
A Logic based Approach for Service Discovery with
Composition Support

Adina Sı̂rbu, Ioan Toma, and Dumitru Roman

Digital Enterprise Research Institute (DERI)
University of Innsbruck, Austria

<firstname>.<lastname>@deri.org

Abstract. Web service discovery given a user request becomes a fundamental
challenge in a service-oriented world. The overall success of Service Oriented
Architectures (SOA) however will very much depend on automatic and accurate
solutions for the discovery problem. Furthermore such solutions need to be effi-
ciently integrated with other service related tasks (e.g. service composition). In
this paper we propose a logic based approach for service discovery with compo-
sition support. First, we provide a formal model for service discovery based on
semantic description of services and then we show how such approach can be
integrated with service composition. Furthermore we provide a prototype imple-
mentation that validates our theoretical solution.

1 Introduction

Service Oriented Architectures are emerging as a new computing paradigm for realiz-
ing distributed applications. They promote a service-based view on the world, where
providers and clients are exposing and invoking functionalities in a standardized man-
ner. Web services are one possible approach for implementing SOA ideas. They are
based on technologies like WSDL [3], SOAP [14] and UDDI [2]. Despite their increas-
ing acceptance in industry, Web services have some important drawbacks which stem
mainly from the lack of machine understandable descriptions. More precisely, service
related tasks like discovery, negotiation, adaptation, and composition cannot be per-
formed by machines without the explicit intervention of a human programmer. Seman-
tic Web services were proposed as a new paradigm that helps overcome current Web
service technology limitations by providing semantically richer service descriptions.
This enables machines to reason on these descriptions and to perform service related
tasks in a more autonomous and accurate manner.

Service discovery, the task of finding relevant services given a user request, is one
task where semantic based approaches can bring more automatization and accuracy.
Solutions for discovery were proposed in [1], [12], [13], [9], [11]. However, most of
the existing literature in this field refers to detecting matches by comparing the inputs
and outputs of requested, respectively provided services. For example, the matching
algorithms described in [11] and [9] depend only on the logical relation between the
concepts associated with the inputs and outputs. Moreover, many of the proposed solu-
tions are lacking a suitable integration with other service related tasks. Our solution is

focused exactly on these two aspects. We provide a formal model for service discovery
based on semantic description of services and we show how such approach can be inte-
grated with service composition. Furthermore we provide a prototype implementation
that proves our ideas.

The paper is organized as follows: Section 2 provides the technical solution for our
service discovery approach. It first gives some insights on the service model we are
using for semantically describing Web services - the Web Service Modeling Ontology
(WSMO) and its associated language - the Web service Modeling Language (WSML).
The formal model for our discovery approach is described then in the rest of the section.
Section 3 presents the prototype we have developed based on the technical solution
provided in Section 2. The prototypical solution is described in terms of architecture
and behavior. Furthermore a concrete run through a scenario is presented in order to
exemplify the work of our prototype. Finally, Section 4 discusses the related work and
Section 5 concludes the paper and presents our future work.

2 Discovery Approach

The conceptual model and the language we are using for semantically describing Web
services is introduced in section 2.1. Based on this model, we present in section 2.2
two alternatives for Web service matchmaking, and for each of them the corresponding
algorithm.

2.1 Modeling services

The discovery process in general, and service discovery in particular, depends heavily
on how the entities that are to be discovered, in our case Web services, are modeled.
For our logic based service discovery solution we adopt the Web Service Modeling
Ontology (WSMO) [8] as conceptual model for services and its associated language
Web Service Modeling Language (WSML) [4] as a language for semantically describ-
ing Web services. Some of the reasons behind this decision are: (1) WSMO is one of
the major initiatives in Semantic Web services area. It provides a semantic-based solu-
tion for describing services which is crucial for a logic-based discovery approach such
as ours, (2) WSMO provides a clean modeling solution for services, making a clear
distinction between the user requests (goals in WSMO) and the services descriptions
(Web services in WSMO), (3) WSML provides different semantic expressivity sup-
port for describing services. For our approach we consider one particular variant of the
WSML languages family, namely WSML-Flight which offers a reasonable compromise
between expressivity and decidability.

In a nutshell, WSMO provides an overall framework for Semantic Web services
that aims at supporting automated Web service discovery, selection, composition, me-
diation, execution, monitoring, etc. It follows the design principles from the Web Ser-
vice Modeling Framework (WSMF) [5] and provides four top-level notions related to
Semantic Web services: (1) Ontologies that define a common agreed upon terminology
used in the description of all others WSMO elements, (2) Goals which are descriptions

of the objectives a client may have when consulting a service in terms of functional-
ity, behavior and quality of service, (3) Web services are descriptions of services and
(4) Mediators which address heterogeneity problems that occur between descriptions at
different levels: data, protocol or process level.

For our discovery approach, the first three top-level WSMO elements, namely on-
tologies, Web services and goals are considered. Although we don’t use the media-
tion support, our solution can be easily extended to integrate mediation aspects. In the
following, all Web services, goals and ontologies are specified using WSML. Further-
more, since our approach matches goals and Web services based on the functionality
requested, respectively provided, we focus on describing the functional aspects of Web
services and goals. Therefore, we leave aside the description of the interfaces, which
by definition provide information on how the functionality of a Web service can be
achieved. In WSMO, the functional aspects of a Web service or a goal are grouped un-
der an element called capability. A capability captures in terms of preconditions and
assumptions, on one hand, and postconditions and effects, on the other hand, a set of
conditions that have to hold before and respectively after the execution of the service.
More precisely, the pre/postconditions refer to the information space of the Web service,
while the assumptions and effects refer to the state of the world.

For exemplification purposes we introduce service and goal descriptions from the
real-world use cases developed in the EU project Adaptive Service Grid (ASG)1.

In this particular use-case, we consider a domain ontology that models a telematics
domain. Listing 1.1 displays a fragment of this ontology, defining the top-level concepts
of person, phone number, location, and a relation that holds between an entity and its
location. Furthermore, this fragment includes an axiom stating that the location of a
phone is also the location of a the owner of the phone.

ontology ”domainOntology.wsml”
nonFunctionalProperties

dc#title hasValue ”Telematics domain ontology”
endNonFunctionalProperties

concept person
name ofType string
number ofType phoneNumber

concept phoneNumber

concept location
hasCoordinates ofType coordinates

relation hasLocation/2
nonFunctionalProperties

dc#relation hasValue hasLocationDef
endNonFunctionalProperties

axiom hasLocationDef
definedBy

?person[number hasValue ?phoneNr] memberOf person
and ?loc memberOf location
and hasLocation(?phoneNr, ?loc)

implies hasLocation(?person, ?loc).

Listing 1.1. Domain ontology

1 http://asg-platform.org

Based on this ontology, a telecommunication company offers a phone location ser-
vice. This service requires as input the number of a mobile phone. This can be seen as
a condition over the information space before the execution of the service and therefore
is modeled as a precondition. The service invoker receives as result the location of the
mobile phone. This can be seen as a condition over the information space after the exe-
cution of the service and therefore is modeled as a postcondition. The complete WSML
description of the service is provided in the Listing 1.2.

webService ”MobTelPhoneLocationService”
nonFunctionalProperties

dc#title hasValue ”MobTel phone location service”
dc#publisher hasValue ”MobTel”

endNonFunctionalProperties
importsOntology ”domainOntology.wsml”
capability phoneLocationServiceCapability

sharedVariables {?phoneNumber}
precondition

definedBy
?phoneNumber memberOf dO#phoneNumber.

postcondition
definedBy

dO#hasLocation(?phoneNumber, ?location)
and ?location memberOf dO#location.

Listing 1.2. MobTel phone location service

Further on, consider the generic goal of finding the location of a person, knowing
the name and the phone number of this person. A goal in WSMO is described in a
similar manner to a Web service. Listing 1.3 represents the formal description of the
goal template. A concrete request can then be defined at runtime, by instantiating the
goal template with concrete inputs.

goal ”findPersonLocation.wsml”
nonFunctionalProperties

dc#title hasValue ”Find person location goal”
endNonFunctionalProperties
importsOntology ”domainOntology.wsml”
capability findPersonLocationCapability

sharedVariables {?person}
precondition

definedBy
?person[

dO#name hasValue ?name,
dO#number hasValue ?phoneNr

] memberOf dO#person.
postcondition

definedBy
dO#hasLocation(?person, ?location)
and ?location memberOf dO#location.

Listing 1.3. Find person location goal

The user can specify conditions on the information space that hold before the in-
vocation of the matching service, in this case, that the name and phone number of the
person are known. These aspects are modeled as preconditions in the goal. In the state
of the world after the execution of a suitable service, the location of the person is known.
Therefore we model this as a postcondition of the goal.

The discovery solution we are introducing in this paper will identify, using the back-
ground ontology, that the listed Web service represents an exact match for the goal.

More details on how services and goals descriptions are used by our solution are pro-
vided in Section 3.2.

2.2 Matching Web services and requests

We consider two alternatives for Web service matchmaking, each of them applying a
different algorithm. They correspond to different phases in the Web service composition
process.

The first matchmaking alternative is to locate the Web services that directly match
a user request in a given state. If no Web services are discovered, the composer can
construct a valid solution that fully satisfies the goal using the second alternative, which
identifies all the Web services that are relevant to the request in the given state. More
specifically, the service composer can construct a solution by successively discovering
the executable services and virtually executing them until the state satisfies the goal. For
a description of the service composer used in the context of ASG, we refer the reader
to [10].

In section 2.1, we have presented our state-based approach to describing Web ser-
vices and goals, which allows us to express Web services that can change the state of the
world. This approach is characterized by the use of pre-state and post-state constraints
for specifying the intended execution of the Web service. In WSMO, the pre-state con-
straints correspond to postconditions and assumptions, while the post-state constraints
correspond to postconditions and effects. In this context, we have not made explicit
distinction between effects and postconditions. Together, they represent the outcome of
the service execution.

Both matchmaking algorithms take into account the dependence of outputs and ef-
fects of the service execution on the concrete input provided by the user. Therefore,
they operate at the level of rich semantic description of services, as introduced in [6].

Matching based on capabilities The first algorithm for service matchmaking identi-
fies the Web services whose capabilities fully match the requester goal.

Of the four possible types of match described in [6], we are taking into consideration
only exact-match (the Web service description and the goal description coincide) and
plugin-match (the sets of objects that the Web service claims to deliver is a superset
of the set of objects that are relevant to the requestor). The other two cases (subsumes-
match and intersection-match) are not considered valid matches in this context, because
the services cannot fully satisfy the goal.

We consider the states of the world to be logical theories. A state of the world
comprises the set of registered ontologies and, optionally, an additional set of facts.
These facts can be given explicitly by means of an initial state. They can also be the
outcome of previous virtual execution of services, because the execution of a service in
a given state is considered to change the state of the world, resulting in an update to the
logical theory.

In order to determine if the capability of a service satisfies a requester goal one
must reason about the resulting updates. Reasoning about updates raises the frame
problem. A solution to avoid the frame problem is offered by Transaction Logic, an

extension to First-order Logic that allows to specify the dynamics of knowledge bases
in a declarative way. The theoretical approach employing Transaction Logic for Web
service discovery that has been used as theoretical foundation for the implementation
of this matchmaking algorithm can be found in [7].

The algorithm for service matchmaking based on capabilities implemented in our
prototype is presented in Listing 1.4. The ontologies, the Web services and the goal are
assumed to be loaded prior to the invocation of the matchmaking process.

1 algorithm Matchmaking based on capabilities
2 input: initial state I, goal G
3 output: map of <Web service S, set of <variable binding β>>
4
5 register state I
6 for each registered Web service S
7 if holds preS then
8 for each variable binding β
9 if not holds (effS (β) and outS (β)) then

10 insert (effS (β) and outS (β))
11 if holds (effG and outG) then
12 add β to set of <β>
13 endif
14 delete (effS (β) and outS (β))
15 endif
16 endfor
17 if not empty (set of <β>) then
18 add (S, set of <β>) to result map
19 endif
20 endif
21 endfor
22 unregister state I
23 return result map

Listing 1.4. Matchmaking algorithm based on capabilities

We consider a ”stateless” functioning of the prototype, meaning that the relevant
state information is given as input to each state-dependent operation. The state is loaded
and respectively unloaded (lines 5, 22).

The available information sources at this point are:

– the set of ontologies referred by both goal and Web service descriptions
– the knowledge encoded in the state given as input to the matchmaking process
– the information that may be provided by the goal description itself

We select those registered Web services that are executable. In this context, a Web
service S is considered executable if there exist input information in the available infor-
mation sources such that the preconditions (what must be valid in order for the service
to be executed) are fulfilled, while the effects and the postconditions (what the service
guarantees after its execution) are not yet fulfilled. The assumptions describe conditions
on information that is available only at run-time, and thus are not checked.

Therefore, S is executable if there exists at least one variable binding that satisfies
the preconditions preS , but not the effects effS and the postconditions outS (lines 6-9).
Checking that the effects and the postconditions of the Web service are not satisfied
for the input that satisfies the preconditions is necessary due to the fact that in this
context we wish to allow only a single execution of a Web service for a given input.
Note however that a Web service can be executed an arbitrary number of times, with
different input information.

A variable binding is a set of < variable, value > pairs capturing the input infor-
mation for which the service preconditions hold. More precisely, a variable binding is a
complete set of bindings

< x1, v1 >,< x2, v2 >, ..., < xn, vn >

where x1, ..., xn are the variables occurring in the precondition, and v1, ..., vn is a set
of constants. There can be several variable bindings for the same service, and all further
tests on the service effects and postconditions will depend on the particular variable
binding (line 9).

An executable service is considered a match if, for at least one of the variable bind-
ings, the outcome of the service S satisfies the outcome requested in the goal G. We
perform this test by assuming the effects and the postconditions of the service for each
variable binding and verifying if the effects and the postconditions of the goal hold in
the resulting state (lines 10-14).

The set of matching services, and for each service all valid variable bindings, is then
returned (line 23).

Matching for Web service composition The second matchmaking algorithm queries
for the Web services that are relevant to composition. In this context, we consider a Web
service to be relevant if it is executable in the given state.

1 algorithm Matchmaking on preconditions
2 input: initial state I
3 output: map of <Web service S, set of <variable binding β>>
4
5 register state I
6 for each registered service S
7 if holds preS then
8 for each variable binding β
9 if not holds (effS (β) and outS (β)) then

10 add β to set of <β>
11 endif
12 endfor
13 if not empty (set of <β>) then
14 add (S, set of <β>) to result map
15 endif
16 endif
17 endfor

18 unregister state I
19 return result map

Listing 1.5. Matchmaking algorithm for service composition

Listing 1.5 presents the algorithm. Similar to the previous algorithm, the ontologies
and the services are assumed to be loaded in the reasoner prior to invocation of the
matchmaking process. The state is loaded and respectively unloaded (lines 5, 18).

The available information sources for this second algorithm are:

– the set of the ontologies referred by the Web service descriptions
– the knowledge encoded in the state given as input to the matchmaking process

A Web service is considered a match in the context of this algorithm if it is ex-
ecutable. As already defined, a Web service S is executable if there exists input in-
formation such that the preconditions preS are fulfilled, while the effects effS and the
postconditions outS are not yet fulfilled (lines 6-9).

The set of executable Web services, and for each Web service all corresponding
variable bindings, is then returned (line 19).

3 A Prototype System for Service Discovery

We have developed a prototype system that implements the matchmaking algorithms
presented in Section 2.2. Furthermore we have tested and validated our prototype on a
real-world scenario developed in the ASG project, called Attraction Booking Scenario.
We now provide a high level overview of our system in terms of its architecture, com-
ponents and interaction between them. The discovery process is afterwards exemplified
with a run-through the previously mentioned scenario.

3.1 System overview

The high level architecture of our prototype system is provided in Figure 1. It consists
of a set of loosely-coupled components which includes: a System Interface, a Semantic
Matchmaker, a Reasoner and a Repository.

The system itself acts as a component having a defined System Interface. This in-
terface offers a programmatic access to the system. Agents that act on behalf of service
providers or service requestors can invoke functionalities exposed through this inter-
face. The interface includes methods for managing semantic descriptions (e.g. register,
unregister ontologies, services, goals), methods for querying the reasoner and methods
for matching goals against registered services.

The Semantic Matchmaker is one of the core components of the Discovery System.
It implements the matchmaking algorithms described in Section 2.2. It uses the reasoner
to determine if the requested capability specified in a goal matches the capabilities of
registered services.

The Reasoner provides querying and inference support required by the Semantic
Matchmaker component. More precisely it supports a set of reasoning tasks like query

Fig. 1. Discovery system architecture.

answering with ontologies. As a backbone reasoner we have used the F lora − 2 sys-
tem2, integrated into the overall discovery system by using a generic framework called
wsml2reasoner3. The framework allows easy integration of different reasoning engines
for WSML language.

The Repository stores semantic descriptions like ontologies, goals and Web ser-
vices. It provides methods to register and unregister the semantic descriptions men-
tioned before. Additionally, sets of facts that represent the states of the world at certain
points in time can be registered or unregistered.

3.2 Application to use case scenario

The use case presented in the following paragraphs is a simplified fragment from the
Attraction Booking scenario developed in ASG4. In this scenario taken from the telemat-
ics domain, a customer uses a mobile device, such as a handheld, to retrieve information
on the attractions located in the nearby surroundings. Depending on the information re-
ceived, the customer can additionally request for attraction details (e.g. the starting time
of the event), for the description of a route leading to the attraction or, if the attraction
is bookable, for a reservation to the event.

The domain ontology used in this scenario defines concepts, relations and instances
associated to attractions (e.g. attraction, attractionBag, attractionCategory), locations
(e.g. city, street, coordinates), mobile devices (e.g. phoneNumber). Listing 1.6 is an

2 http://flora.sourceforge.net
3 http://dev1.deri.at/wsml2reasoner/
4 https://asg-platform.org/

additional fragment of the ontology introduced in Listing 1.1, that refers to attractions.
Besides concepts and instances associated to attractions and the search for attractions,
we introduce an axiom which specifies that all events are bookable.

concept attraction
name ofType string
description ofType string
bookingPossible ofType boolean
priceRangeA ofType priceRange
categories ofType (1 ∗) attractionCategory
locationA ofType location

concept event subConceptOf attraction

concept attractionBag
nonFunctionalProperties

dc#description hasValue ”a list of attractions”
endNonFunctionalProperties
members ofType (1 ∗) attraction

concept attractionQuery
keyword ofType string
numberOfResults ofType integer
attractionCategories ofType (1 ∗) attractionCategory

concept attractionCategory

instance categoryCinema memberOf attractionCategory
instance categoryMusic memberOf attractionCategory
instance categoryEatAndDrink memberOf attractionCategory

axiom allEventsAreBookableDef
definedBy

?attraction memberOf Event implies
?attraction[bookingPossible hasValue true].

Listing 1.6. Fragment from the domain ontology

Further on, we introduce two Web services from the Attraction Booking service
space, that provide information about attractions.

CinemaxXAttractionInformationService - modeled after CinemaxX.de, this service re-
trieves a set of cinema events using as search criteria the location and an attraction
query. The service requires that the cinema category is explicitly specified in the attrac-
tion query.

webService ”CinemaxXAttractionInfoService.wsml”
nfp

dc#title hasValue ”CinemaxX Attraction Information Service”
dc#publisher hasValue ”CinemaxX.de”

endnfp
importsOntology ”domainOntology.wsml”
capability CinemaxXAttractionInfoCapability

precondition
definedBy

?location memberOf dO#location
and ?query[dO#attractionCategories hasValue dO#cinema] memberOf dO#attractionQuery.

postcondition
definedBy

?bagOfEvents[dO#members hasValue ?event] memberOf dO#attractionBag
and ?event memberOf dO#event.

Listing 1.7. CinemaxX Attraction Information Service

StarbucksAttractionInfoService - similar to the CinemaxX Web service, this service
retrieves a set of bookable attractions if a location and an attraction query are given.
The service requires that the attraction category list present in the query to contain the
”eat-and-drink” category.

webService ”StarbucksAttractionInfoService.wsml”
nfp

dc#title hasValue ”Starbucks Attraction Information Service”
dc#publisher hasValue ”Starbucks.com”

endnfp
importsOntology ”domainOntology.wsml”
capability StarbucksAttractionInfoCapability

precondition
definedBy

?location memberOf dO#location
and ?query[dO#attractionCategories hasValue dO#eatAndDrink] memberOf

dO#attractionQuery.
postcondition

definedBy
?attrBag[dO#members hasValue ?attraction] memberOf dO#attractionBag
and ?attraction[dO#bookingPossible hasValue true] memberOf dO#attraction.

Listing 1.8. Starbucks Attraction Information Service

Matching based on capabilities Consider a generic goal of finding attractions that can
be booked, located in the nearby surroundings of the user. The user request we wish to
model is equivalent to the following natural language specification: ”Given a query that
specifies the categories of attractions, the problem is solved when the list of bookable
attractions is known.” The formal specification of the request is given in Listing 1.9.

goal ”findBookableAttractionsGoal.wsml”
nfp

dc#title hasValue ”Find Bookable Attractions Goal”
endnfp
importsOntology ”domainOntology.wsml”
capability findBookableAttractionsCapability

precondition
definedBy

?query[dO#attractionCategories hasValue ?category] memberOf dO#attractionQuery.
postcondition

definedBy
?bookableAttrBag[dO#members hasValue ?bookableAttr] memberOf dO#attractionBag
and ?bookableAttr[dO#bookingPossible hasValue true] memberOf dO#attraction.

Listing 1.9. Find bookable attractions goal

The user input is captured in the initial state of the problem (Listing 1.10), which
defines a person, a location and an attraction query specifying a list of categories.

ontology ”initialState.wsml”
importsOntology ”domainOntology.wsml”

instance me memberOf dO#person
instance myLocation memberOf dO#location
relationInstance dO#hasLocation(me, myLocation)

instance myQuery memberOf dO#attractionQuery
dO#attractionCategories hasValue {dO#cinema, dO#music}

Listing 1.10. Initial state

The discovery process starts by checking if the goal holds in the initial state. Since
the goal postcondition is not satisfied for the initial state, the next phase is service
matchmaking based on capabilities, according to the algorithm presented in 2.2.

The algorithm analyzes every registered Web service. The preconditions in the Cin-
emaxX Web service are fulfilled, and using the background ontology we determine that
the outcome advertised in the Web service satisfies the outcome requested in the goal.
The CinemaxX attraction information service is thus considered a match. On the other
hand, even though it advertises only attractions that can be booked (and thus meets the
goal postcondition), the Starbucks Web service is not a valid match, because its precon-
ditions are not satisfied.

The algorithm returns the identifier of the matching Web service, together with the
corresponding variable binding.

Service:
CinemaxXAttractionInfoService.wsml

Service Variables Binding:
location = initialState#myLocation
query = initialState#myQuery

Listing 1.11. Find bookable attractions matching service

Matching for Web service composition Further on, we present a run-through that
uses for matchmaking the algorithm defined in 2.2.

In order to simulate the Web service composition, we add to the service repository
the phone location service introduced in section 2.1.

We consider the same generic goal of finding attractions that can be booked. For this
second example, the initial state specifies the user, the phone number and the attraction
query. However, in this initial state, no information related to the location of the user is
known.

ontology ”altInitialState.wsml”
importsOntology ”domainOntology.wsml”

instance myNumber memberOf dO#phoneNumber
instance me memberOf dO#person
dO#number hasValue myNumber

instance myQuery memberOf dO#attractionQuery
dO#attractionCategories hasValue {dO#cinema, dO#music}

Listing 1.12. Alternative initial state

The simulation of the service composition process consists of one or more iterations
through a series of steps. The steps are executed in the following order:

1. check if the goal holds in the current state. If true exit, else go to 2;
2. query for executable services. If no service is discovered exit, else go to 3;
3. virtually execute one of the discovered services.

First iteration: Testing whether the goal is reached in the initial state returns false.
We proceed to the next step, finding executable services. The result contains only the
phone location service, as it is the only Web service whose preconditions are satisfied
(Listing 1.13).

In case more executable Web services are found, the composition planner can em-
ploy a complex approach for selecting the best matching Web service, while also tak-
ing into consideration non-functional properties like optimization criteria (e.g. price or
speed) and static restrictions (e.g. only services from provider X).

Service:
MobTelPhoneLocationService.wsml

Service Variables Binding:
phoneNumber = altInitialState#myNumber

Listing 1.13. Executable service in the initial state

We start constructing the first alternative with the virtual execution of the phone
location service. By assuming the outcome of this service, a dummy instance of type
location is created and related to the phone number. Listing 1.14 gives the equivalent
WSML description of the inserted facts.

domainOntology#location1 memberOf domainOntology#location.
domainOntology#hasLocation(altInitialState#myNumber, domainOntology#location1).

Listing 1.14. Virtual execution of the phone location service

Second iteration: The test whether we have reached the goal returns false.
The result of querying for the executable services in the current virtual state is the

CinemaxX Web service, as it is the only service whose preconditions are satisfied.
Service:

CinemaxXAttractionInfoService.wsml
Service Variables Binding:

location = domainOntology#location1
query = initialState#myQuery

Listing 1.15. Executable service in the second state

The virtual execution of the CinemaxX service adds a new dummy instance of
the attraction bag concept, containing one dummy instance of the event concept. List-
ing 1.16 displays the WSML description of the added facts.

domainOntology#event1 memberOf domainOntology#event.
domainOntology#attractionBag1[

domainOntology#members hasValue domainOntology#event1
] memberOf domainOntology#attractionBag.

Listing 1.16. Virtual execution of the CinemaxX attraction information service

Third iteration: Testing whether the goal was reached yields true.
Goal Variables Binding:

bookableAttrBag = domainOntology#attractionBag1
bookableAttr = domainOntology#event1

Listing 1.17. Goal variables binding

The output of the presented run-through is a possible service execution plan that can
be constructed by a service composition planner. In this execution plan Mobtel phone
location service and CinemaxX attraction information service are composed in order to
achieve the user goal. Alternative service execution plans can be achieved in case more
executable services are discovered at each step.

4 Related Work

The automatic discovery of services is nowadays a very popular research topic. Many
solutions have been proposed ranging from pure syntactic to highly logic based ap-
proaches. However many of them lack a clear discovery model and a formal specifi-
cation of the discovery process. Furthermore many of them cannot be easily integrated
with solutions for other service related tasks.

Approaches like [9], [11], although logic-based, are missing a clear discovery model.
These approaches are also too general and is not clear how they can support other ser-
vice related tasks like service composition.

Same holds for other approaches (e.g. [13], [1])that were mainly provided to work
in distributed environments like P2P. Besides the lack of clear discovery model and
support for other service related tasks, many of these approaches lack as well a formal,
concise algorithms for service discovery.

5 Conclusions and Future Work

In this paper we presented a logic based approach for service discovery that can be eas-
ily used by service composition modules. Two kinds of algorithms for service discovery
were presented, one based on capability matching, the other supporting service compo-
sition. Furthermore we have implemented a proof of concept prototype that validates
our solution on real use-case scenarios. As future work we plan to compare our solution
and implementation against other service discovery solutions. Also, we plan to refine
our solution to include the possibility of ranking the matching Web services, the prob-
lem of ranking being one of the main challenges in Web service discovery. Performance
and scalability tests are also left as future work.

6 Acknowledgements

The work is funded by the European Commission under the projects ASG, DIP, enI-
RaF, InfraWebs, Knowledge Web, Musing, Salero, SEKT, Seemp, SemanticGOV, Su-
per, SWING and TripCom; by Science Foundation Ireland under the DERI-Lion Grant
No.SFI/02/CE1/I13 ; by the FIT-IT (Forschung, Innovation, Technologie - Information-
stechnologie) under the projects Grisino, RW2, SemNetMan, SeNSE and TSC.

References

1. Rama Akkiraju, Richard Goodwin, Prashant Doshi, and Sascha Roeder. A method for se-
mantically enhancing the service discovery capabilities of UDDI. In Subbarao Kambhampati
and Craig A. Knoblock, editors, Proceedings of the IJCAI-03 Workshop on Information In-
tegration on the Web (IIWeb-03), pages 87–92, 2003.

2. T. Bellwood, L. Clment, D. Ehnebuske, A. Hately, Maryann Hondo, Y.L. Husband,
K. Januszewski, S. Lee, B. McKee, J. Munter, and C. von Riegen. Uddi version 3.0.
http://uddi.org/pubs/uddi-v3.00-published-20020719.htm, July 2002.

3. E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description
language (wsdl) 1.1. http://www.w3.org/TR/wsdl, March 2001.

4. Jos de Bruijn, Holger Lausen, Reto Krummenacher, Axel Polleres, Livia Predoiu, Michael
Kifer, and Dieter Fensel. The Web Service Modeling Language WSML. Technical report,
WSML, 2005. WSML Final Draft D16.1v0.21. http://www.wsmo.org/TR/d16/d16.1/v0.21/.

5. Dieter Fensel and Christoph Bussler. The Web Service Modeling Framework WSMF. Elec-
tronic Commerce Research and Applications, 1(2):113–137, 2002.

6. Uwe Keller, Ruben Lara, Axel Polleres, Ioan Toma, Michael Kiffer, and Dieter
Fensel. WSMO discovery. Working Draft D5.1v0.1, WSMO, 2004. Available from
http://www.wsmo.org/TR/d5/d5.1/v0.1/.

7. Michael Kifer, Rubén Lara, Axel Polleres, Chang Zhao, Uwe Keller, Holger Lausen, and
Dieter Fensel. A logical framework for web service discovery. In ISWC 2004 Workshop on
Semantic Web Services: Preparing to Meet the World of Business Applications, volume 119,
Hiroshima, Japan, 2004. CEUR Workshop Proceedings.

8. H. Lausen, A. Polleres, and D. Roman (eds.). Web Service Modeling On-
tology (WSMO). W3C Member Submission 3 June 2005, 2005. online:
http://www.w3.org/Submission/WSMO/.

9. Lei Li and Ian Horrocks. A software framework for matchmaking based on semantic web
technology. In Proceedings of the 12th International Conference on the World Wide Web,
Budapest, Hungary, May 2003.

10. Harald Meyer and Mathias Weske. Automated service composition using heuristic search.
In Proceedings of the Fourth International Conference on Business Process Management,
volume 4102 of Lecture Notes in Computer Science, Vienna, Austria, 2006.

11. M. Paolucci, T. Kawamura, T. Payne, and K. Sycara. Semantic matching of web services
capabilities. In I. Horrocks and J. Handler, editors, 1st Int. Semantic Web Conference (ISWC),
pages 333–347. Springer Verlag, 2002.

12. K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among heteroge-
neous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems, pages
173–203, 2002.

13. K. Verma, K. Sivashanmugam, A. Sheth, and A. Patil. Meteor-s wsdi: A scalable p2p in-
frastructure of registries for semantic publication and discovery of web services. Journal of
Information Technology and Management, 2004.

14. W3C. SOAP Version 1.2 Part 0: Primer, June 2003.

