800 Regulations Modelling and their Validation and Verification

Validation of Regulation Documents by
Automated Analysis of Formal Models*

Didier Bert!, Fabrice Bouquet?, Yves Ledru', and Sylvie Vignes®

! LSR-IMAG, Grenoble, France
2 LIFC, Besancon, France
3 GET/ENST, Département Informatique et Réseaux, Paris, France

Abstract. The security of civil aviation is regulated by a series of inter-
national standards and recommended practices. The EDEMOI project
aims at investigating different techniques to analyse these standards. In
this paper, we address two automated analysis techniques. First state-
transition diagrams are extracted to visualize the nominal behavior of
the involved actors. Then, models are lightly altered, and test scenarios
are generated to determine how security measures could be breaked.
Keywords. Civil aviation standards, security, modelling, formal meth-
ods, test generation.

1 Introduction

The security of civil aviation is regulated by a series of international standards
and recommended practices. The main reference is Annex 17 to the Convention
on International Civil Aviation [1]. The EDEMOI project [6] aims to provide
different techniques to analyse these standards and to develop tools to study
the consistency of regulation documents. Standards are written in English and
it is not easy to ensure that some parts of the document are not in conflict with
other parts or, more commonly, that some cases are not forgotten in particular
situations. Moreover, the documents are updated frequently, and it is necessary
to verify that the security level of a version is not lowered in the next version.

However, it is difficult to automatically validate these documents. So, the
approach of the EDEMOI project is to represent regulation documents by several
models which are closely related. Among them, formal models are useful to
make standards more precise and to analyse them by means of tools issued from
software engineering methods.

In this paper, we present two complementary automated techniques applied
to the formal models. First, we consider state-transition diagrams that can be ex-
tracted from the models to visualize the nominal behavior of the involved actors.
Then, models are lightly altered, and test scenarios leading to an inconsistent
state are generated. They help to determine how erroneous and potentially dan-
gerous scenarios can occur. Section 2 gives an overview of the context of the

* This work was done in the EDEMOI project of program “ACI : Sécurité Informa-
tique” supported by the French Ministry of Research and New Technologies.

REMO2V'06 801

project. Section 3 shows how state-transition diagrams (statecharts) are built.
Section 4 indicates how scenarios are generated by using testing techniques.

2 Context of the EDEMOI project

The project is dedicated to the investigation of regulation about airport security.
The airport is the place where passengers and their baggage are controlled before
boarding an aircraft. Preventing dangerous objects from being brought on board
an aircraft is a significant step to prevent acts of unlawful interference during
a flight. The main general document (Annex 17 [1]) must be followed by all
countries that are members of the International Civil Aviation Organization
(ICAO).

In the litterature, regulation modelling has not attracted much attention from
the computer science research community. We have developed a requirement
engineering (RE) method by extending or adapting existing RE methods. Indeed,
our goal is not the development and production of software: it is to exhibit
the security requirements described in the standards in order to specify the
whole system and to check that the specification meets these requirements by
using formal proofs. A goal-oriented requirements method such as KAOS [5] is
the most appropriate. The main goal is the security of the flights. It can be
decomposed into several subgoals (with respect to the airport security) such as:
no dangerous object is in cabin, no dangerous object is in hold. Again, to prevent
dangerous objects for being in cabin, other subgoals must be satisfied: screening
of passengers and cabin baggages, no contact between screened passengers and
non-screened, and so on. Once these relationships on security properties are
established, the process consists in modelling situations and actors of an airport,
where the subgoals are brought into play: registration desk, screening check-
point, boarding-room, passenger boarding, etc. In all these situations, the model
must describe which “events” can occur, and under which conditions the security
levels are respected.

We have used UML diagrams as the representational schema for our product
models (requirements and system models). Although these diagrams do not con-
vey all the details of Annex 17, they help in structuring the models and, above
all, provide a support for the discussion with certification authorities and for fur-
ther validation of the models. The requirement engineering process of EDEMOI
has been explained and detailed in [8]. It is pictured in Fig. 1.

The second element of modelling relies upon formal models. In the considered
part of the project, formal models are written in B [2], a method dedicated to
software development of critical software. Formal specifications provide tools to
check the consistency of models. They can also be used as a starting point for
animating specifications [4], for the generation of state transition diagrams [3]
and for a test generation process [9].

As it is recognized, formal methods and their associated mathematical lan-
guage are difficult to understand. So, in the EDEMOI approach, graphical and

802 Regulations Modelling and their Validation and Verification

‘_ Certification
Authority

.
es
produces,

A - .
. N reads and validates

. N
. N
N a
International fuman Graphical systematic Formal
Standard translation Model translation Model
L = L . =
-~ <
~ o ~ ’
reads T~ ~< produces ¢ produces
Model

Engineer %

Fig. 1. Documents and actors of the modelling process.

formal models are built together, and are partially related by tool translation,
as, for example, the tool presented in [7].

3 Building state-transition diagrams

A B model is a system defined by a component which contains (%) static decla-
rations, as the global sets of baggages, passengers, and the specification of static
relations and functions of the domain; () dynamic entities, as the set of flights,
passengers currently in the airport, screened passengers, relations between pas-
sengers and their flight, baggages of the passengers, etc. They constitute the
state of the component; (%i) a sequence of events, which define the behavior
of the entities. An event can be executed when its guard is true (a guard is a
boolean condition on the state).

Security properties are modelled as invariants of the system. For example, the
main security property is that there is no dangerous objects in an aircraft, unless
these objects are given an explicit authorization. This property is mathematically
stated in the model and one can prove that it is preserved by the events.

The airport has been modelled following Annex 17. For brevity, we do not
detail this model in the paper. The events are:

— management of the flights: open_boarding, close_boarding,

— introduction of categories of passengers: new_originating_passenger, new_tran-
sit_passenger, new_transfer_passenger

— actions of the passengers in the airport: check_in_registration, passing_the_scree-
ning_point, passing_the_control_point, mixing_or_contact, boarding_in_cabin.

The “GeneSyst” tool [3] can automatically extract a state-transition dia-
grams from the formal model. Fig. 2 is an example of such ST diagram. It
describes the set of transitions of a passenger called zz from a state where zz
enters the airport (first state after initialization), then zz is considered as either

REMO2V'06 803

any_aa_event:
[G] [] new_originating_passenger_aa <®>

[G] [] check_in_registration_aa

[G] [] passing_the_screening_point_aa
[G] [] new_transit_passenger_aa

[G] [] new_transfer_passenger_aa

[G] [] passing_the_control_point_aa
[G] [] mixing_or_contact_aa

[G] [] loading_in_cabin_aa

[1[G] Init

any_aa_event

not(zz € (originatingP: VtransitP: VtransferP:) &

not(zz €departurePassengers)) __—=

[G] [] new_origipati [G] [] new_trapsfer_passenger_zz

ng_passenger_zz
anyi'daievent
[G] [] new_trafisit_passenger_zz

[G] [] check_in_registration_zz
[G] [G] passing_the_screening_point_zz

zz €originatingPassengers

[G] [G] passing_the_control_point_zz

72 € LransitPasscngcr

[G] [G] passing

any_aa_event

[G] [G] passing_the_control_point_zz

zz € transferPassengers

the_control_point_zz
[G] [G] passing_the_control_point_zz

[G] [G] passing_the_screening_point_zz

[1[] mixing_or \contact_zz irg_in_cabin_zz

——
g
7z € departurePassenDer any_aa_event

Fig. 2. Transition diagram generated by GeneSyst for passenger zz.

originating or in transit or in transfer. After that, zz is controlled or screened
according to her/his characteristics, and zz becomes a departure passenger, if
the checks succeed. Finally, zz is on board (not represented as a state). Each
event is split into the cases where the passenger is zz (postfix of event is “_zz”) or
not (postfix of event is “_aa”). During the evolution of passenger zz, some events
can occur for managing other passengers than zz (factorized as “any_aa_event”,
put for the events in the square box). For this generation, passenger zz (a new
fresh variable) is introduced in the system. The resulting diagram is shown in
Fig. 2.

On the diagram, a transition like [|[Jevent between state; and states, means
that event is always enabled in state; and that it always reaches states. A tran-
sition like [G][Jevent means that event is enabled in state; under some condition
and similarly [|[G]event means that states is reachable from state; by event un-
der some condition. By clicking on the transitions, the GeneSyst tool displays
the involved conditions.

For the construction of ST diagrams, the states of interest are provided by
the user. So, various views of the model can be explored following the entities
examined in the states. An application of this generation is to check if the formal
model specifies the expected behavior of the actors. If some transitions seem
dubious or missing, the user can verify in the formal model and in the initial
documents if this fact is due to omissions or inconsistencies, or possibly, to a
misunderstanding of the regulation documents.

804 Regulations Modelling and their Validation and Verification

The GeneSyst tool can take into account refinement levels. It then produces
hierarchical diagrams that represent refinement of data or actions. For instance,
one can refine the previous model to distinguish between several kinds of passen-
gers, such as ordinary, obliged and armed passengers. The specific events related
to these passengers become new transitions inside old states. Another example of
action refinement is the decomposition of the screening check-point into several
more elementary steps.

4 Generating test scenarios

Another useful analysis technique is to determine whether, when and where a
given condition is really mandatory to garantee the expected security level. If it
is so in the formal model, then the condition must effectively be checked in the
real world of the airports.

To perform this analysis, each event is transformed in such a way that each
conjunct of its “guard” is replaced by its negation (to force the cases where
really the condition does not hold). So, an event may produce several modified
events. This transformation builds new models that contain a lot of scenarios: e.g.
passengers can move without fulfilling all the conditions wrt. the initial model.
From these models, the BZ-TT test generation tool [9] is able to automatically
generate sequences of events starting from a given state and reaching an expected
event where the state is inconsistent. A typical exemple of scenario is to search
how (i.e. through which sequence of events) a given originating passenger can
enter the cabin of an aircraft without satisfying the security conditions. On the
set of all the generated scenarios, only those where a regular behavior can lead
to a modified event and then produces an inconsistency, are selected. In that
case, the condition which is falsified is really mandatory to avoid the erroneous
detected scenario. The usefulness of such a generation is that it is automated
and exhaustive.

For instance, in a very simple case generation process, we determined that an
originating passenger can pass through the control-point instead of the screening-
point. For the adequate values of the variables determined by the tool, the se-
quence is:

open_boarding;
new-originating_passenger;
check_in_registration;
bad_passing_the_control _point

where the test which fails is that the passenger must be in transit or in transfer.
Another erroneous sequence shows that a transfer passenger can go on board
without passsing the control-point, and so on. In each case, it is easy to determine
what is the point which fails in the scenario. We expect that we shall be able to
detect fine-grain security conditions on more refined models.

The tests generation technique needs to be improved and adapted to our
goals, but it is already promising. The determination of mandatory conditions

REMO2V'06 805

could be a guide to generate check-lists for the control of airports by security
inspectors. Indeed, completeness of the check-lists is a concern of the ICAO
experts.

5 Conclusion

The EDEMOI project is dedicated to modelling regulation documents in or-
der to analyze the resulting models by tools issued from software engineering
techniques.

In this short paper, we have presented the requirements engineering approach
adapted to the kind of documents we have to deal with. We have shown two
techniques developed in the project, based on the B models. The first one is
the generation of state-transition diagrams by the GeneSyst tool. The second
one is the generation of faulty scenarios to detect security holes. We believe
that these approaches can be useful to validate models, to detect omissions or
inconsistencies, to ensure non-regression in case of evolution or modification of
the regulation documents, and to provide help for writing security check-lists.

References

1. Al17. Annex 17 to the Convention on International Civil Aviation - Security - Safe-
guarding International Civil Aviation against acts of unlawful interference. ICAO,
april 2002.

2. J.-R. Abrial. The B Book - Assigning Programs to Meanings. Cambridge University
Press, August 1996.

3. D. Bert, M.-L. Potet, and N. Stouls. GeneSyst: A Tool to Reason about Behavioral
Aspects of B Event Specifications. Application to Security Properties. In Proceedings
of ZB2005 Conference, LNCS 3455, pages 299-318. Springer-Verlag, 2005.

4. F. Bouquet, B. Legeard, and F. Peureux. A constraint Solver to Animate a B
Specification. Int. Journal on Software Tools for Technology Transfer, 6, 2004.

5. A. Dardenne, A. v. Lamsweerde, and S. Fickas. Goal-directed Requirements Acqui-
sition. Science of Computer Programming, 20:3-50, 1993.

6. Edemoi. EDEMOI project web site. http://www-lsr.imag.fr/EDEMOI/, 2004.

7. A.Idani, Y. Ledru, and D. Bert. Derivation of UML Class Diagrams as Static Views
of Formal B Developments. In Proceedings of the 7th Int. Conference on Formal
Engineering Methods (ICFEM’05), LNCS 3785, pages 37-51. Springer-Verlag, 2005.

8. R. Laleau, S. Vignes, Y. Ledru, M. Lemoine, D. Bert, V. Donzeau-Gouge, C. Dubois,
and F. Peureux. Application of Requirements Analysis Techniques to the Analysis
of Civil Aviation Security Standards. In Proceedings of SREP’05 - 13th IEEE Int.
Requirements Engineering Conf., pages 91-106. IEEE, 2005.

9. B. Legeard, F. Peureux, and M. Utting. Automated Boundary Testing from Z and
B. In Proceedings of FME’02 - Formal Methods Europe, LNCS 2391, pages 21-40.
Springer-Verlag, 2002.

