a minimum 1.3 GB (1350 MB) available disk
space for installation, installer also requires approximately 600 MB of temporary
space during installation and minimum 1 GB physical memory in Linux or Windows
platforms [14] as the minimal system requirement.

PXE is another open source BPEL engine. It has many features such as microker-
nel architecture, pluggable persistency module, JMX-based administration, etc. [15].
There are many other open source and proprietary products like Microsoft BizTalk,
Oracle's Business Process Manager, etc which supports BPEL. We wanted to chal-
lenge that belief and we wanted to explore new possibilities of BPEL type business
processes. In our opinion this is due to the way people have looked at it.

4 Motivation & Our Approach

People tend to think about BPEL complaint business process engines as heavy weight,
complex, resource hungry, expensive server side components which are meant to be
used by high profile users. On par with the above mind set, all most all the available
BPEL engines are found to be complex and heavy weight. But when having a closer
look at most existing BPEL engines, we can see that most of them are tightly coupled
with business process design modules and business process management modules
making them heavy weight and complex. Some of them were built on top of older
workflow models making it much worse.

In our opinion the above perception conceal some of the interesting use cases in
which BPEL can be used. These use cases can range from service-enabling a device
by embedding a BPEL compatible engine to running client side business processes

along with custom activities. Our effort is to design and implement a lightweight, em-
beddable, easy to use BPEL compliant engine as oppose to the above perception. All
most all the existing implementations embed web service engines inside the BPEL
engine. As oppose to that we thought of developing a BPEL-Mora as a plug-in to an
existing web service engine. Following are some of the use cases for such a engine.

Let’s consider a simple BPEL use case where a user wants to expose a new web
service by combining the functionalities provided by couple of simple web services in
a coordinated way. With the currently available tools the user needs to have a bulky
BPEL compliant engine installed in his server for this requirement. Our objective is to
provide a simple yet powerful BPEL compliant engine as an add-on to a web service
engine. Then the user will be able to perform his service composition inside his web
service engine with the same simplicity and ease of deploying a web service, with no
extra cost or effort. Also if we consider a scenario where a user needs to invoke sev-
eral web services, then depending on the result he needs to invoke two other services
and needs to get the a combined result. In simple words the user needs to do a mash-
up. A lightweight BPEL library with a programming API is ideal for such a use case.

A client side application might have a requirement to interact with several web ser-
vices to produce a result or to execute a workflow. This requirement can be easily &
flexibly fulfilled by using a light weight BPEL runtime which can be embedded to the
client application. This runtime will be more useful if the developers are given an op-
tion to create the process model programmatically using a simple API. Also the de-
velopers will become more creative and empowered if they can add custom activities
to that run time. One example is a custom activity to take user input in a client side
process by showing a dialog box. Another use case is that users need to do non-web
service orchestrations at the server side by extending BPEL functionality. One such
example would be to send e-mails as part of a business process.

4.2 Design principles

This section articulates some of the principles that have guided our efforts to design a
BPEL engine that is light weight and embeddable.

Low Memory footprint. The BPEL-Mora engine should have a very low memory
foot print in order to be embeddable. BPEL-Mora engine has deployed processes and
instances of those processes running. A single deployed process can have several
process instances of itself running. It can even be hundreds of instances per process.
Reducing the increase of memory usage per new process instance is one of our main
concerns. We achieve this by separating out the run time state data of the process in-
stances and the metadata about the process. Process model representation represents
only the process. Once the process is deployed its process model remains unchanged
during the run time. All the run time state data are separated out to the context hierar-
chy which we call as the information model.

Scalability. A deployed business process may contain several numbers of parallel
paths. WSBPEL does not impose any restriction for number of parallel paths a proc-
ess can have. At the same time, there can be several instances of a process running at
a given moment. If we take a given moment, there can be l number of processes de-
ployed, there can be on average m number of parallel paths per deployed process and

there can be on average n number of process instances per process running in the en-
gine. l*m*n gives the total number of parallel paths of execution at that given mo-
ment. This l*m*n number can easily go up to hundreds. In a typical production envi-
ronment it might well go up to thousands. This might give rise to thousands of threads
if the OS or language threading libraries are used to create separate threads for each
and every parallel path. As a solution to this we came up with a software emulated
engine using a multi processor scheduler to execute the activities in process instances.

Extensibility. Our objective is to make BPEL-Mora an extensible workflow based
service orchestration and composition engine with complete support for WSBPEL
and with the ability to support many more. To make BPEL-Mora extensible BPEL-
Mora should provide users with the ability to write and include their own activities.
Visitor pattern [16] is popularly used in many BPEL engines to provide this extensi-
bility. With the use of visitor pattern all the execution logic goes to one visitor class,
making that class huge and unmanageable. Users need to be given access to modify
this visitor class in order to add new activities and the user will be directly modifying
the most important class of the engine.

Because of those defects, we wanted to avoid the visitor pattern to come up with
much more modular, pluggable, component architecture. BPEL-Mora provides two
abstract classes, one for simple activities and another one for complex activities, for
the users to extend when writing their own custom activities. Users can use their cus-
tom written activities in process model by having the newly written activity classes in
the class path.Users will be able to share of these custom activities among other users.

4.2 High level architecture

Fig. 1. High Level Architecture of BPEL-Mora

Process Model is used to represent workflows inside the engine. Any workflow that
needs to be executed in the BPEL-Mora engine needs to be represented using an in-
stance of an object model. Process model acts as the execution model of the work-
flow. Process model for a workflow can be created either programmatically or by de-
ploying a BPEL document.

Information model consists of the context hierarchy, which stores the runtime
state of the engine and processes in various levels.

Kernel with a multi processor scheduler is introduced to ensure the engine scale
without proliferation of threads.

Web service layer consists mainly of BPEL Receive and Invoke activity imple-
mentations. BPEL-Mora is built on top of Apache Axis2 web services engine.

Management module provides the functionality to deploy BPEL processes and to
do simple management tasks.

Timer service is used by the Wait & Pick WSBPEL activities and for deciding
time outs in several queues like in the message buffer of Receive activity.

5 Information Model

Information model is designed to store the run time state of the engine. Four contexts
have been introduced to store state data at various levels.

Engine Context holds the run time state data of the engine. This is the top element
of the context hierarchy. Engine Context contains a map of all the deployed Process
Contexts.

Fig. 2. Context Hierachy

Process Context holds the run time state data of a deployed process. A Process-
Context contains a map of all the top level InstanceContexts of that process. The
number of InstanceContexts in this map equals to the number of instances of this
process running in the engine.

Instance Context holds the run time state data of a single path of execution. It also
holds a pointer called current activity which points to the activity being executing
now or to the activity to be executed next. Each process instance running in the en-
gine has a top level InstanceContext which represents that process instance. There can
be a tree of InstanceContexts per process instance depending on the number of paral-
lel paths in the process. When encountered a WSBPEL Flow activity BPELMora en-
gine creates new InstanceContexts per each parallel path defined. Flow activity com-
pletes execution when all of its parallel paths are completed. On completion of the
parallel paths, the original parent InstanceContext continues in the remaining execu-
tion path. This parent InstanceContext is used to store the state of links of the respec-
tive Flow activity while it’s waiting for the completion of the parallel paths. More
about handling links is discussed in the section 6.

 Scope Context is used to store the data belonging to BPEL Scopes such as values
of variables & correlations. InstanceContext always maintains a reference to the scope
context of its current scope. WSBPEL uses lexical scoping. A new ScopeContext ob-
ject is created whenever a ScopeActivity is encountered in an execution. This newly
created ScopeContext is made a child of the existing ScopeContext giving rise to a
ScopeContext hierarchy as shown in figure 3. BPEL-Mora uses this hierarchy as a
search tree for variable & correlation values and fault handlers. A recursive look up of
the ScopeContext hierarchy happens when a variable, correlation or a fault handler is
referenced by an activity. BPEL-Mora first check whether it is defined in the current
scope, if so looks up for that in the current ScopeContext. If it is not defined or found
in that context, then the engine looks up for that in the hierarchy until the value of the
is found. This scoping context hierarchy provides lexical scoping with the price of a
performance penalty due to the recursive lookups. But we can ignore this performance
penalty as negligible since scope hierarchies are shallow and simple in most of the
BPEL documents.

Fig. 3. Lexical Scoping System

6 Process Model

Purpose of the process model is to provide an object model representation of a de-
ployed process capturing the meta-data from the WSBPEL document. We can also
call the BPEL-Mora run time process model tree as an execution model. Objects in
process model are designed to be run time stateless. Process model tree contains in-
formation about the process, but not about the process instances. Process model con-
tains implementation classes corresponding to each and every activity specified in the
WSBPEL specification. There are two main categories of activities specified in the
WSBPEL specification namely simple activities and structured activities. As shown in
figure 4, process model contains abstract classes to capture the common functionality
needed for the above two activity categories.

Each and every class corresponding to an Activity contains an “execute()” method
which contains the execution logic for that activity. This method takes in an In-
stanceContext object as the parameter. This InstanceContext object is used to store
and retrieve all the state date regarding the process instance. According to the BPEL-
Mora architecture implementations of “execute()” method needs to be re-entrant. On
other words, the values of the local variables of that Activity object cannot be
changed within this method. This gives the ability to share a copy of an activity object
among different process instances without worrying about concurrency issues.

A need for return of control to the parent activity arises when implementing several
workflow patterns [17] like “sequence”, “parallel split” (BPEL Flow) and “while” us-
ing BPEL-Mora process model. The method “executeParent()”has been introduced to
the “Activity” abstract class to cater to the above requirement. New powerful custom
activities can be added to the engine by extending one of the above two abstract
classes and using the “executeParent” method to return the control back to parent
whenever needed. Users will also be able to share their custom written classes with
other BPEL-Mora users.

Fig. 4. Class hierarchy of the Process Model

Process model tree is created using a linked list approach. Child activity objects of
a structured activity maintain parent-to-child, child-to-parent doubly linked relation-
ship in first and last child with the parent activity object. A single child-to-parent link
relationship is maintained in other children. All the siblings maintain a link to the
next sibling connecting all the children of a structured activity.

6.1 Handling Links

A BPEL flow activity executes its immediate child activities concurrently giving rise
to several parallel paths of execution. Flow activity enables expression of synchroni-
zation dependencies between activities that are running on different parallel paths.
The link construct is used to express these synchronization dependencies. Links of a
flow activity are separately defined inside the flow activity. Exactly one activity can
declare to be the source and other one activity can declare to be the target of a link.
We say X has a synchronization dependency on Y, if activity X is the target of a link
that has activity Y as the source.

Fig. 5. Links

As discussed in section 4 when met with a flow BPEL activity, BPEL-Mora cre-
ates new child instance contexts for each parallel path, while the parent instance con-
text waits till execution is complete in all the parallel paths. BPEL-Mora uses this
parent instance context to store a list of “Link” objects whenever a Flow activity with
defined links is executed. These “Link” objects can be in “true” state, “false” state or
“not evaluated” state depending on the state of the source activity of that link. When
the “Link” object status is “not evaluated” target activity has to wait till the “Link”
state is evaluated. In BPEL-Mora implementation an Instance Context executing in a
parallel path target Activity can register with a “Link” object in “not evaluated” state
to be notified when the link is evaluated.

7 Kernel

A kernel with a multiprocessor scheduler is introduced to BPEL-Mora in order to en-
sure the engine scale without proliferation of threads. Following sections discuss
about the scheduling of process instances and the life cycle of process instances.

7.1 Scheduling BPEL activities

A multi processor scheduler with a configurable number of processors is implemented
in the BPEL-Mora kernel. In here normal java Threads in a thread pool were used to
emulate the processors. Each worker thread in the thread pool simulates one proces-
sor. The decisions that we had to take with regards to the scheduler were (1) Unit of

execution (2) Scheduling policy (3) Number of worker threads (4) Number of sched-
uling queues.

Fig. 6. BPEL-Mora Kernel. A worker thread picks an Instance Context object (represents a
process instance) from the head of the scheduler queue and executes the current activity of the
process instance. Then, depending on the resulting state the process instance is put into the
relevant queue.

A single activity in a process model is chosen as the unit of execution for simplic-
ity and clarity. All the currently supported activities including all the WSBPEL activi-
ties were designed to have a limited number of instructions per execution. All the cur-
rent activities were carefully designed not to block the worker threads during the
execution. Examples for this behavior are Receive, Invoke and Wait activity imple-
mentations. When a Receive or a Wait activity is executed, the Instance Context ob-
ject belonging to the execution will be put in to the appropriate waiting queue freeing
the worker thread. A call back object is used to store the Instance Context object in
the case of Invoke activity.

With the above design an assumption can be made that “a BPEL-Mora activity will
be executed in a predictable small bounded time period”. With this assumption, a non-
pre-emptive priority based scheduling policy is used in the BPEL-Mora scheduler.

BPEL-Mora run time does not enforce any time constraint for the duration of execu-
tion of an activity. Priority for a process can be specified at the deployment time.
Above assumption invalidates if users add custom activities that take longer times to
execute.

Number of worker threads in the scheduler thread pool is made configurable to ca-
ter for the various underlying resource requirements. As an example, a server with
parallel processors can gain advantage by increasing the number of threads while a
single processor pc can harness the best by having a small number of threads like 5
threads.

Currently, BPEL-Mora scheduler uses a single scheduler queue assuming the con-
text switch time is very small relative to the time taken for a unit of execution. An-
other option is to have a scheduler queue for each and every worker thread. An im-
plementation like that can reduce the context switching time. On the other hand it’ll
unnecessarily increase the complexity of the scheduler due to the need to perform
queue load balancing. The scheduler queue implementation needs to be blocking and
thread safe. Hence, we have chosen a PriorityBlockingQueue[18] as our scheduling
queue implementation.

7.2 Process instance life cycle

Process instances are created with the reception of a designated “startable” invocation
message and are destroyed when the last activity of the process instance completes
execution. Between those two we can define several more states with regards to the
scheduler. Process instances may have parallel execution paths. These parallel execu-
tion paths can be in different states at a given time. Because of this it makes more
sense to discuss about process instance life cycles with regard to a single execution
path, which will be referred to as “single path of execution” here after. These single
paths of execution are represented inside the engine by the instance context objects.

Four major states can be identified in a single path of execution of a process in-
stance. They are (1) ready (2) running (3) blocked (4) terminated. All the paths of
execution in the “ready” state are waiting in the scheduler’s queue. New process in-
stance entering the engine are initially in the “ready” state. A process instance is in
the “running” state when it is executing inside the engine. A single path of execution
terminates either when the process instance terminates or when it finishes executing
the last activity in its execution path. A single path of execution represented by an in-
stance context enters in to the blocked state in 3 ways.

(1)A single path of execution represented by an instance context enters into
“Blocked-Join” state when it is waiting for a “link” to be evaluated. Instance context
waits till the link gets evaluated. An instance context in “Blocked-Join” state moves
to the “Ready” state upon successful evaluation of the “link”.

(2) A single path of execution represented by an instance context enters into a
“Blocked-Wait” state when a “wait” BPEL activity is executed. An instance context
in “Blocked-Wait” state moves to the “Ready” state upon reaching of the given dead-
line or upon expiration of the specified time period.

(3) A single path of execution represented by an instance context enters in to a
“Blocked-Receive” state when a “receive” BPEL activity is executed as well as a syn-

chronous Invoke activity is executed. An instance context in “Blocked-Receive” state
moves to the “Ready” state upon receiving the expected message.

8 Interfacing with web service engine

BPEL-Mora is built on top of Apache Axis2. By the use of Axis2 BPEL-Mora takes
lot of features for granted such as performance, ability to do REST style of web ser-
vices, asynchronous support, WS* capabilities through Axis2 modules, etc. Interfac-
ing with web service layer is done through the implementations of invoke and receive
BPEL activities.

8.1 Providing web service operations

Fig. 7. Apache Axis2 integration with the receive activity.

Each and every process in BPEL-Mora is registered as a service with the web service
engine. Hence, we expect the web service engine to route the messages to the correct
service, which in BPEL-Mora scenario is to route the message to the correct process.
Web service layer in BPEL-Mora consists of a MessageReceiver implementation.
MessageReceiver is an interface provided by Axis2, to use per service basis. Axis2
delivers the incoming messages to particular service to the specified MessageRe-
ceiver[9] implementation. BPEL-Mora MessageReceiver of a deployed process main-
tains a map of references to receive activity objects in a process against their opera-
tion names. BPEL-Mora uses this table to route messages to the correct receive
activity object within the deployed process based on their operation name.

Each and every Receive Activity object maintains a queue of InstanceContext ob-
jects (process instances) blocked by waiting at that activity. Following sequence is
followed when a message is received to a receive activity. (1) If the message receive
activity object is designated as “startable”, then it’ll create a new instance of the proc-
ess. (2)Otherwise the message is routed to the correct process instance in the queue
based on the correlation data [1] in the message. (3) If a matching instance is not
found in the queue, the message is buffered in a separate queue for a certain time pe-
riod waiting for a matching process instance.

8.2 Invoking web service operations

Invoking of external web services is done through an interface similar to WSIF [4],
This interface supports the creation of dynamic clients based on the WSDL binding.

The web service invocation interface is an implementation of Adapter Design pat-
tern [19].Invocation model wraps Axis2 [3] client programming API and provides a
Dynamic Invocation Interface (DII).BPEL-Mora web service invocation supports DII
with or with out the WSDL. It is mandatory to provide the end point reference of the
target service, in the case where the WSDL is not available,

 Invoke Activity implementation handles all the request-response type invocations
through the Axis2 client side non-blocking invocation mechanism. A special callback
handler object containing the InstanceContext object corresponding to the process in-
stance is used to receive the response.

9 Evaluation

Two tests were done to measure the performance of BPEL-Mora.
First test focuses on measuring the scalability of BPEL-Mora kernel and the sched-

uler. We used an embedded BPEL-Mora engine inside a test case and programmati-
cally created and deployed the process. The process contained a flow activity inside a
sequence activity. A custom activity which simply prints out its number and the exe-
cution count with a small time consuming logic was used as the children of the flow
activity. This process was triggered programmatically.

Table 1. Scalability of the scheduler (figures are the average of 5 runs)

Number of children for
the Flow activity

Time takes to exe-
cute (ms)

Avg. Time per 100
children (ms)

100 745 745
500 2064 412.8
1000 3443 344.3
2000 7130 356.5
5000 15701 314.12

10000 29642 296.42
15000 41578 277.18

These tests shows scalability of the engine and the fact that number of parallel

paths and the overhead of creating InstanceContext object per each path do not affect
the performance.

A second test was focused on the memory foot print of the engine. BPEL-Mora
was deployed inside Apache Axis2 1.1 running inside Apache Tomcat 5.0.28 with jdk
1.4.2. A 25 kb BPEL document was deployed in BPEL-Mora. This process was de-
signed to go in to Blocked-WAIT state as soon as the process instance was created.

Table 2. Memory usage (MB) Vs No. Of process instances

Process Instances 1 100 200 300 400 500 600 700
BPEL-Mora Mem. Usage 2.4 10.4 25 33 41.5 48.4 61.4 66
ActiveBPEL Mem. Usage 2.6 37.3 Reached a Thread limitation

BPEL-Mora implementation followed a minimalist approach from day one. As a

result of that the size of BPEL-Mora library remains less than 130kB. BPEL-Mora
depends only on the Axis2 and its dependent libraries. Due to that adding WSBPEL
capability to an existing Axis2 server can be done with the mere addition of 130 KB
BPEL-Mora library. To embed BPEL-Mora in an application or to run it standalone
requires the addition of Axis2 and dependent libraries, which are of size 2.8 MB.

10 Conclusion and future work

BPEL-Mora is a lightweight embeddable extensible WSBPEL compliant process en-
gine. BPEL-Mora can be embedded into the web service engine to execute server side
processes. BPEL-Mora has the capability to serve as a process run time to execute cli-
ent side processes. In this paper, we presented the motivation behind our effort, dis-
cussed the architecture of BPEL-Mora engine and major design decisions we took in
implementing BPEL-Mora. Affect of issues related to scalability, extensibility and
memory foot print, to the embeddability of the engine was also addressed in this pa-
per. Information model captures the run time state data of the process instances and
manages the lexical scoping of variables. Architecture of the stateless object model
was discussed focusing on extensibility and memory foot print. Architecture of the
Runtime engine with its scheduler was discussed along with the various decisions we
had to take during the implementation of the scheduler.

Providing full WSBPEL capability including fault handling and event based con-
structs together with improving the programming API to ease the programmatic crea-
tion of processes can be seen our immediate future objective. WSBPEL specification
does not define how WS-Transactions [22, 23, 24] set of specifications can be used to
provide transaction capability for WSBPEL processes. Adding transactions support
for business processes using WS-Transactions family of specifications will be one of
our future research goals.

Acknowledgements.
We thank our Project Supervisors Sanjiva Weerawarana & Sanath Jayasena for many
insights and discussions. We thank our Project Coordinator Shantha Fernando and
Vishaka Nanayakkara for their their support throughout the project.

References

1. OASIS WS-BPEL Technical Committee. Web Services Business Process Execution Lan-
guage Version 2.0, Working Draft 01, December 2004. http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=wsbpel.

2. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description
Language (WSDL), Version 1.1, March 2000. http://www.w3.org/TR/wsdl.

3. Web Services – Apache Axis2 , June 2006, http://ws.apache.org/axis2.
4. Web Services–Web Services Invocation Frame work (WSIF), June 2006 ,

http://ws.apache.org/wsif.
5. Thatte, S. , ‘XLANG: Web Services for Business Process Design’ ,Technical report, Micro-

soft, 2001.
6. Leymann, F. , ‘Web Services Flow Language’, Technical report, IBM, 2001.
7. D. Box et al, Simple Object Access Protocol (SOAP)1.1, May 2000 .

http://www.w3.org/TR/SOAP.
8. M. Gudwin et al, Simple Object Access Protocol (SOAP)1.2, May 2000 .

http://www.w3.org/TR/soap12-part1/
9. Apache Axis2, Architecture Guide .

http://ws.apache.org/axis2/1_1/Axis2ArchitectureGuide.html
10. Active BPEL, June 2006, http://www.activebpel.org
11. Web Services – Apache Axis1.x , June 2006, http://ws.apache.org/axis.
12. ActiveBPEL Engine Architecture, July 2006 ,

 http://www.activebpel.org/docs/architecture.html
13. Wolfgang Emmerich, Ben Butchart, Liang Chen and Bruno Wassermann, Grid Service Or-

chestration using the Business Process Execution Language (BPEL), October 2005. (pp. 28-
30), http://sse.cs.ucl.ac.uk/omii-bpel/publications/bpel.pdf

14. WebSphere Process Server Version 6.0 System Requirements, July 2006. http://www-
306.ibm.com/software/integration/wps/sysreqs/

15. FiveSight PXE, June 2006, http://pxe.fivesight.com/
16. J. Palsberg and C. B. Jay. The Essence of the Visitor Pattern. In Proceedings of

COMPSAC'98, 22nd Annual International Computer Software and Applications Conference,
pages 9{15, Vienna, Austria, August 1998.
http://www.cs.ucla.edu/~palsberg/paper/compsac98.pdf.

17. Workflow patterns, June 2006, http://is.tm.tue.nl/research/patterns/patterns.htm
18. J2SE 5.0, Concurrency Utilities, June 2006 ,

 http://java.sun.com/j2se/1.5.0/docs/relnotes/features.html#concurrency
19. E. Gamma, R. Helm, R. Johnson, and J. Vlissides.Design Patterns. Addison-Wesley Pub

Co, January 1995. ISBN 0201633612.
22. F. Curbera et al. Web Services Coordination (WS-Coordination),Version 1.0, August 2005.
23. F. Curbera et al. Web Services Atomic Transaction (WS-AtomicTransaction),Version 1.0,

August 2005.
24. F. Curbera et al.Web Services Business Activity Framework (WS-Business Activ-

ity),Version1.0, August 2005.

