
Business Process Flexibility in Virtual Organizations

Pnina Soffer and Johny Ghattas

University of Haifa, Carmel Mountain 31905, Haifa, Israel
spnina@is.haifa.ac.il

ghattasjohny@gmail.com

Abstract. Virtual organizations are perceived as a means for achieving

flexibility. However, shared inter-organizational business processes may pose

additional constraints on the internal processes of an organization and reduce

their flexibility. The paper builds on a conceptual model of business processes

in a virtual organization. The model aimes at identifying a minimal process

definition to support the collaborative process while allowing flexibility of the

internal processes. The model is informally presented through a case study of

an inter-library loan process, and its implications on flexibility are discussed.

1 Introduction

Virtual organizations are perceived as a means for achieving flexibility. The

formation of a virtual organization allows a partner organization to focus on core

competencies while outsourcing various operations [6]. Flexibility is achieved by the

ability to expand the variety of products and services offered to the customer, the

ability to switch partners and select the appropriate partners for a given task.

However, shared business processes may pose additional constraints on the internal

processes of an organization. The necessity to perform in coordination with other

organizations and the resulting obligations may lead to a higher rigidity of the

possible processes.

Various mechanisms at various levels of detail have been proposed for achieving

interoperability or shared business processes among organizations. Most of them

focus on implementation details (e.g., [2]). We claim that an implementation solution

must rely on a solid conceptual model, depicting the essence of shared business

processes and interoperability.

A key issue discussed in the literature with respect to virtual organizations and

inter-organizational processes is the required balance between trust and control,

visibility and privacy. Addressing this delicate balance, solutions vary from complete

central control to pure distribution. [11][12][13][21][14][10] propose models where

an inter-organizational workflow is defined as part or as result of a contract between

organizations. The organizations are then contractually committed to the defined

workflow (or to a partial definition). Different levels of visibility of a partner’s

internal process by the other partners at run time are also proposed and supported. In

general, a high degree of central control and required visibility imposes constraints on

the internal operations of an organization, thus reduces its flexibility.

188 Business Process Modeling, Development, and Support

This paper builds on a conceptual model of shared processes in a virtual

organization, proposed by [8]. The conceptual model aims at identifying the minimal

definition required to enable a smooth operation of shared processes, while allowing

the partners a maximal degree of privacy and flexibility. The model is based on the

formal Generic Process Model (GPM) and Bunge’s ontology. In this paper we

informally present it through a case study of an inter-library loan process, and discuss

its implications on business process flexibility.

The remainder of the paper is structured as follows: Section 2 briefly introduces

the main concepts of GPM, as a basis for the analysis of the case study, which is

presented in Section 3. Section 4 discusses the model with respect to the flexibility it

enables, and conclusions are presented in Section 5.

2 The Generic Process Model

GPM is based on Bunge’s ontology [3][4], as adapted for information systems

modeling (e.g., [18][20]), for conceptual modeling, and for modeling business process

concepts.

According to the ontological framework, the world is made of things that possess

properties. Properties are perceived by humans in terms of attributes, which can be

represented as functions on time. The state of a thing is the set of values of all its

attribute functions (also termed state variables). When properties of things change,

these changes are manifested as state changes or events. State changes can happen

either due to internal transformations in things (self action of a thing) or due to

interactions among things. The rules governing possible states and state changes are

termed state laws and transition laws, respectively. States can be classified as being

stable or unstable, where an unstable state is a state that must change by law, and a

stable state is a state that can only change as a result of an action of something

external to the thing or the domain.

A domain is a part of the world, namely, a set of things and their interactions. It is

represented by a set of state variables, whose values represent the state of the domain

at a moment in time. A sub-domain is a part of the domain, represented by a subset of

the domain state variables. A sub-domain may be in a stable state while the entire

domain is in an unstable state, meaning that a different part of the domain is currently

subject to changes.

A process is a sequence of unstable states, transforming by law until a stable state

is reached. A process is defined over a domain, which sets the boundaries of what is in

a stable or an unstable state. Events that occur outside the domain are external events

and they can activate the domain when it is in a stable state.

A process model in GPM is a quadruple <S, L, I, G>, where S is a set of states

representing the domain of the process; L is the law, specified as mapping between

subsets of states; I is a subset of unstable states, which are the initial states of the

process after a triggering external event has occurred; G is a subset of stable states,

which are the goal of the process. Subsets of states are specified by conditions over

the state variables of the domain. Hence, a process starts when a certain condition on

BPMDS'06 189

the state of the domain holds, and ends when its goal is reached, i.e., when another

condition specified on the state of the domain holds.

3 The Inter-Library Loan Case Study

This section presents a case study of an inter-library loan process, as an example of a

virtual organization (VO) business process.

Libraries partner with each other in order to share items, collections, journals and thus

provide their customers maximum accessibility to interesting items. This process must

be as transparent as possible to all customers (except for inevitable costs and delivery

time issues).

The Inter Library Loan (ILL) process is triggered by customers, i.e., students or

researchers in research centers, universities, colleges etc. The customer asks for an

item from a virtual catalogue that includes all available items locally and within the

association. If the item is available locally, it is provided by the local library. If not,

the information system of the local library shall search for tentative providers through

the catalogue and rank them according to a set of parameters, such as delivery time,

quality, price, etc. The system sends a request to the first ranked tentative provider

and waits for response. Different scenarios may occur: the provider may accept the

request and notify the requester, who should pay for the service before delivery is

made by the provider. An alternative scenario is when the tentative provider does not

respond within a given period of time. The request is timed-out and the requester may

initiate a request to another tentative provider. All this process logic is normally

established at the level of the consortium / association and each partner that joins the

consortium agrees to comply with it.

Every partner library can play one of two roles in each occurrence of the ILL

process: a requester or a provider. Figure 1 and Figure 2 present example state flows

of a requester and a provider in the ILL process, respectively.

Each of the parties has its own private process that takes place within its domain of

control, and has a defined (local) goal. These private processes entail states where

interaction with a partner takes place. Figures 1 and 2 distinguish “internal” from

interaction states, where each can be stable or unstable. We take a special interest in

the interaction states. In GPM terms, a stable interaction state is a discontinuity point
[16], where the process domain is in a stable state waiting for an external event to

reactivate it so it can progress towards its goal. Specifically, the expected external

event should be a result of an action of the other party. An unstable interaction state is

a state that follows an external event, originated by the other party. Note that every

stable interaction state in one of the figures has a corresponding unstable interaction

state in the other figure.

190 Business Process Modeling, Development, and Support

Request
received

from end-user
Tentative
Providers
selected

Select Next
Tentative
Provider

Wait for
Provider’s
response

Request
Rejected

Request
Cancellation

Sent to
Provider

Item delivered

Request
Timeout

Requester re
jects

request
Provider accepts request

Send payment

Pick next
tentative
Provider

Select tentative providers

Idle

Unstable
internal states

Stable
Interaction
states

Legend:

Waiting
for

Delivery

Process states
(requester side)

Item
Receiving
Confirmed

Item
Received

Delivery
Waiting
Timeout

Stable internal
states

Payment
Enquiry

Received

Delivery
Inquiry
Sent

Request
Accepted

Customer Requests an Item

Requester
sends request

to provider

Request
response

timer’s event

Requester cancels
request

Provider
confirms
cancellation

Provider confirms
cancellation

Customer
confirms
receipt

Customer cancellation

Provider
confirms
request
receiving

Provider
enquires
payment

Send payment

Requester rejects

request

Delivery
timer’s event

Provider’s
delivery
notification

Provider
delivers to
requester

Delivery to
customer

Requester cancels

request

Requester
cancels
request

Unstable
Interaction
states

 Fig. 1. State flow on the requester side

Request
Received

from Requester

Receive requester’s request

Request in
Evaluation

Request Canceled

Payment
Waiting
Timeout

Item Ready
for Delivery

Request
Accepted

Item
delivered

Delivery
Enquiry

Received

Payment timer’s

event

Receive payment

Confirm request
receipt

Idle

Internal
unstable states

Stable
interaction
states

Legend:

Payment
Enquiry

Sent

Process states
(provider side)

Payment
Received

D
el

iv
er

 it
em

 to
 re

qu
es

te
rRequest

Rejection
Sent to

Requester

Unstable
interaction
states

Internal stable
states

Provider accepts request
Provider rejects request

Provider
confirms

cancellation
Requester’s
confirmation

Requester
cancels
requestProvider

prepares
delivery

Requester
cancels
request

Receive
payment

Delivery confirmation
Requester enquires

delivery

Payment enquiryPayment timer’s
event

D
el

iv
er

 it
em

 to
 c

us
to

m
er

Provider
rejects
request

Fig. 2. State flow on the provider side

In order to streamline the overall VO process and to assure its validity as well as

the validity of the private processes of each partner, these interaction points need to be

defined and coordinated. Coupling the corresponding interaction states of Figures 1

and 2 yields the states specified in Figure 3, which are the shared states of the

requester and the provider.

BPMDS'06 191

Request
Accepted

Provider
accepts
request

Requester
Sends
payment

Payment
done

Item
received by
requester

Requester
Confirms

Item
Receiving

item
delivered to
customer

Provider
confirms
Delivery
to home

Provider
delivers
Item to

requester

Provider
confirms
payment

Provider
enquires
payment

requester
enquires
delivery

provider
confirms
request

receiving

Requester
Sends
request

requester
confirms
payment

Provider
confirms
delivery

Payment
enquiry

Delivery
enquiry

Request
Sent to
provider

Requester
Confirms

Item
Receiving

Supplier side

Requester sideSupplier side

Provider
Confirms

cancellation

Provider
rejects
request

Requester
cancels
request

Request
rejected

In
te

r-
o

rg
a
n

iz
a

tio
n

 m
e

ss
a

g
e
 f

lo
w

s

Provider
Confirms

cancellation

Requester
cancels
request

Request
cancelled

PROVIDER BUSINESS PROCESS

REQUESTER BUSINESS PROCESS

Fig.

3. Shared view of the VO process

These states are shared in the sense that they are visible to both parties, whereas

internal states are not viewed from outside the organizational domain. Each shared

state is brought about by the action of one party and triggers action of (at least) the

other party. Note that in general these states may also be a result of an event which is

external to the VO (e.g., time). Figure 3 also specifies the events fired by each party

in relation to each state. The events can be viewed as messages passing between the

parties.

In order to streamline the VO process:

(a) These states should be defined in terms of state variable values.

(b) Constraints on Quality of Service (QoS) parameters can be defined and

agreed upon (e.g., time to delivery).

(c) The parties should make an obligation to take the required actions in order to

achieve the defined states.

Each one of these shall be discussed below.

Shared state definition

The specification of the shared states is intended to define the state variables that

are known to both parties and their required values. In fact, it sets the format of the

message to be passed between the parties. For example, the shared state of Request
sent to provider is specified by the following state variables: Request status whose

value is “sent to tentative provider”, state variables holding the provider details and

the details of the request, which are Order ID, Order issuing time, Item details,

Customer details, Required delivery options, and a state variable indicating the status

of the Request response timer, which is initiated once the order is sent. The values of

192 Business Process Modeling, Development, and Support

these state variables are set by the requester. This definition includes all the

information needed for the provider to process the request and respond to it. The

provider is expected to respond by changing the value of the Request status state

variable (to “rejected” or “accepted”).

A complete definition and agreement of both parties regarding the shared states is

necessary in order to facilitate the collaboration between the organizations. Consider,

for example, a situation where the request is for a soft-copy of an item to be sent by

email, but the provider’s process does not consider the Required delivery options state

variable, and is capable only of sending hard copies. Including this state variable in

the shared state definition and specifying its possible values should be a result of the

negotiation between the parties during the VO formation.

Constraints on Quality of Service parameters

While the above discussed definition of the shared states is necessary for achieving

the goal of the overall process (and of the internal processes of the parties), it is not

enough for this process to achieve a desired quality of service. QoS relates to state

variables which can indicate the desirability of different states where the process has

achieved its goal. For example, consider two possible states where the customer has

confirmed receiving the item, namely the process has reached its goal. However, one

state is where the customer has received the item within two days, and the other is

where it took a month for the item to arrive.

Setting constraints on the QoS of the entire process constrains the values of

specific state variables in the internal processes of the parties. These constraints

should be negotiated and agreed upon. As well, the definition of the shared states

should include state variables which are relevant for these constraints.

In the ILL case study, the main QoS parameter identified is order processing time.

Hence, an upper threshold, Max order processing time, was defined, depending on

possible service levels offered to the customers. As a result, constraints were defined

with respect to time taken for specific parts of the process. In particular, these

constraints relate to phases where one party is in a stable “waiting” state while the

other party is active. Furthermore, both parties share the overall constraint on the

order processing time.

Note that in this case no penalty was set for not meeting the constraint. However, it

is possible to define such penalty as part of the shared state definition.

Table 1 specifies the shared states of Figure 3, including QoS constraints and their

related state variables. The table specifies the relevant state variables, their required

values, the party responsible for achieving them, the party triggered to action as a

result, and QoS constraints (where T1 – T5 are defined time thresholds). Note that the

last two states (Item received by requester and Item delivered to customer) are

identical in their shared definition, but different in the internal state variables of the

requester, whose expected action in response to each state is different.

Obligations
The overall VO process, spanning at least two parties, is not centrally mandated,

nor can it be entirely viewed by a single party. The partner organizations of the VO

should commit themselves to their required parts of the process in order to establish

BPMDS'06 193

the necessary trust among the partners, so a commitment to an end-customer can be

made. Once negotiation and shared state definitions are completed, including

agreement on QoS constraints, the partners should make an obligation to these states.

Table 1: Shared states definition

State State definition Achieving

party

Affected

party

Expected action of

affected party

QoS constraints

Request

sent to

provider

Request status =sent to

tentative provider;

Provider details;

Request details (order ID,

Order issuing time, customer

details, delivery options);

Required service level (Max

order processing time, item

quality);

Request response Timer=

Initiated;

Requester Provider

Accept or reject

request

Provider’s response

must be made within

T1 time;

Order Processing

elapsed time < Max

order processing time

Request

rejected

Request status = rejected Provider Requester Requester sends

request

cancellation

Request

canceled

Request status = canceled Requester Provider Cancel delivery

plans; End of

interaction

Request

accepted

Request status = accepted;

Payment waiting timer=

initiated;

Order processing elapsed

time= updated

Provider Requester

, provider

Requester –

payment;

provider – delivery

plans

Requester must pay

within T2 time;

Order Processing

elapsed time < Max

order processing time

Payment

done

Payment status = completed;

Delivery waiting timer=

initiated

Order processing elapsed

time= updated

Requester Provider Execute delivery Provider must deliver

the item within T3

time;

Order Processing

elapsed time < Max

order processing time

Payment

enquiry

Payment status= enquiry;

Payment waiting Timer=

initiated;

Provider Requester Payment Requester must pay

within T4 time;

Order Processing

elapsed time < Max

order processing time

Delivery

enquiry

Delivery status= enquiry;

Delivery waiting Timer=

initiated;

Order processing elapsed

time updated

Requester Provider Execute delivery Provider must deliver

the item within T5

time;

Order Processing

elapsed time < Max

order processing time

Item

received by

requester

Request status = delivered;

Order processing elapsed

time updated;

Provider Requester Delivery

confirmation

Order Processing

elapsed time < Max

order processing time

Item

delivered to

customer

Request status = delivered;

Order processing elapsed

time updated;

Provider Requester Customer receipt

confirmation

Order Processing

elapsed time < Max

order processing time

In GPM terms, an obligation means that the law operating in each private

organizational domain is designed to achieve the agreed upon states. Based on the

194 Business Process Modeling, Development, and Support

obligations made, although an observer cannot see the details of the entire end-to-end

VO process, he has some information about it, which reduces uncertainty. An

observer knows the entire process is designed so that certain events will take place,

complying with certain constraints, leading to the obliged shared states, and

eventually to the goal of the process. This is in spite of the fact that the internal

process of each partner is completely private, and independently of the means by

which the obligation is made (e.g., contract, human agreement).

4 Discussion

The proposed model, as demonstrated through the ILL case study, provides a

minimal definition that facilitates the operation of a VO business process. At the same

time it allows maximal privacy and flexibility in the internal processes of the

participating organizations.

The literature dealing with inter-organizational business processes addresses both

infrastructure and process models. Infrastructures, such as XRL/flower [2], may

support flexibility and autonomy of the participating organizations. However, a

specific process model should be designed and operated on top of the infrastructure,

and constraints may be formed through this design. Comparing our model to other

models proposed for inter-organizational processes in general and VO processes in

particular, most of these models impose stricter constraints on the internal processes

of the participants.

[11][12][13][21] address legal contracts between parties (organizations), and show

how a detailed workflow can be derived from a contract. They also provide rules for

matching the contract-based workflow with the existing organizational business

processes. The contract-based workflow relates to the entire process, thus it allows no

flexibility to a single organization for changing the process or deviating from it in

specific cases.

In [14] privacy of organizational processes is maintained at run time, limiting the

visibility of the internal process. However, the entire workflow has to be defined at

build time, when a contract between the parties is established. Being contractually

obligated to the workflow model, the flexibility of the parties is limited.

In [10], the contract specifies the internal process of the “service provider” party

and required interface between the organizations, and allows limited visibility of the

provider process. Here the process flexibility is reduced only for the “provider” party,

and not for the other side.

The PRODNET project [5] is aimed at facilitating autonomy and heterogeneity of

the organizations. However, their solution is based on a central mandating and

coordinating party, to whom all parties must report. This requirement forms a

limitation on the privacy and autonomy of the participants.

A model that facilitates the autonomy of partners through workflow views and

inheritance is proposed by [1]. This model allows a relatively high level of flexibility

to the partners. However, our model, unlike [1], addresses QoS parameters and

constraints as well as the process flow.

BPMDS'06 195

Autonomy of the partners is also facilitated by the ebXML BPSS model [7].

However, this model is more detailed and less generic than ours. Its evaluation on the

basis of Bunge’s ontology [9] indicates a lack of ontological completeness as well as

clarity, which may lead to modeling and interpretation difficulties. Specifically, the

identified construct redundancy may imply that some ebXML BPSS constructs can be

generalized and yield a more concise and clear model. The over-specification of

ebXML can also be viewed as being rigid. For example, specific QoS parameters are

part of the model, while there is no construct that allows the inclusion of others.

Clearly, when more constraints are imposed by the inter-organizational process,

less flexibility can exist in the internal processes of an organization [18]. This rigidity

applies to both process types and process instances [15]. The rigidity of the process

type relates to (a) process design, when a new process type is designed in

collaboration with the other parties; (b) the transformation of an existing process to an

inter-organizational one, which requires matching the process details with the agreed-

upon process [21]; and (c) modifications made to an existing process type, which

must be coordinated with the other partners. The rigidity of the process instances is a

result of the lack of freedom to deviate from the agreed upon process in exceptional

situations, besides predefined agreed-upon exceptions.

Our model, in contrast, allows a partner organization to design and modify its

internal process type and to deviate in specific instances, as long as the obligation to

the shared states is kept. Within the boundaries of the obligations, any kind of change

is possible, relating to all possible subjects (perspectives [15]) and having different

properties (e.g., extent, duration [15]).

5 Conclusion

Flexibility, among many other benefits, is frequently associated with the formation

of a virtual organization. However, shared inter-organizational processes may impose

constraints on the internal processes of an organization and reduce their flexibility.

The case study presented in the paper demonstrates a minimal definition of a VO

collaboration. It facilitates the achievement of the VO process goal, while allowing

maximal flexibility in the partner’s internal processes. We show that a process

definition is possible despite the complete privacy and autonomy of the partner

processes.

The underlying model to our approach is GPM, whose formality enables a precise

definition of the terms involved, and process analysis possibilities.

Future research will address the implications of our models in terms of possible

implementation solutions and systems supporting inter-organizational processes.

References

[1] Aalst, W. M. P, van der. and Weske, M., 2001, The P2P Approach to Inter-

organizational Workflows, Proceedings of CAiSE’01 (LNCS 2068), Springer-Verlag

Berlin p. 140-156

196 Business Process Modeling, Development, and Support

[2] Aalst, W. M. P, van der. And Kumar, A., 2003, XML-Based Schema Definition for

Support of Interorganizational Workflow, Information Systems Research 14(1), p. 23-

46.
[3] Bunge, M.., 1977, Treatise on Basic Philosophy: Volume 3: Ontology 1: The furniture

of the world. Reidel, Boston.

[4] Bunge. M., 1979, Treatise on Basic Philosophy: Vol. 4, Ontology II: A World of
Systems, Reidel, Boston.

[5] Camarinha-Matos, L.M; Afsarmanesh, H. (Ed.s),1999, Infrastructures for virtual
enterprises –Networking industrial enterprises, Kluwer Academic Publishers.

[6] Chesbrough, H.W., and Teece, D.J., 1996, When is virtual virtuous? Organizing for

innovation, Harvard Business Review, 74(1), p. 65-73.

[7] EbXML BPSS specification, www.ebXML.org, Feb. 2006.

[8] Ghattas, J., 2006, Business Processes in Virtual organizations: an Ontology-Based

Conceptual Model, MA Thesis, University of Haifa

[9] Green, P. F., Rosemann, M. and Indulska, M., 2005, Ontological Evaluation of

Enterprise Systems Interoperability Using ebXML, IEEE Transactions on Knowledge
and Data Engineering 17(5), p. 713-725.

[10] Grefen P., Abere K., Hoffner Y. And Ludwig H., 2000, CrossFlow: Cross-

Organizational Workflow Management in Dynamic Virtual Enterprises, International
Journal of Computer Systems Science & Engineering, 15 (5), p. 277-290

[11] Kabilan V. and Johannesson P., 2003, Semantic Representation of Contract

Knowledge using Multi Tier Ontology, Proceedings of Semantic Web and Databases
Workshop, (SWDB 2003)

[12] Kabilan V., Johannesson P. and Rugaimukammu, D., 2003, Business Contract

Obligation Monitoring through Use of Multi-tier contract ontology, Proceedings of

Workshop on Regulatory Ontologies (Worm Core 2003), Italy, (LNCS 2889),

Springer-Verlag, Berlin

[13] Kabilan V., 2005, Contract Workflow Model Patterns Using BPMN, EMMSAD’05,

Proceedings of CAiSE’05 workshops Vol. 1, Porto, Portugal, p. 557-568.

[14] Kafeza E., Chiu D. K.W. and Kafeza I., 2001, View-Based Contracts in an E-Service

Cross-Organizational Workflow Environment, Proceedings of TES 2001 (LNCS

2193), Springer-Verlag, Berlin, p. 74-88.

[15] Regev G., Soffer P. and Schmidt R., 2006, Taxonomy of Flexibility in Business

Processes, http://lamswww.epfl.ch/conference/bpmds06/taxbpflex.

[16] Soffer P. and Wand Y., 2004, Goal-driven Analysis of Process Model Validity,

Advanced Information Systems Engineering (CAiSE’04) (LNCS 3084), p. 521-535

[17] Soffer, P., and Wand, Y., On the Notion of Soft Goals in Business Process Modeling,

Business Process Management Journal 11(6), p. 663-679.

[18] Soffer, P., 2005, On the Notion of Flexibility in Business Processes, Proceedings of
the CAiSE’05 Workshops, p. 35 – 42.

[19] Wand, Y. and. Weber, R , 1990, An Ontological Model of an Information System,

IEEE Transactions on Software Engineering, Vol. 16, No. 11, pp. 1282-1292.

[20] Wand Y, and Weber R, 1993, On the ontological expressiveness of information

systems analysis and design grammars. J. Inform. Syst. 1993;3:217–237

[21] Zdravkovic J. and Kabilan V., 2005, Enabling Business Process Interoperability

Using Contract Workflow Models, On the Move to Meaningful Internet Systems

2005: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences,

Cyprus (LNCS 3760) Springer-Verlag, Berlin, p. 77-93.

BPMDS'06 197

