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Abstract. The Hierarchical Task Network (HTN) planning method is
conceived of as a useful method for web service composition as well as
being for task planning. However, no complete success of service compo-
sition by HTN is achieved as yet. The reason is the Web service com-
position process involves interactive dataflow between variables in pre-
condition and input/output parameters of services. While such dataflow
requires to evaluate variables in order to compose services, the perfor-
mance of services is undesirable, because world-altering Web services
cause to alter the world in composition processes. In this paper, instead
of the HTN task planning method, we address more radical approach
of HTN method for web service composition and decomposition on the
premise of the openness and uncertainty of WWW. We capture compos-
ite services, which contain abstract concepts with respect to the variables
of Web services, as abstract programs to be tailored to individual users
and to be instantiated to executable programs in which every variable
can ground in execution. In this view, the web service composition pro-
cess can be conceived of as a sort of automated programming process,
and HTN is deemed as a structural workflow or a prototype of actual
programs. We formalize web service composition/decomposition by HTN
method using the idea of satisfiability of situation calculus, and address
the algorithm for Web service (de)composition that does not require to
perform services.

1 Introduction

The Hierarchical Task Network (HTN) planning method is conceived of as a
useful method for web service composition, and several works on the web service
composition have been attempted with HTN [6]. However, there are a few but
serious discrepancies between task planning and service composition. First, a web
service involves inputs and outputs in addition to precondition and effects, and
the interaction between I/O parameters and precondition/effects may happen.
Second, the constraint in web service composition is not partial orders of tasks
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but control constructs in which there are dataflows and control flows between
subtasks. Therefore, the semantics of web service composition are much more
complex and analogous to programming rather than planning. The realization
of the service composition ought to differ from that of task planning.

Sirin, et al. [10] achieved the web service composition using the HTN task
planning method. They invented the translator from the OWL-S service de-
scription to the SHOP2 [6] task planning domain. To enable the translation
from the web service composition domain to the HTN task planning domain,
they assumed that an atomic Web service is either a strict information pro-
viding Web service, which does not have the effects, or a world altering Web
service, which does not have outputs, but they did not maintain world-altering
and information-providing services.

This assumption is ascribed to the fact that they used SHOP2, which was
originally developed for classical task planning problems, and they did not re-
formalize HTN method for Web services. A precondition of method/operator in
HTN is evaluated to test whether the precondition hold on the state. In case
that a variable in a precondition is unified to some output parameter of a Web
service in planning, we need the value of the output. They argued that we do
not want to actually alter the world during planning, and do want to gather
information from information-providing Web Services.

Besides the complexity in the service composition, Semantic Webs stand on
the assumption that the world is open and dynamic. Therefore, we must consider
the uncertainty of the world in service composition and execution processes.
More precisely, we cannot expect service precondition that hold in a composition
process also hold in a execution process. As a result, we cannot help but abandon
the soundness and completeness of planning when we consider both composition
process and execution process in the dynamic world. In fact, the authors embrace
the problem how to deal with the progression of situation in our decision-making
support application [5], in which light anomalies of the rocket launch operation
process in planning time may change to heavy anomalies in execution time and
one control mode may progress to the successive control mode.

The authors claim that the uncertainty of WWW must be coped with by
Web service agents situated in circumstances, that is known as situated planning
agent [9], which monitors the plan execution, detects failures of the performance,
replans the plan, and adapts the behavior to changeable situations. The behavior
under the uncertainty is the common observation among animals and intelligent
human beings in the real world, and we argue it is the same on even Web service
agents in use.

Under the premise of the situated planning agent in the future, in this pa-
per, we formalize the web service composition and decomposition with expanding
the HTN formalization using the terminologies in automated planning in state
space [2] and situation calculus [8]. In Section 2, we review the formalization of
task planning by HTN [2]. Then, we expand it for Web service composition. We
discuss the concept of applicability, satisfiability, executability for Web services
from the viewpoint of situation calculus, and address an algorithm for service
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composition/decomposition. In Section 3, we describe the implementation of the
service (de)composition algorithm, which is straightforwardly embodied of the
algorithm using nondeterministic search technique with computational continu-
ation. The algorithm is incomplete because of the open world assumption but
do not compel us to perform services in Web composition process. In Section 4,
we discuss the related work, and we make some concluding remarks.

2 Formalisation of HTN for Web Services

2.1 Hierarchical Task Network Planning

In this subsection, we review the classical task planning by HTN according to
the description in [2]. The expansion of HTN to web service composition and
decomposition is described after the next subsection.

Let L be a first-order language for planning, in which there are predicate
symbols, constant symbols, and variable symbols. If an atomic formula, which
does not contain logic connectives, does not contain any variable symbol, it is
called ground atom, otherwise unground atom.

A state s is a set of ground literals, i.e., ground atoms or negations of ground
atoms. S denotes a set of states. An atom p holds in s iff p ∈ s.

Definition 1. A planning operator in task planning is a triple such that

o = ⟨name(o), precond(o), effects(o)⟩.

– name(o) is a name of operator, which has a syntactic expression of the form
n(x1, ..., xk) where n is a unique symbol called operator symbol, and x1, ..., xk

are all of variable symbols that appear anywhere in o.
– precond(o) is the precondition of o, and effects(o) is the effects of o. Both

are a set of literals.

Definition 2. An HTN method in task planning is a 4-tuple, that is,

m = ⟨name(m), task(m), subtasks(m), constr(m)⟩.

Where name(m) is an expression of the form n(x1, ..., xn), n is a unique symbol
for the method, and x1, ..., xn are all of variables that occur anywhere in m. A
set of pair ⟨subtasks(m), constr(m)⟩ makes a task network for m.

If an instance of operator contains ground atoms and does not contain un-
ground atoms, it is called ground, otherwise unground. A ground operator that
includes ground atoms in s is called action for s.

A task is an expression of the form t(r1, ..., rk) like the name of operator and
method, but a name symbol t of task differs from a method name symbol n,
and a task has fewer parameters than the name of the corresponding method.
t is called task symbol, and r1, ..., rk are terms. Every operator symbol is a task
symbol, and every operator can be a task. When a task symbol t is an operator
symbol and its terms can be unified to variables of the operator, the task is called
primitive, otherwise it is nonprimitive. A task such as task(m) on a method m
is nonprimitive, but a subtask may be an operator.
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Definition 3. A task network in task planning is a pair

w = ⟨U,C⟩.

Where U is a set of all task nodes in the network and C is a set of constraint such
as partial task ordering and preconditions for tasks. Note that w contains only
problematic front part of whole network in partial order HTN, and it evolves
along with the progression of the state and the plan.

Each task node u ∈ U contains a task tu. If all of tasks in U {tu | u ∈ U}
are ground, then w is called ground, otherwise w is unground. If all of tasks
{tu | u ∈ U} are primitive, then w is called primitive, otherwise nonprimitive.

2.2 Web Service Network by HTN

In this subsection and hereafter, we formalize Web service network by extending
HTN task planning described above.

We expand the definition of state so that it includes not only atoms from
precondition and effects but also inputs and outputs of Web service. Outputs
of Web service are added as atomic formula into the state as well as positive
effects. Note that inputs of Web services are taken from atoms in the state
and/or outputs of predecessor services. The data stream from an input to an
output via services is called dataflow, and we call a data stream that streams in
and out via services IO fluent.

Definition 4. An atomic service is an expansion of the operator, and defined
as a 5-tuple such that

as = ⟨name(as), inputs(as), outputs(as), precond(as), effects(as)⟩.

– name(as) is a name of service. It has a same syntactic expression of the form
n(x1, ..., xk) as operator name name(o), but variable symbol xi may appear
not only precond(as) and effects(as) but also inputs(as) and outputs(as).

– inputs(as) denotes inputs to the Web service as, and outputs(as) denotes
outputs returned by the Web service. precond(as) represents preserving
or causal condition of as for the web service execution. effects(as) is the
side effects or causal effects onto the state s by the web service execution.
inputs(as) and outputs(as) is a sequence of variables respectively, while
precond(as) and effects(as) is a set of literals.

Definition 5. A composite service is an expansion of the method, and defined
as a 7-tuple, that is,

cs = ⟨name(cs), task(cs), inputs(cs), outputs(cs), subtasks(cs),
precond(cs), controlConstruct(cs)⟩.

Where the definition of name(cs), inputs(cs), outputs(cs), and precond(cs) are
same as the definition of that in atomic service, task(cs) is similar to that of
HTN, but the notation of subtasks(cs) and controlConstruct(cs) firstly appear
here in a composite service.
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A task in Web services is defined as same way in HTN task planning. If
the task symbol t is a name symbol of name(as) of atomic service as and its
terms r1, ..., rn is unifiable to variables of the atomic service, the task is called
primitive.

A task network in Web service is a pair of a set of subtasks(cs), and a set of
controlConstruct(cs).

Definition 6. A task network in web service composition and decomposition is
expressed as

w = ⟨U,CC⟩.
Where U is a set of all task nodes in the network, and CC is a set of all control
construct included in the network. Note that the constraint of CC includes con-
trol flows, dataflows, and preconditions of task-corresponding composite services
and atomic services. The task flows (abstract control flows) and dataflows are
contained in controlConstruct(cs). A composite service can contain only one
control construct in definition, but a control construct can contain subtasks and
sub control constructs in the specific form of various kind of control constructs,
specifically, sequence, ifThenElse, loopWhile, etc.

We can consider various controlConstructs, but in this paper we define only
three as follows.

Definition 7. A sequence is a tuple of any number of subtasks.
seq = ⟨elt1(seq), elt2(seq), ..., eltk(seq)⟩

Where elti(seq), i ≤ k is a subtask in the cs. In the execution of sequence,
elti(seq) is performed in the order of the sequence.

In HTN task planning, constraint constr(m) represents partial orders of sub-
tasks. Therefore, a predecessor and the successor of tasks can be interleaved with
another task. However, no service can part the task sequence in sequential per-
formance of Web services.

Definition 8. An ifThenElse is a 3-tuple as follows.
ite = ⟨if(ite), then(ite), else(ite)⟩

Where if(ite) is a condition that does not cause any side effect in evaluation,
and then(ite) is a subtask or a control construct that is performed when if(ite)
holds in the state. Optional else(ite) is a subtask or a control construct that is
performed when if(ite) does not hold.

Note that then(ite) is performed if and only if the condition of if(ite) holds
in the state, but else(ite) is performed in case that not only the negation of
condition if(ite) holds but also it is unknown with the premise of the open
world assumption of Web Semantics.

Definition 9. loopWhile is a 2-tuple such as
lw = ⟨while(lw), seq(lw)⟩

Where while(lw) is a condition during which holds seq(lw) is performed repeat-
edly. seq(lw) is a sequence. Note that performance of sequence is terminated
even if while(ls) becomes unknown in the execution process.
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2.3 Web Service Composition and Decomposition by HTN

On one hand, the objective of task planning is to obtain totally ordered sequences
of actions that achieve a goal, where a goal g in task planning is a set of ground
literals produced from effects. On the other hand, the objective of web service
composition and decomposition is to obtain a set of executable task flows or
a program that is an instantiated network of web service performance in the
environment, where input and output parameters are variables to be unified to
constants in state, and a goal g may include output variables.

We have two categories of goals in essence in web service composition, i.e.,
the alteration of world by Web service performance and the information retrieval
by performance of Web services. The former is the same as task planning but
the latter differs from task planning in given goals. We give ground literals in
atomic formula (say using individuals in OWL, like on(A B) for Block A and
Block B) as goals in task planning, but we do not designate values of service
outputs as goals in web service composition. The values of output variables
are the very thing we want to know in the information providing services. We
are able to only designate types of variables (note that a variable is also an
instance of an OWL class but unifiable to the range of instances of a class) as
goal (say ?roomtype, a room type of hotel available). Web service decomposers
must generate instantiated task flow that includes atomic services that achieve
world-altering goals and information-retrieval goals. Moreover, the coupling of
world-altering service performance and information-retrieval service performance
may happen through variables.

In this subsection, we discuss the (de)composability of services from the
standpoint of satisfiability in situation calculus [8].

Satisfiability of Web Service: In HTN task planning, an operator is an
abstraction that stands for all instance operators named by an operator symbol.
In an instance of operator o, a variable symbol in name(o), precond(o), and
effects(o) is substituted with a corresponding constant symbol. In Web service
(de)composition, an atomic service can be instantiated through the substitution
of all variables except IO parameters in the precondition, effects, inputs, and
outputs with ground literals in the state space. In addition, IO parameters in a
service must satisfy the state in the execution of the instantiated service.

To discuss the interpretation of assertions in Web service (de)composition,
we consider an state transition machine. Let Σ be the state transition machine
for task planning [2]. We consider a mapping from a state s in assertions of the
planning problem P to a state in Σ. For a state s described in planning language
L, the corresponding state in Σ is denoted by sI , and I is called interpretation.
In case that there is a mapping from si−1 to sIi−1 and si to sIi , if an instance
operator o in P that links from si−1 to si has a mapping to oI that links from
sIi−1 to sIi , it is called satisfiable with respect to the operator o.

We expand this interpretation for task planning to Web service (de)composition.
In case that there is a mapping from si−1 to sIi−1 and si to sIi，and from an

112

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Administrator
Rectangle




7

atomic web service as in P that links from si−1 to si to asI that links from sIi−1

to sIi , we call it satisfiable with respect to the atomic web service as.
For an atomic service as, iff the precondition precond(as) is satisfiable in s,

namely a interpretation of condition of precond(as) holds in an interpretation
sIi , and inputs inputs(as) is satisfiable in s, namely we can find the unification
for each variable of inputs onto s and s has a mapping sIi , where the unification
is identical to that for the instantiation of precond(as), then the atomic service
as is satisfiable with the respect to s.

s |= as ⇔ (s |= precond(as) ∧ s |= inputs(as))

On the other hand, a composite service cs is satisfiable, iff precond(cs),
inputs(cs), and controlConstruct(cs) is satisfiable.

s |= cs ⇔ (s |= precond(cs) ∧ s |= inputs(cs) ∧ s |= controlConstruct(cs))

When the precondition and inputs of a service are satisfiable, let us call
the service applicable. An applicable atomic service is always satisfiable but an
applicable composite services are not necessarily satisfiable. In other words, an
applicable atomic service has a model on s but an applicable composite service
may have no model on s.

In order to know the satisfiability of a composite service, we need to know
the satisfiability of controlConstruct and task.

Satisfiability of Task: In case that a task t(r1, ..., rn) is primitive, the task
t(r1, ..., rn) is applicable and satisfiable, iff the corresponding atomic service as
which may be partially instantiated is satisfiable.

s |= t ⇔ (name(as) ≡ n(x1, ..., xn) = σ(t(r1, ..., rn), θ)) ∧ (s |= σ(as, θ))

Where σ(t(r1, ..., rn), θ) expresses the substitution of t(r1, ..., rn) by unifier θ for
s. Note that θ contains the accumulation of the past unification in (de)composition
process.

In the case that a task is nonprimitive and the corresponding service is com-
posite, then the task t(r1, ..., rn) is satisfiable, iff cs is satisfiable.

s |= t ⇔ (name(cs) ≡ n(x1, ..., xk) ≃ σ(t(r1, ..., rn), θ)) ∧ (s |= σ(cs, θ))

Where k ≥ n and ≃ expresses the equality of name n = σ(t) and xi = σ(rj)
when k = n but some of parameters xi may not be unified to rj when k > n.

Progression in Web Service Composition Let consider a progress by task t
for state si−1. It seems to be the same as the expression on action si = do(a, si−1)
by Reiter [8] whereas a is an action that contain only preconditions and effects.
The application of task t under the state si−1 yields the state si. However,
we cannot really execute the task in service (de)composition processes, if the
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task is a world-altering task. Then, we cannot know values of IO parameters.
Instead, we make a progression by the unification that change abstract types of
variables to more special types. The progression in web service (de)composition
by unification is expressed as below.

si = γ(si−1, t)

Satisfiability of sequence Control Construct: Let be seq a sequence,
and let s0 the initial state for sequence seq. Let us express the performance
of elti(seq) by inputs in1

i−1, ..., in
k
i−1 as elti(seq)(in1

i−1, ..., in
k
i−1). If elt1(seq) is

satisfiable for s0 and inputs in1
0, ..., in

k
0 , then we can make a progress for s0 and

obtain s1 for elt1(seq) by making a progress of unification.

s1 = γ(s0, elt1(seq)(in1
0, ..., in

k
0))

Then, if elt2(seq) is satisfiable for s1 and inputs in1
1, ..., in

l
1, we can obtain the

next state s2, and so forth. Please note that here we omit the substitution of each
element by the unifier that accumulates unifications according to the progress.
Namely, elt2(seq) is σ(elt2(seq), θ) exactly.

s2 = γ(s1, elt2(seq)(in1
1, ..., in

l
1))

We cannot say that if all tasks elti(seq)(in1
i−1, ..., in

k
i−1) in sequence are inde-

pendently satisfiable for each states then the sequence is satisfiable, because the
satisfiability of the control construct also depends on the dataflow. We represent
this constraint of dataflow in control construct dataflow(seq). If the dataflow
constraint is held correctly in the progress of control constructs, we call the
control constructs has a model. Thus,

s0 |= seq ⇔ s0 |= dataflow(seq)
∧

i=1,...,k

si−1 |= elti(seq)

Note that each task elti(seq) may be composite and its satisfiability is de-
cided with the satisfiability of the corresponding composite service. Obviously,
this definition for the control construct and the composite service is recursive
but the computation of satisfiability terminates, because the composite service
is decomposed down to atomic services in an acyclic task network and the sat-
isfiability computation for every atomic service terminates.

Satisfiability of ifThenElse Control Construct: Let be ite an instance
of ifThenElse, and si−1 is the state for ite. Then, we have three possibilities
on the satisfiability of ite with respect to the condition.

– For positive condition, we have

s |= ite ⇐ (s |= if(ite) ∧ s |= then(ite)).

– For negative condition, we have
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s |= ite ⇐ (s |= ¬ if(ite) ∧ s |= else(ite)).

– For unknown condition, we have

s ̸|= ite ⇐ (s ̸|= if(ite) ∧ s ̸|= ¬ if(ite)).

If if(ite) holds and then(ite) is satisfiable for s, then the ite is satisfiable. If
the negation of if(ite) holds and else(ite) is satisfiable, then ite is satisfiable.
However, when the condition of if(ite) is unknown, we cannot deduce whether
ite is satisfiable. In the execution process, the value of if(ite) is usually known
as a result of the service execution and the progression of state, but it may be
unknown in composition processes without the service execution. Therefore, the
decomposer may not proceed the reasoning at this branch possibility of control.
In such a case, an agent may select one of two strategies, i.e., speculative strategy
or assurance strategy. In the speculative strategy, the agent aggressively takes one
of the possibilities of branches, and the soundness of the instantiated program is
not guaranteed. If the executer fails the execution of the generated program, the
agent repairs the failure and replans at the point. In the assurance strategy, the
agent defensively carries the incomplete programs to the execution phase and
executes it up to the undecomposed point. The agent restarts to plan when the
value of the if(ite) is known. Thus, the functionality of incremental planning
and replanning is requisite for the agent in the open world.

Satisfiability of loopWhile Control Construct: Let be s0 an initial state
for an instance of loopWhile, lw. When a while-condition while(lw) of lw does
not hold by the negation of while(lw), lw is satisfiable and the state s0 does not
evolve. If while condition while(lw) holds for s0, then lw is satisfiable iff seq(lw)
is satisfiable. However, when it is unknown whether while(lw) hold, we treat it
in the same way as ifThenElse.

As a result of one round of iteration for sequence seq(lw), the state evolves
and this process is repeated again while while(lw) is satisfiable for the evolving
state in the loop.

s |= lw ⇐ s |= ¬ while(lw)
s |= lw ⇐ s |= while(lw) ∧ seq(lw)
s ̸|= lw ⇐ s ̸|= while(lw) ∧ ̸|= ¬while(lw)

Note that the states may evolve on the satisfiability check for even the same
procedure, because types of variables evolve more precisely step by step using
the typed unification, which is described later. In the worst case, the evolution
stops even if while(lw) holds, thus the decomposer must detect no progression
in the iteration and exit from the loop.

2.4 Algorithm of Web Service Composition and Decomposition

We cannot decompose the control construct of composite services into subtasks
as HTN task planning does. Instead, we collect all of variable bindings that make
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a control construct in hand satisfiable, and search all possibilities of progression
by substituting all variables in service parameters. Here note that input and
output parameters are typed in DL or OWL, and variables in precondition and
effects also typed. Therefore we need typed unification to compute satisfiability.
The typed unification algorithm is described in the next section.

Let us call an instance of atomic service ground, if it contains ground atoms
except unground variables that are input and output variables in some atomic
services. In HTN method for task planning, a ground instance of operator that is
applicable to s is an active candidate for the plan solution. There is no unground
variable in ground operators. In HTN method for service (de)composition, we
have input and output variables in ground atomic services. Therefore, the active
candidate for the plan solution must be a pair of ground atomic service and its
unifier that instantiated the atomic service.

Suppose that a task node u in U , u ∈ U , is in the network w. Here task(as) =
tu or task(cs) = tu. When w = ⟨U,CC⟩ is primitive, if U is grounded and CC
is satisfiable for s, then w is a solution for s such that the executer can execute
CC for s. Then as instantiates u so as to produce the instantiated task network
w′ from w. If w = ⟨U,CC⟩ is nonprimitive, then w is a solution for s if we can
find a satisfiable unification that satisfies CC and a primitive task network w′ is
obtained as a result of decomposition of cs. In other words, the problem solving
of service composition is to find the path of evolution of partial network w by
decomposition for the subtasks of cs in the unification.

The algorithm of HTN web service composition and decomposition is de-
scribed as follows. Where s is a state in a situation, w is a part of whole task
network that is to be instantiated. w′ is a part of task network that is instanti-
ated. The initial input of w is a network that includes only a top task, and w′

is null set. AS is a set of atomic services, and CS is a set of composite services.
D is a domain knowledge of the target field.

procedure SWHTN(s, w′, w,AS,CS,D)
if w = Ø then return w′

nondeterministically choose any u ∈ U that has no predecessors in w
if tu is primitive then

active ← {⟨σ(as), θ⟩ | as = discover(tu, w,AS,D) and as is satisfiable in s
θ is a unifier with satisfiable bindings of as
σ(as) is a substitution of as with θ}

if active = Ø then return fail()
nondeterministically choose any ⟨σ(as), θ⟩ ∈ active
SWHTN(γ(s, as), w′ + {σ(u)}, σ(w − {u}), AS,CS,D) ; { } means a network.

else ; ; tu is nonprimitive.
active ← {⟨σ(cs), θ⟩ | cs = discover(tu, w, CS,D) and cs is satisfiable in s

θ is a unifier with satisfiable bindings of cs
σ(cs) is a substitution of cs with θ}

if active = Ø then return fail()
nondeterministically choose any ⟨σ(cs), θ⟩ ∈ active
return SWHTN(σ(s), σ(w′ + {u}), σ(w − {u} + sub{u}), AS,CS,D)
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γ(s, as) is a progression by an atomic service as. For a nonprimitive service,
this algorithm decompose it into subtask nodes and evolves the state by the
satisfiable unifier. For a primitive service, this algorithm makes a progression of
state and accumulates the instantiated network. This algorithm contains the loop
of SWHTN() via the tail recursive call. fail() causes automatic backtracking to
the point of the last choice of nondeterministic selection. The algorithm is very
similar to HTN of task planning [2] and SHOP2 [6], because we already have
a convenient terminology satisfiable. We used it instead of the terminology of
ground action in HTN task planning for collecting active atomic service. The
satisfiability checking, which deeply searches down to atomic services from a
composite service, returns several unifier that satisfy the node to the state s.

In the worse case, we cannot obtain complete solutions from this algorithm,
because it is possible that we encounter unknown conditions without the exe-
cution of Web services. In such a case, the agent resolves the problem in the
manner of the speculative strategy or assurance strategy.

3 Implementation

3.1 State Space and Variables

Generally, an atom can be expressed as a form p(r1, ..., rn−1, rn). If an atom is a
state variable such that the combination of predicate p and variables r1, ..., rn−1

has a mapping to rn on each state s, it can be expressed as p(r1, ..., rn−1) = rn. A
state variable can be also expressed as p(r1, ..., rn−1, rn) = true. Then, a negation
of atom ¬p(r1, ..., rn−1, rn) can be expressed as p(r1, ..., rn−1, rn) = false. On
the close world assumption, the absence of positive atom means the negation
of the assertion. On the open world assumption, the absence of positive and
negative assertion means unknown on the assertion.

The state is expressed as a list of state variables as atom. In Lisp, the following
shows an example of the state in which an individual Lucy has an appointment,
and HAL has also an appointment. Note that Lucy is already defined as individual
of Person, and HAL is already defined as individual of Robot.

(setq *state*

(make-state ’((hasAppointment(Lucy) = LucysAppt)

(hasAppointment(HAL) = HALsAppt))))

On the other hand, we make a typed variable in the following form in our
system.

(make-condition ’((hasAppointment((?p - Person)) = ?appt)))

If Person is defined as class in OWL and hasAppointment is defined as an
object property with the domain constraint Appointment, the system can create
?p as an instance of Person and ?appt as an instance of Appointment.

Note that this appointment with variables typed Person is unified with
Lucy’s appointment but not unified with HAL appointment.
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3.2 Typed Unification

The unification algorithm by Russel and Norvig [9] is expanded to accept OWL
classes and individuals. A variable is also an individual of a class in the domain.
Consider the following unification algorithm, where variablep(x) tests for not
lisp symbols but OWL entities whether x is an OWL entities for variable, and
variable?(x) tests for lisp symbols whether x is a variable. Note that a variable
symbol and a constant symbol are bound to an OWL entity in our system, then
a lisp symbol is unified to a lisp symbol in semantics of OWL as shown later.

function Typed-Unify(x, y, θ)
if θ = failure then return failure
else if x = y in semantics of OWL then return θ
else if x ̸= y in semantics of OWL then return failure
else if variablep(x) then return Typed-Unify-Var+(x, y, θ)
else if variablep(y) then return Typed-Unify-Var+(y, x, θ)
else if variable?(x) then return Typed-Unify-Var(x, y, θ)
else if variable?(y) then return Typed-Unify-Var(y, x, θ)
else if compound?(x) and compound?(y) then

return Typed-Unify(Args(x), Args(y), Typed-Unify(Op(x), Op(y), θ))
else if list?(x) and list?(y) then

return Typed-Unify(Rest(x), Rest(y), Typed-Unify(First(x), First(y), θ))
else return failure

As shown below, the algorithm of Typed-Unify-Var looks like the same as
original Unify-Var in [9] at the surface level, but making a new binding {var/x}
differs from the original. In addition to the symbol level binding between var
and x, the class level bindings are taken into account. If two classes of var and
x are disjoint each other, then no unification is made and failure is returned. If
two classes relates each other in subsumption relation, then a mapping to the
specific class is made. Otherwise, a mapping to the intersection of both classes
is made.

function Typed-Unify-Var(var, x, θ)
if {var/val} ∈ θ

then return Typed-Unify(val, x, θ)
else if {x/val} ∈ θ

then return Typed-Unify(var, val, θ)
else if var occurs anywhere in x

then return failure
else return make {var/x} ∈ θ

Typed-Unify-Var+ is prepared for the binding of OWL individual objects. In
practice, our system is built on top of SWCLOS, which is an OWL Full reasoner
and language [4]. In SWCLOS, every OWL entity is an object in CLOS. In the
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integration of our (de)composition system to SWCLOS, a variable var in Typed-
Unify-Var+ is an object typed to OWL classes in the domain, while x may be
an individual object of domain classes or may be an variable object typed to a
domain class.

function Typed-Unify-Var+(var, x, θ)
if x is individual then

if disjoint?(class(var),class(x)) then return failure
else if class(var) = class(x) in semantics of OWL

then return make {symbol(var)/symbol(x)} ∈ θ
else if subsumed?(class(x),class(var))

then return make {symbol(var)/symbol(x)} ∈ θ
else if subsumed?(class(var),class(x))

then return make {symbol(x)/individual(class(var)) } ∈ θ
make {symbol(var)/symbol(x)} ∈ θ

else return
then return make {symbol(x)/individual(intersection(class(var),class(x)))} ∈ θ

make {symbol(var)/individual(intersection(class(var),class(x)))} ∈ θ
make {symbol(var)/symbol(x)} ∈ θ

else return failure

Where individual() creates an individual object of the parameter. Through
this unification, the type of variable is specified step by step. The value of vari-
ables are bound to abstract concepts to special concepts along with the pro-
gression via unification. However, if we have poor ontologies with respect to the
class hierarchy, this unification easily leads silly results. For example, if there
is no knowledge that xsd:integer is disjoint with xsd:float, the intersection of
xsd:integer and xsd:float is resulted. However, if there is an assertion that ship
is disjoint with automobile, the system fails to find the route by amphibious-
vehicle. Generally speaking, it is valuable to give rich information of negation,
disjunction, and complement in ontologies for the open world.

3.3 Nondeterministic Choice by Continuation

The computational continuation is well known as program control technique in
Scheme language. In short, it is a program frozen in action [3]. When the com-
putational object that contains the state of a frozen computation is evaluated,
it is restarted where it left off. This machinery can be a great help to implement
the exception handler, multiprocessing, and nondeterministic search and choice.
In order to implement our (de)composer, we have adopted the technique of con-
tinuation in Lisp [3]. The (de)composition algorithm SWHTN in Subsection 3.4
can be straightforwardly implemented with the continuation.
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4 Related Work and Concluding Remarks

4.1 Toward Reasoning in Services from Reasoning in Action

The study on task planning has a long history. Recently, Ghallab, et al. [2]
published a comprehensive text on automated planning of action. Reiter [8]
enlightened on task planning problem from situation calculus. From the advent of
Semantic Webs, Web Services plus Semantic Webs has emerged as a new field in
planning, and many efforts has been made in various approaches. Berardi et al. [1]
discussed the synthesis of Web services from situation calculus, but the work still
stays at the closed world assumption. Sohrabi et al. [12] demonstrated the web
service composition using agent programming language GoLog, which is based on
situation calculus. However, the problem of the interaction between precondition
and inputs/outputs, which is posed by Sirin et al. in service composition by
SHOP2 [10], seems to be left still open.

All of works mentioned above strongly stick the soundness and complete-
ness of service composition. However, the authors argue that the openness and
uncertainty of WWW lead us to the incompleteness when we consider the exe-
cution process. The problem must be solved by the intelligent behavior of agent
in the changeable world. In this paper, we formalized Web service composi-
tion/decomposition by HTN using the idea of satisfiability in situation calculus,
and addressed the algorithm for service (de)composition. We also suggested that
we need situated planning agent that adaptively behaves in use under the in-
complete service composition and the uncertainty of WWW with the premise of
the open world assumption.

Sirin and Parsia [11] deeply discussed the integration of OWL and the task
planner. In a sense, it could be said that this paper is a legitimate argument on
the HTN formalization touched by them. We addressed the typed unification to
make a progress on variable bindings. The authors’ system is based on SWC-
LOS [4] for OWL reasoner. Sirin and Parsia pointed out the existentially bound
variables in preconditions may cause the disparity of binding between planning
time and execution time. We have no solution on this problem in this paper. We
know that SWCLOS cannot reason out correctly on the existential quantifier.
On the other hand, the problem on the creation of anonymous individuals men-
tioned by them is easily solved with SWCLOS, because SWCLOS is built on top
of Common Lisp Object System (CLOS) and every concept and individual is an
object, even if it is anonymous.

4.2 Web Service Composition and Decomposition

In this paper, the terminologies of both composition and decomposition, and
occasionally composition/decomposition and (de)composition are used. Usually,
HTN is conceived as a method for web service composition. However, the com-
position process in HTN is strictly coupled with the decomposition process.
Ghallab, et al. often used the terminology of decomposition tree of HTN in their
textbook [2]. We consider an agent in which the composer composes Web services
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in coarse grain size from scratch. In this service composition, the partial order
planner technique like UCPOP [7] may be useful rather than HTN. Then, the de-
composer in the agent decomposes the composed service into fine grain services
by HTN. In this paper, we concentrated the discussion to HTN (de)composition
process, in which we have a top task node of HTN and separated other subtasks
from work flow library at first, and the top task and related abstract tasks are
combined and instantiated along with the reduction the ambiguity of task param-
eters step by step. We call this HTN planning process service (de)composition.

4.3 Framework of Web Service Agent

The agent system includes an executer, memory, and user interface in addition to
the composer and the decomposer [5]. The executer interprets and executes the
instantiated programs with invoking Web Services. The machinery of memory
works as memory for various internal data of agent. Some part in memory reflects
the variations of outer world with sensing data and poling queries, etc. The user
interface works for the communication between the agent and a user. Some
ambiguity and nondeterministic choice in task planning may be solved with the
help from the user through this interface.
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