
Controlling the level of business process instance

flexibility via rules of planning

Ilia Bider, Alexey Striy

IbisSoft, Box 19567, SE-10432 Stockholm, Sweden

ilia@ibissoft.se, a_streey@yahoo.co.uk

Abstract. When an organization decides on the level of flexibility in handling

business process instances, it needs to impose this level in operational practice.

The way of imposing a given level of flexibility depends on the means

employed for controlling business processes. When a Business Process Support

(BPS) system is used, the flexibility limits can be incorporated in it. The paper

discusses how a given level of flexibility can be imposed by a BPS system built

based on the state oriented view on business processes. This is done by

combining different kinds of rules of planning: obligations, prohibitions,

recommendations, and negative recommendations. Changing the status of a rule

from obligation to recommendation, or from prohibition to negative

recommendation gives more flexibility, and vice versa. The discussion is

illustrated with the help of a simplified example already implemented in a BPS

system called Probis.

1 Introduction

The level of flexibility when handling business process instances is decided based on

the business environment, external, and internal, in which an organization functions.

However, when the level is decided upon, it needs to be institutionalized so that

everybody knows the limits of flexibility and follows them. The way of the

institutionalization depends on how business processes are controlled in the given

organization. In case of manual control, the institutionalization is done via rules

included in manuals, employees books, etc. In case there is a computer based

Business Process Support (BPS) system, limits of flexibility can be incorporated in

the system, which will help the users to follow the rules without consulting manuals

each time they need to deviate from a usual pattern.

The way of incorporating flexibility limits, certainly, depends on what principles a

given BPS system has been built. We differentiate four different views on business

processes that can be used when building a BPS system [1], namely: (1) input/output

flow, (2) workflow, (3) agent related view, and (4) state flow. In this paper, we

discuss how a desired level of flexibility can be introduced in a system built based

upon the state-oriented view (state flow) [3,4]. As the underlying conceptual models

for different views differs, we do not expect that the findings of this paper can be

easily applied to the systems built based on other views. More probably, they will not

be applicable or will need substantial modification. However, the task of proving or

disproving this hypothesis is not included in the research reported in this paper.

BPMDS'06 127

Due to the lack of space, we do not discuss the topic of how flexibility control can

be introduce in BPS built on other views on business processes. We concentrate

solely on the systems built on the state-oriented view. In such a system, control over

process instances is realized via so called rules of planning. As was suggested in [2],

the natural way of introducing flexibility in these circumstances is by introducing

several kinds of rules. In the work reported in this paper, we ensure various levels of

flexibility through differentiating four types of rules, which is one more than in [2]:

1. Obligations

2. Recommendations

3. Prohibitions

4. Negative recommendations

By combining rules of different types, we can obtain various levels of flexibility. For

example, “obligation + prohibition to do otherwise” constitutes a strict rule which

does not allow any flexibility, while “recommendation + negative recommendation

not to do otherwise”, allows full flexibility.

From the taxonomy of flexibility point of view [4], the material discussed in this

paper can be positioned as follows: Abstract level of change = Instance, Subject of
change = Operational perspective.

From a broader perspective, our rules of planning represent a kind of business rules

(BR). The literature on BR and its application to software design is vast, see for

example [5], and its list of references. Nevertheless, we found no theoretical, or

practically oriented papers that suggested an approach that could be applied to rules of

planning. A search to find an approach to formalize the idea of recommendation gave

even less promising results. We were, more or less, forced to work out our own

approach to dealing with rules of planning in general, and with recommendations in

particular. In this paper we do not discuss the existing BR literature, neither do we

present our approach in a general form. Instead, we concentrate on explaining the

ideas using an example.

Though the example we use may seem a bit artificial, we consider it quite

representative for the problems we face when defining flexible rules of planning. It

was chosen due to its simplicity, as it allows explaining the main ideas in a paper of

limited size. The paper is written according to the following plan. In section 2, we

shortly review the main ideas of the state oriented view on business processes. In

section 3, we show how various level of flexibility can be achieved via different kinds

of rules of planning. In section 4, we shortly review current implementation of such

rules in a BPS system. Section 5 contains concluding remarks and plans for the future.

2 State oriented view on business processes

The main concept of the state-oriented view on business processes is the process’s

state [2,3]. The process’s state is aimed to show how much has been done to achieve

the operational goal of the process instance, and how much is still to be done. A state

of a process is represented by a complex structure that includes attributes, and

references to various active and passive participants of the process, such as process

128 Business Process Modeling, Development, and Support

owner, documents, etc, see Fig. 1 for en example. A state of a given process instance

does not show what activities have been executed to reach it, it only shows the results

achieved so far.

A goal of a business process can be defined as a set of conditions that must be

fulfilled before a process instance can be considered as finished. A process state that

satisfies these conditions is called final state of the process.

The process is driven forward through activities executed either automatically or

with a human assistance. An activity can be viewed as an action aimed at changing

the process state in a special way. Activities can be planned first and executed later. A

planned activity records such information as type of action (goods shipment,

compiling a program, sending a letter), planned date and time, deadline, name of a

person responsible for an action, etc.

All activities currently planned for a process instance make up its operational plan

or to-do list, see Fig. 2 for en example. The plan lists activities the execution of which

diminishes the distance between the current state of the process instance and the

nearest final state.

The plan together with the “passive” state (attributes and references) constitutes a

so called generalized state of the process, the plan being an “active” part of it. When

an activity is executed, a process changes its generalized state. Changes may concern

the passive and/or active parts of the state. At the minimum, the executed activity

disappears from the plan. In addition, changes are introduced in attributes and

references and/or new activities are planned to drive the process forward.

With regards to the generalized state, the notion of a valid state can be defined in

addition to the notion of final state. To be valid, the generalized state should include

all activities required for moving the process to the next stipulated state. A business

process type can be defined as a set of valid generalized states. This definition can be

converted into an operational procedure called rules of planning. The rules specify

what activities could/should be added to an invalid generalized state to make it valid.

Using these rules, the process instance is driven forward in the following manner.

First, an activity from the operative plan is executed and the state of the process is

changed. Then, an operative plan is corrected to make the generalized state valid.

3 Defining flexibility in terms of rules of planning

The main ideas of our approach are demonstrated and explained on an example of a

process of organizing a meeting. The state of such process can be represented as a

screen capture in Fig. 1. Each meeting has a number of so called core participants (see

“meeting participants” in Fig. 1), meeting date and place. Fig. 2 represents the list of

activities currently planned for the meeting process from Fig. 1. In this list, each core

participant has an activity Meeting planned for him/her that indicates that he/she

should attend a meeting at the specified date and time. The list on Fig. 2 represents

the “normal” correspondence between the sate and the plan. Below we consider

several scenarios that ensure that such correspondence is imposed strictly or with

some deviations allowed.

BPMDS'06 129

Scenario 1 - Strict regulation. Core participants must attend, and only them are

allowed to attend. This scenario can be described by a combination of obligations and

prohibitions as follows:

• Obligation. If a person belongs to the core participants, there should be an activity

“Meeting” assigned to him/her in the plan.

• Obligation. Date and time of a Meeting activity must be the same as prescribed by

the process state.

• Prohibition: A Meeting activity is allowed to be in the plan only if it is assigned to

a core participant.

• Prohibition: Only one Meeting activity per person is allowed in the plan.

The rules are applied in the following manner. If a person is added to the participants

list, a new Meeting activity assigned to him/her is automatically added to the plan. If

this activity is later manually deleted, it will appear once more. If a person is deleted

from the participants list, his/her Meeting activity is also deleted. If a Meeting activity

is manually added to the plan and assigned to a person who currently is not on the

participants list, the activity will be deleted. In addition, date and time parameters are

always corrected to the actual date and time from the process state. Multiple Meeting
assignments to the same person are reduced to one.

Figure 1. State of the meeting process

130 Business Process Modeling, Development, and Support

Figure 2. Activities planned in the frame of the process instance

Note. Application of the rules described above is based on the following assumption.

The user is allowed to manipulate the process plan freely. It means that he is

permitted to add or delete any activities he wants. Rules of planning are applied

immediately after he finishes his/her job, and presses the Save button. The application

of rules could be maid more sophisticated, so that a user is not allowed to delete a

mandatory activity (task). However, this is not always possible. For example, if a

mandatory planning includes two alternative activities, you need to allow the user to

delete the existing one first in order to insert the alternative. The Save button solution

adapted in this work allows us to treat all planning rules in the same, though

simplified fashion. More details see in the next session.

Scenario 2 – Guests allowed. Core participants must attend but guests are allowed.

This scenario can be described by a combination of obligations, negative

recommendations, and prohibitions as follows:

• Obligation. If a person belongs to the core participants, there should be an activity

Meeting assigned to him/her in the plan.

• Obligation. Date and time of a Meeting activity must be the same as prescribed by

the process state.

• Negative recommendation: A Meeting activity is not recommended to be in the

plan if it is assigned to a person who is not a core participant.

• Prohibition: Only one Meeting activity per person is allowed in the plan.

BPMDS'06 131

The rules are applied in the following manner. If a person is added to the participants

list, a new Meeting activity assigned to him/her is automatically added to the plan. If

this activity is later manually deleted, it will appear once more. If a person is deleted

from the participants list, his/her Meeting activity is also deleted (negative

recommendation). If a Meeting activity is manually added to the plan and assigned to

a person not on the participants list, the activity will stay in the list. In addition, date

and time parameters are always corrected to the actual date and time from the process

state. Multiple Meeting assignments to the same person are reduced to one.

Scenario 3 – Permission to skip, but no guests. Core participants are recommended

to attend, and only them are allowed to attend. This scenario can be described by a

combination of recommendations, obligations and prohibitions as follows:

• Recommendation. If a person belongs to the core participants, it is recommended to

have an activity Meeting assigned to him/her in the plan.

• Obligation. Date and time of a Meeting activity must be the same as prescribed by

the process state.

• Prohibition: A Meeting activity is allowed to be in the plan only if it is assigned to

a core participant.

• Prohibition: Only one Meeting activity per person is allowed in the plan.

The rules are applied in the following manner. If a person is added to the participants

list, a new Meeting activity assigned to him is automatically added to the plan

(recommendation). If this activity is later manually deleted, it won’t appear once

more. If a person is deleted from the participants list, his/her Meeting activity is also

deleted. If a Meeting activity is manually added to the plan and assigned to a person

not on the participants list, the activity will be deleted. In addition, date and time

parameters are always corrected to the actual date and time from the process state.

Multiple Meeting assignments to the same person are reduced to one.

Scenario 4 – Full flexibility. Core participants are recommended to attend, and

guests are allowed. This scenario can be described by a combination of

recommendations, negative recommendations, obligations and prohibitions as

follows:

• Recommendation. If a person belongs to the core participants, it is recommended to

have an activity Meeting assigned to him/her in the plan.

• Obligation. Date and time of a Meeting activity must be the same as prescribed by

the process state.

• Negative recommendation: A Meeting activity is not recommended to be in the

plan if it is assigned to a person who is not a core participant.

• Prohibition: Only one Meeting activity per person is allowed in the plan.

The rules are applied in the following manner. If a person is added to the participants

list, a new Meeting activity assigned to him is automatically added to the plan

(recommendation). If this activity is later manually deleted, it won’t appear once

more. If a person is deleted from the participants list, his/her Meeting activity is also

deleted (negative recommendation). If a Meeting activity is manually added to the

plan and assigned to a person not on the participants list, the activity will stay in the

list. In addition, date and time parameters are always corrected to the actual date and

132 Business Process Modeling, Development, and Support

time from the process state. Multiple Meeting assignments to the same person are

reduced to one.

As we can see from the above scenarios, flexibility can be achieved by substituting

an obligation to recommendation, or prohibition to negative recommendation. The

difference between obligation and recommendation, and prohibition and negative
recommendation shows itself only when planning is done manually, i.e., not through

changes in the process state (core participants list in our example). An obligation does

not allow manual removing of activities, while a recommendation does allow it. In the

same way, a prohibition will remove manually added activities, while a negative

recommendation will allow them to stay.

4 Implementation in ProBis

The approach to handling flexibility through rules of planning has been implemented

in a BPS system called ProBis [6]. The planning system consists of a set of

independent rules. Each rule is manually coded, but its inclusion in the system is done

via an invocation table stored in the database. Rules can be added/deleted

activated/deactivated via a special system administrator screen.

In ProBis, a process state is represented by a tree structure, the tree relevant to the

example from the previous section being shown in Fig. 3. In this structure, the process

itself is represented as a root node, whereas child nodes represent various elements

included in the definition of the process state, like meeting participants, planned

activities etc. Each node, root, as well as child, has a set of attributes assigned to it.

Figure 3. Process tree structure

Associated rules: 1a, 1b

Associated rules: 2a, 2b, 3, 4

Meeting status

Agenda

Name

etc.

Deadline date

Process

Meeting

participant

Planned

activity

Attributes

Meeting date

etc.

Attributes

Status

Attributes

Action

Start date

etc.

Comments

BPMDS'06 133

Each individual rule in the invocation table is associated with a node in the process

tree. A rule may be supplied with a condition on attribute values of the node with

which it is associated, or the upper nodes. A condition can take into account current

values of attributes as well as information about changes. If a condition is supplied,

the rule is applied only if the condition yields true for a given process instance.

Application of rules of planning is governed by a so-called session principle. A

session is started when a user presses the Edit button (see Fig. 1), or chooses an

activity in the plan for execution. The session ends when the user presses the Save

button; then all changes made on the screen are introduced in the database. Rules are

applied after the Save button has been pressed, but before the changes are introduced

in the process state stored in the database. Thus, the rules of planning can be

considered as a kind of ECA rules, where ECA stands for Event-Condition-Action. In

our case, pressing the Save button serves as an event trigger.
The process tree is traversed in the top down left to right manner starting from the

root. Rules associated with each node are applied in an order defined in the invocation

table: a rule can be executed either before traversing the sub-tree attached to the given

node, or after traversing.

A rule associate with a node other than planned activity can only add new activities

to the list, while a rule associated with a planned activity node can delete an activity

being traversed or change the values of its attributes. Rules of the first kind implement

obligations and recommendations, while rules of the second kind implement

prohibitions and negative recommendations. Rules of the second kind are applied last.

Rules that cover the examples from the previous section are defined in Table 1.

Assignment of these rules to the nodes of the process tree is shown on Fig 3.

Table 1. Rules for examples in Section 3

Condition Action

A person is a core participant and

there is no activity Meeting assigned to

him/her in the plan.

Obligation: No additional conditions.

1

a)

b) Recommendation: and this person

appeared on the participant list in the

current session, i.e. he/she was not on

the list before the session was started.

Add a new activity Meeting to the plan.

Assign it to the person in question.

Make Start and Finish of the activity

(see Fig. 2) equal to Meeting date and
time, and Meeting duration till from the

current process state (see Fig. 1).

An activity Meeting is assigned to a

person who is not on the participant

list.

Prohibition: No additional conditions.

2

a)

Negative recommendation: and this

person was on the participants list

before the current session was started,

i.e. he/she disappeared from the list in

the current session .

Delete the activity.

134 Business Process Modeling, Development, and Support

Condition Action

3 A Meeting activity assigned to a

person X is in the plan (see Fig. 2),

and there exist other activities of type

Meeting that are also assigned to X.

Delete the activity.

4 A meeting activity has Start not equal

to Meeting date and time or Finish is

not equal to Meeting duration till (see

Fig. 1 and 2).

Make Start and Finish of the activity

equal to Meeting date and time, and

Meeting duration till from the current

process state.

Each scenario from Section 3 is governed by its own set of rules, namely:

• Scenario 1 — 1a, 2a, 3, 4

• Scenario 2 — 1a, 2b, 3, 4

• Scenario 3 — 1b, 2a, 3, 4

• Scenario 4 — 1b, 2b, 3, 4

The process tree is traversed in the following manner, see Fig. 3 for illustration. First,

the rules attached to the root are invoked, we do not have any in our examples. Then,

the rules attached to node Meeting Participant (1a or 1b) are invoked for each core

participant. And lastly, the rules attached to node Planned activity (2a or 2b, 3 and 4)
are invoked for each activity on the to-do list.

Note that the conditions for rules 1a (obligation) and 1b (recommendation) are

almost identical. The only difference is that in rule 1b, there is an additional condition

on the previous state of the process. The same is true in respects to rules 2a, 2b.

As was mentioned in the beginning of this section, currently, each rule is coded

manually in a low level programming language. For this end, we use the ProBis

development environment that permits programming in C and JPL. The latter is a

proprietary interpretative language included in the Panther development platform

from Prolifics Inc.

5 Conclusion

We started with the task of finding a way of controlling process instance flexibility

via a business process support (BPS) system. We narrowed down our task to consider

only BPS systems built upon the state-oriented view on business processes. Flexibility

control in this case should be incorporated in the rules of planning that are the primary

mechanism of process control. Through a set of scenarios, we showed that flexibility

of business process instances could be controlled through changing the status of rules

of planning. Changing from an obligation to recommendation, or from a prohibition

to negative recommendation yields more flexibility, while reversing from a

recommendation to obligation/prohibition yields less flexibility.

As we mentioned in the introduction, the literature search gave us no results as far

as formalization of rules of planning is concerned, especially for recommendations.

Thus, we need to work out our own approach to this task, which is one of our research

BPMDS'06 135

directions at present. Though we have not discussed our general approach in this

paper, some ideas of it can be derived from the practical implementation discussed in

Section 4. In this section, we showed that as far as planning rules are concerned the

difference between a recommendation and obligation, and between prohibition and

negative recommendation can be defined as an extra condition added to the

recommendation, or negative recommendation. This condition adds a temporal aspect

to the rule, as it checks whether the main condition was true before the last

modification or not. As far as we know, such way of formalizing recommendations is

new, and it has not been described in the literature before.

As we succeeded in implementing rules of planning in a real BPS system,

suggested approach deserves to be considered as a practically feasible alternative for

imposing a predefined level of flexibility into operational practice. Rules of planning

discussed in the paper will be included in the production version of ProBis in the

nearest future.

Acknowledgements: Writing of this paper was supported by the Swedish Agency for

Innovation Systems (Vinnova) under the grant for a project on “Integration Business

Process Support with Knowledge Management”.

References

1. Bider, I. “Choosing Approach to Business Process Modeling. Practical Perspective”. Journal
of Conceptual Modeling, Issue 34, January 2005.

 http://www.inconcept.com/jcm/January2005/IBider.html

2. Khomyakov, M., and Bider, I., “Achieving Workflow Flexibility through Taming the

Chaos.” In OOIS 2000 - 6th international conference on object oriented information

systems, pp. 85-92, Springer, 2000.

3. Bider, I., State-oriented business process modeling: principles, theory and practice. PhD

thesis, KTH (Royal Institute of Technology), Stockholm, 2002.

4. Regev G., Soffer P., Schmidt R. Taxonomy of Flexibility in Business Processes.

http://lamswww.epfl.ch/conference/bpmds06/taxbpflex

5. Wan-Kadir W.M.N., Loucopoulos P. “Relating evolving business rules to software design”.

Journal of Systems Architecture 50 (2004), pp. 367–382.

6. Andersson T., Bider I., Svensson R., “Alignig people to business processes. Experience

report.” Software Process: Improvement and Practice (SPIP), V10(4), 2005. pp.403-413.

136 Business Process Modeling, Development, and Support

