
OWL-Q for Semantic QoS-based Web Service
Description and Discovery

Kyriakos Kritikos and Dimitris Plexousakis

Foundation of Research and Technology, Heraklion, Greece,
kritikos,dp@ics.forth.gr

Abstract. Semantic Web Services are emerging for their promise to pro-
duce a more accurate and precise Web Service discovery process. How-
ever, most of research approaches focus only on the functional part of
semantic Web Service description. The above fact along with the prolif-
eration of Web Services is highly probable to lead to a situation where
Web Service registries will return many functionally-equivalent Web Ser-
vice advertisements for each user request. This problem can be solved
with the semantic description of QoS for Web Services. QoS is a set
of non-functional properties encompassing performance and network-
related characteristics of resources. So it can be used for distinguish-
ing between functionally-equivalent Web Services. Current research ap-
proaches for QoS-based Web Service description are either syntactic or
poor or non-extensible. To solve this problem, we have developed a rich
and extensible ontological specification called OWL-Q for semantic QoS-
based Web Service description. We analyze all OWL-Q parts and reason
that rules should be added in order to support property inferencing and
constraint enforcement. Finally, we line out our under-development se-
mantic framework for QoS-based Web Service description and discovery.

1 Introduction

The success of the Web Service (WS) paradigm has led to a proliferation of avail-
able WSs. Current WS standard technologies involve the advertisement of static
functional descriptions of WSs in UDDI registries, leading to a WS discovery
process that returns many irrelevant or incomplete results. While semantic func-
tional discovery approaches, like the one in [1], have been invented to overcome
the above problem, the amount of functionally equivalent WS advertisements
returned is still large. The solution to this problem is: a) the description of the
Quality of Service (QoS) aspect of WSs, which is directly related to their perfor-
mance; b) filtering of WS functional discovery results based on user constraints
on their QoS descriptions; c) sorting the results based on user weights on QoS
metrics.

QoS of a WS is a set of non-functional attributes that may impact the quality
of the service offered by the WS. Each QoS attribute is measured by one or more
QoS metrics, which specify the measurement method, schedule, unit, value range
and other measurement details. A QoS specification of a WS is materialized as

123

a set of constraints on a certain set of QoS metrics. These constraints restrict
the metrics to have values in a certain range or in a certain enumeration of
values. Actually, the current modeling efforts of QoS specifications only differ in
the expressiveness of these constraints. However, these efforts fail in QoS metric
modeling. The main reason is that their QoS metric model is syntactic, poor
and not extensible. In this way, the most prominent QoS-based WS discovery
algorithms produce irrelevant or incomplete results.

There are two main approaches for QoS-based Web Service Discovery. The
first one, analyzed in [2], relies on the subsumption of the compared QoS-based
WS descriptions for matchmaking. However, as indicated by the authors of this
approach, subsumption is quite slow and additional techniques must be devised
for speeding it up. The other approach, analyzed in [3], transforms the compared
QoS-based WS descriptions to a Constraint Satisfaction Problem (CSP) [4] and
then solves this problem. This approach has been shown [3] to be quick and
efficient in realistic scenarios. In addition, tools for CSP solving are more ma-
ture than reasoning tools. Thus, the second approach is more appropriate for
QoS-based WS discovery. Unfortunately, this approach also suffers from some
shortcomings that will be analyzed in detail in the sequel of this paper.

Based on the above deficiencies, we have developed OWL-Q [5], a rich, ex-
tensible and modular ontology language that complements the WS functional
description language OWL-S. In addition, we have extended the most prominent
CSP-based QoS-based WS discovery approach [3]. In this paper, after review-
ing the state-of-the-art in QoS-based WS description and discovery, we analyze
in detail all parts of OWL-Q, as OWL-Q’s design has been finalized. Next, we
explain that OWL cannot be used for reasoning about relations between proper-
ties and for enforcing constraints so as to justify the extension of OWL-Q with
SWRL rules. In addition, we provide examples of types of rules that have been
added to OWL-Q. Then, we analyze our QoS metric matching and alignment
and CSP-based WS Discovery algorithms [5, 6] and we shortly describe the
building tools of our QoS-based WS Discovery Engine, which is currently under
development. Finally, we conclude by drawing directions for further research.

2 Related Work

The WSDL and UDDI WS standards are syntactical approaches that do not
express the QoS aspect/part of WS Description. While OWL-S is a standard
semantic approach for WS Description, it does not describe any QoS concept.

Ran [7] proposes a syntactic extension to UDDI for QoS-based WS descrip-
tion. Maximilien and Singh [8] present an architecture and a conceptual model of
WS reputation that does not include concepts like QoS constraints, offers and de-
mands. Furthermore, the QoS metrics model is not rich enough. Tosic, Pagurek
et. al. [9] present the XML-based Web Service Offerings Language (WSOL).
Their work comes with the following shortcomings: (a) no specification of a QoS
demand; (b) metrics ontologies are not developed. Web Service Level Agree-
ment (WSLA) [10] is a XML language used for the specification of Service Level

124

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

Agreements (SLAs). It represents a purely syntactic approach that is not ac-
companied by a complete framework. Tian et. al. [11] propose an ontology-based
approach for QoS-based WS description. However, not only there is no complete
and accurate description of QoS constraints, but also metrics ontologies are only
referenced. Oldham et. al. [12] offer a semantic framework for the definition
and matching of WS-Agreements. However, only unary QoS metric constraints
can be expressed while QoS metric matching could only be enforced by manual
incorporation of rules.

Zhou et. al. [2] extend OWL-S by including a QoS specification ontology. In
addition, they propose a novel matchmaking algorithm, which is based on the
concept of QoS profile compatibility. The deficiencies of this research effort are
the following: (a) The metrics model is not rich enough; (b) QoS metrics have
N+ as their range; (c) QoS Profile subsumption reasoning is quite slow.

Mart́ın-Dı́az et. al. [3] use a symmetric but syntactic QoS model and propose
a CSP-based approach for discovery. Before matchmaking, a QoS specification
is transformed to a CSP which is checked for consistency/satisfiability. Match-
making is performed according to the concept of conformance. Concerning WS
Selection, the (QoS) score of an offer is computed by a Constraint Satisfaction
Optimization Problem (CSOP) [4].

3 QoS-based Web Service Description

3.1 Requirements for QoS-based Web Service Description

After reviewing related work in QoS-based WS Description, we have come up
with the following requirements that must be satisfied by a QoS-based WS de-
scription language [13]:

– Devise an extensible and formal semantic QoS model
– Comply with standards
– Support the syntactical separation of QoS-based and functional parts of ser-

vice specification
– Support refinement of QoS specifications and their constructs.
– Allow both provider and requester QoS specification
– Allow fine-grained QoS specification
– Devise an extensible and formal QoS metrics model
– Devise a corresponding extensible and formal QoS attributes, units, functions

and measurement directives model.
– Allow classes of service specification
– Enabling of tractable matchmaking algorithms

3.2 OWL-Q

Based on the requirements of QoS-based WS Description we have set in the previ-
ous subsection, we have developed an OWL-S extension (syntactical separation),
called OWL-Q [5], for QoS-based WS description of both requests and offers.

125

We have extended OWL-S ontological description for two reasons: to comply
with Semantic WS description standards (standards compliance) and to use the
OWL ontology formalism (extensible and formal semantic QoS model). OWL-Q
is actually an upper ontology comprised of many sub-ontologies/facets, each of
which can be extended independently of the others (syntactical separation and
refinement of QoS specifications). Each facet concentrates on a particular part
of our QoS WS description. In its new form, OWL-Q has eleven facets: OWL-Q
(main), Measurement Directive, Time, Goal, Function, Measurement, Metric,
Scale, QoSSpec, Unit and ValueType. In the sequel, a small analysis of each
facet of OWL-Q will be provided while the most important changes with respect
to its previous form will be indicated. The whole ontology will be available soon
at: http://www.csd.uoc.gr/∼kritikos/OWL-Q.owl.

Fig. 1. Part of Main Facet.

OWL-Q (Main) Facet As can be seen in Fig. 1, the Main Facet connects OWL-
S with OWL-Q and provides the high-level QoS concepts. For the connection
of the two ontological descriptions, the ServiceAttribute class is a subclass of
OWL-S ServiceParameter and references a ServiceElement. Subclasses of the
latter class are ConditionalOutput, Parameter, Input, Precondition, Effect, and
Service. That is a ServiceAttribute can reference any ServiceElement of a ser-
vice’s functional description (fine-grained QoS specification). Another point of

126

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

connection is that a ServiceProfile contains one or more QoSOffers’s or one QoS
Request (classes of service requirement). A final point of Connection is that the
Actor class is separated into three subclasses: Provider, Requester, ThirdParty
so as to define the main actors involved in QoS-based WS description and mea-
surement. A Service Attribute contains two subclasses: QoSAttribute and Con-
textAttribute and is a subclass of the general class Attribute. An attribute can be
separated into a) physical or service attributes, b) measurable or unmeasurable
attributes and c) unique or derived attributes. Physical attributes like Time,
Temperature and Location characterize environmental (contextual) factors of a
WS or its requester while service attributes like Availability or NumOfInterfaces
are functional or non-functional characteristics of a WS. Measurable attributes
like Time are measured by specific metrics while unmeasurable attributes like
Manageability cannot be measured. Unique attributes like Time are not de-
rived by other attributes and are measured by resource metrics while derived
attributes like Throughput are produced by complex metrics computed by func-
tions using metrics of other attributes. The Domain class represents the domain
of knowledge that a service applies to and is separated into two subclasses: a)
GeneralDomain and b) SpecificDomain. The GeneralDomain stands for every
possible WS. Specific Domain can be further specialized/subsumed, for exam-
ple a possible subclass could be the Travel domain. The Value class represents
any possible integer, double, string or list-based value, it is subsumed by special
symbol classes like Infinity or Limit, and it is mainly used in Goal, Value Type
and Measurement definitions. Other classes that are defined but are unfolded
in separate sub-ontologies are: Function, Measurement, MeasurementDirective,
Metric, QoSSpec, Scale, Schedule, Trigger, Unit, ValueType and Goal.

QoSSpec Facet In this facet, the classes representing QoS offers and requests
are defined. The class QoSSpec is separated into two subclasses: QoSOffer and
QoSDemand in order to enable WS providers and requesters to define in the
same way their QoS constraints (both provider and requester QoS specification).
Of course, the WS requester is enabled not only to specify constraints (by the
QoSDemand class) but also to provide weights to metrics of his interest (by
the QoSSelection class). The QoSSelection class is actually a list of <metric,
weight> entries. The QoSSpec class represents the actual QoS description of a
WS. It describes the security and transaction protocols used (URIs), the cost of
using the service (double) and the associated currency for the cost (unit), the
validity period of the offer or demand (CalendarClockInterval class of the time
ontology [14]) and a list of conjunctive QoS goals/constraints with their weights
(value of 2.0 if it is a hard constraint or a value in (0.0, 1.0) if it is soft).

Goal Facet Mathematical formulas and QoS goals/constraints were previously
expressed in OpenMath (http://www.openmath.org). Now this has changed due
to change of philosophy regarding the QoS Metric Matching Algorithm de-
scribed in the next section. QoS constraints are expressed in the following form:
(f(arguments)|metric) op value, where f is a function, arguments are a list of
functions, metrics and values, op can be one of ≤, ≥, <, >, =, ! =. For exam-

127

ple, the fact that metric M is less than 0.1 could be expressed by the user as:
M ≤ 0.1, where op =≤. An appropriate interface will be provided to the user
in order to enable him to specify constraints in our user-friendly customized
expression form.

Measurement Facet Measurements are now modeled in OWL-Q so as to enable
their storage and statistical processing by registries or other parties. Statistical
processing leads to new metric derivation and to validation of QoS-based WS
provider guarantees. The Measurement class in OWL-Q contains a single value
(Value class), it is produced by an Actor at a specific time point (Calendar-
ClockDescription class of [14]), it concerns a specific Metric and belongs to a
specific party (Actor).

Function Facet Functions in OWL-Q are separated into functions applied to met-
rics (for producing complex metrics or checking satisfiability of their constraints)
and functions applied to scales. Metric functions have specific arity and contain
arguments that are either Metrics, values of other Metric Functions. Scale trans-
formation functions are further categorized into five disjoint subclasses and are
used for converting one scale expression to an expression of another scale.

Measurement Directive Facet The MeasurementDirective class specifies the way
simple metrics are measured. It specifies by a URI how the value of a managed
resource is going to be achieved and by a ValueType the type of the return value.
In addition, it specifies if the party responsible for the measurement will ask for
the value or get it when it is ready (i.e it specifies the access model, where
AccessModel = Pull ∪ Push). This class can have many subclasses, some of
which may require a possible extra attribute (timeOut) specification concerning
the time duration (DurationDescription of [14]) that the measurement party will
wait to get the measurement value (consider for example the Status measurement
directive [10]).

Time Facet This facet specifies the Schedule and Trigger classes. A schedule is
used to describe the frequency (frequency has range DurationDescription) and
time interval (interval has range CalendarClockInterval [14]) of a complex met-
ric computation. Alternatively, a complex metric computation can be executed
at a specific time point (CalendarClockDescription [14]), information that is
encapsulated in a trigger definition.

Metric Facet The Metric Facet describes all the appropriate classes and prop-
erties used for a proper formal definition of a QoS metric (QoS metric model).
This metric facet is actually an upper ontology representing any abstract QoS
metric. A specific QoS metric can be created by refining the QoSMetric class.
Many specific QoS metrics (especially the general ones) can be part of a midlevel
ontology created for QoS metric reuse. We prefer specialization to instantiation
because it allows for a quicker reasoning process. We plan to develop a mid-level

128

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

ontology defining cross-domain QoS metrics and a low-level ontology for defining
QoS metrics for particular domains.

The QoSMetric is one of the most important classes of OWL-Q representing
a QoS metric. The values of a QoS metric are provided by an Actor. A QoS
metric belongs to a Domain of knowledge. It has only one name. It measures a
QoSAttribute ∪ MeasurableAttribute on a specific ServiceElement. The value
type of a QoSMetric is an instance of the ValueType class (analyzed in a separate
facet) while the scale of the value is an instance of the Scale class. A QoSMetric
is separated into static and dynamic metrics. A StaticQoSMetric is computed
only once according to a Trigger in order to produce a value for a StaticQoSAt-
tribute. A DynamicQoSMetric is computed repeatedly according to a Schedule
to produce values of a DynamicQoSAttribute that change over time. It can be a
simple QoS metric measuredBy a MeasurementDirective or a complex one. Com-
plexMetrics are derived from other metrics with the help of a MetricFunction.
Last but not least a QoSMetric is related to other metrics according to two types
of Relationships: Independent and Related. When two metrics are related, we can
specify the direction of their values or the impact of one’s value to the other’s
value. According to the scale it uses, a metric can be categorized into absolute,
interval, nominal, ordinal and ratio metrics. Ratio metrics directly reference a
Unit of measurement as a RatioScale is actually equivalent to a Unit. Metrics
can be positively or negatively monotonic. In this way, we know if one metric
value is better than another one.

Scale Facet A measurement scale controls the value type and the type of oper-
ations allowed for a metric and belongs to a specific Attribute. It also specifies
the way one value expression bound to one scale can be transformed to another
value expression of another compatible scale (both scales belonging to the same
metric). So specific scales can be compatible if they belong to the same scale
type and there is a ScaleTransformationFunction that transforms their expres-
sions into each other. Scale is a more general notion with respect to Unit. A scale
can be categorized into five disjoint subclasses: NominalScale, OrdinalScale, In-
tervalScale, RatioScale and AbsoluteScale [15]. Nominal scales concern metrics
that have as value type a set of numbers or strings. The members of this set
cannot be compared (no ordering). Specific nominal scales can be compatible if
there is a one-to-one mapping function between their corresponding value types.
Ordinal scales apply to metrics that have an ordered set as value type. Met-
rics belonging to different ordinal scales cannot be added, multiplied, divided or
abstracted in QoS constraints. We can transform one ordinal scale expression
into another one with the help of monotonic functions. Interval scales preserve
not only ordering but also differences. However, they do not preserve ratios.
The operations of addition and substraction are allowed between different or-
dinal metrics. We can transform one interval scale expression into another one
with the help of affine transformation functions of the form: M = a ∗ M

′
+ b.

Ratio scale preserve ordering, size of intervals and ratios. In a ratio scale there
is always a zero element representing the total lack of the measured attribute.
All arithmetics are allowed between different ratio metrics. We can transform

129

one ratio scale expression into another one with the help of mapping functions
of the form: M = a ∗ M

′
. Finally, the following facts are true for an absolute

scale: a) measurement is made simply by counting the number of elements in the
measurement set; b) measured attribute takes the form: “num of occurrences of
x in the entity”; c) all arithmetic analysis is meaningful; d) the set of accept-
able transformations between different absolute scale expressions is the identity
transformation function.

Unit Facet The Unit Facet formally describes the unit of a ratio scale of a ratio
QoS metric. A Unit has one name, several abbreviations and synonyms (even
in different languages). A Unit belongs to a System of Units, which system
can be SelfConsistent or NonSelfConsistent, and is associated with the same
QoSAttribute as the one that is measured by the QoS metric of the unit. A
Unit is separated into BasicUnits and MultipleUnits. The BasicUnit class is
separated into UniqueAttributeUnits and DerivedAttributeUnits, depending on
the type of Attribute measured. A MultipleUnit is associated with a BaseUnit
and converted to it by a constant (magnitude). It has a name composed of the
name of its BaseUnit and a prefix. A DerivedUnit is proportional to some Units
and inverse proportional to other Units. It also has a magnitude that is used to
express its mathematical definition in relation to the other (inverse) proportional
units. An unit is equivalent to another unit and can be converted to it with the
help of their ratio scale and its ratio transformation functions.

Value Type Facet The ValueType ontology describes the types of values a QoS
metric can take. The ValueTypes can be Scalar or NumericUnion, or ListBased
types. Scalar value types are simple value types that can be Numeric or String.
ConstrainedNumeric value types represent Numeric value types that have (up-
per, low or one) limits (e.g. the Integers set [2,5] or the Integer value {2}). The
NumericUnion class represents value types that are expressed as unions of Nu-
meric value types (e.g. [1, 2]∪ {4} ∪ [9, 11]). The List-Based class represents list
value types that have a specific size and whose elements are of a specific Value-
Type. Subclasses of the ListBased class are: numeric or string lists, queues and
timeseries.

3.3 Rules

The most significant change in OWL-Q is the incorporation of rules. It is well-
known at the Semantic Web community that OWL supports very well reasoning
about concepts but not about properties. For example, there is no way we can
specify that a fact p(x, y) can be true, where x, y are instances, if other property
or instance facts are true. As another example, there is no way to specify that two
or more property or class instance facts (or a mixture of them) cannot be both
part of the semantic database. However, it is imperative in OWL-Q to reason
about properties with rules because: a) relations between temporal properties
like duration [14] should be expressed and reasoned about; b) operations or
comparisons on metrics should be restricted according to the scale that they use;

130

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

c) integrity constraints between property facts and/or instance facts should be
able to be enforced; d) compatibility or equivalency of scales and compatibility
of metrics’ value types should be expressed by OWL property facts fired by rules;
e) rule-based algorithms like the metric matching one (see next section) have
to be specified. So we are currently in the process of extending OWL-Q with
rules, which are expressed in SWRL – the most widely used SW rules proposal
at present. However, most reasoners only partially support SWRL and this is a
major obstacle to our under-implementation semantic framework for QoS-based
WS description and discovery.

4 QoS-based Web Service Discovery Framework

4.1 QoS Metric Matching Algorithm

All QoS-based WS discovery algorithms fail to produce accurate results be-
cause they rely on either syntactic or semantically-poor QoS metric descriptions.
Hence, they cannot infer the equivalence of two QoS metrics based on descrip-
tions provided by different parties. Different specifications occur for two reasons:
a) different perception of the same concept; b) different type of system read-
ing for the same metric. For example, equivalent response time metrics could
be associated to different units (e.g. minutes vs. seconds) and to different value
types(e.g. [0.0,10.0] vs. [0,600] respectively). As another example, a DownTime
metric can be either obtained in the form of high-level reading from a system with
advanced instrumentation or can be derived from a resource metric of a system’s
Status obtained from low-level reading of systems with basic instrumentation.

Provided that two QoS metric descriptions are expressed in OWL-Q, we
have developed a rule-based QoS metric matching algorithm [5] that infers the
equivalence of the two metrics. This algorithm is composed of three main rules,
each corresponding to a different case in a two metrics comparison. The last
rule is recursive and reaches the final point of checking the equivalence of two
mathematical formulas in order to infer the equivalence of two metrics.

Unfortunately, equivalency of mathematical expressions, which is a problem
area of symbolic computation, is undecidable. For this reason, we decided to use
CSP solving that is decidable although computationally expensive. The trick
for this transformation/change is the simple observation that symbolic expres-
sion equality can be seen alternatively as unsatisfiability of a CSP containing
a constraint enforcing that the difference of the two expressions is not zero.
In other words, if the CSP does not have any solution, then the constraint
cannot be enforced and the negation of its formula is always true. The latter
infers the equality of the expressions compared, which is our goal. For example,
suppose that we want to check if two expressions (x + 1)2 and x2 + 2x + 1
are equal. We can easily transform the previous problem to a CSP: [(X :
−∞ . . . + ∞), ((x + 1)2 − x2 − 2x − 1! = 0)] and try to solve it. There is no
solution to this CSP, so the constraint is unsatisfiable, the difference of the two
expressions is always zero and thus these expressions are equal.

131

Due both to changes on the OWL-Q Ontology and to the above reasoning,
we have modified our metric matching algorithm as follows:

match (M1,M2) ⇐ rrm (M1,M2) ∨ rcm (M1, M2) ∨ ccm (M1,M2) (1)
sm (M1, M2) ⇐ svm (M1.scale, M2.scale,M1.type, M2.type)
∧M1.object = M2.object ∧M1.measures = M2.measures (2)
rrm (M1,M2) ⇐ ResourceMetric (M1) ∧ResourceMetric (M2) ∧ sm (M1,M2)

(3)

rcm (M1,M2) ⇐ ResourceMetric (M1) ∧ CompositeMetric (M2) ∧ sm (M1,M2)
∧M2.derivedFrom ∩ CompositeMetric = ® ∧ ¬∃V ∈ M2.derivedFrom match (M1, V)

(4)

ccm (M1,M2) ⇐ CompositeMetric (M1) ∧ CompositeMetric (M2)
∧ sm (M1,M2) ∧msm (M1.derivedFrom, M2.derivedFrom)
∧ ¬solveCSP (M1.derivedFrom, M2.derivedFrom,

M1.measuredBy −M2.measuredBy! = 0) (5)

where M1 and M2 are Metrics, svm (M1.scale, M2.scale,M1.type, M2.type) is a
rule that infers if the scales and value types of metrics M1 and M2 are compatible,
msm (M1.derivedFrom,M2.derivedFrom) is a rule that matches one by one
the M1’s list of derivative metrics with the corresponding metrics list of M2,
and solveCSP (List1, List2, equation) is a logic procedure that solves the CSP
defined by the two first metric lists and the equation given by third argument.
When the latter procedure finds a solution, it returns true, otherwise it returns
false. More details about all other clauses and symbols can be found in [6].

Therefore, the above algorithm infers that two metrics M1 and M2 match if
one of the three body rules of rule (1) is satisfied. The first (rule (3)) and the
second (rule (4)) of the three body rules have not been altered and we are not
going to further describe them.

The last of the three body rules, rule (5), compares and possibly aligns one by
one the metrics from which M1 is derived with the corresponding metrics of M2

and updates appropriately the measurement formulas of M1 and M2. Then from
the derivation lists of M1 and M2 and their measurement formulas a (possibly
non-linear) CSP is defined and solved. More details about the algorithm can be
found in [6].

Composite-to-Composite Metric Matching Example. Assume that a
WS provider defines composite metric Avail1 that measures the QoS Prop-
erty of Availability of his whole WS and is derived from two Resource metrics
Downtime1 and Uptime1 based on the formula: 1−Downtime1/(Downtime1 +
Uptime1). In addition, assume that a WS requester defines composite metric
Avail2 that also measures the QoS Property of Availability and is derived
from two Composite metrics Downtime2 and Uptime2 based on the formula:
Uptime2/(Uptime2+Downtime2). Further assume that all metrics have as value

132

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

type the interval [0.0, 1.0] and that the following facts are true: smatch(M1,M2),
rcm(Downtime1, Downtime2), rcm(Uptime1, Uptime2). We want to see if com-
posite metrics Avail1 and Avail2 are matched based on the satisfiability of
rule (5). The first three clauses of this rule are trivially true. The fourth clause in-
fers that: rcm(Downtime1, Downtime2), rcm(Uptime1,Uptime2). So Downtime1

and Downtime2 are mapped to a new metric Downtime and Uptime1 and
Uptime2 are mapped to Uptime. In this way, it stands that: M1.derivedFrom =
M2.derivedFrom = [Downtime, Uptime], M1.measuredBy = 1−Downtime/(
Downtime+Uptime), M2.measuredBy = Uptime/(Uptime+Downtime). The
last clause of the rule will create and solve a CSP that has the following defini-
tions: Downtime, Uptime :: [0.0, 1.0] and constraints: 1−Downtime/(Downtime+
Uptime) − Uptime/(Uptime + Downtime)! = 0. This CSP is unsatisfiable so
finally the fact match (M1,M2) is inferred.

4.2 QoS Metric Alignment Algorithm

The Alignment process is executed when any QoS specification S is published
or queried on the underlying QoS-based WS discovery system. Its goal is to
align S with all already processed offers Oi and demands Dj by finding their
common QoS metrics based on the QoS metric matching algorithm. After metric
alignment, S is transformed to a CSP which is checked for consistency (i.e. if it
has a solution). If the CSP is inconsistent, then neither S nor its CSP are stored
in our Repository (R) and S’s owner is informed. In case of an inconsistent
demand, the discovery algorithm is also not executed. The alignment process
relies on the concept of the Metric Store (MS), which is part of R. MS stores
all unique QoS metrics encountered so far. So when a new QoS spec arrives, we
don’t need to examine if any of its metrics matches with any metric of all offers
or demands but with any metric in the MS. In this way, there is a minimization
of all possible metric-to-metric comparisons. In addition, all unique metrics of
this new QoS spec are added to the MS. If this QoS spec is inconsistent, its
metrics are not removed from the MS. More details about this algorithm and
how the transformation of a QoS spec S to a CSP is carried out can be found
in [6].

4.3 QoS-based Web Service Discovery Algorithm

One of the most prominent QoS-based WS discovery algorithm [3] expresses each
QoS-based WS description as a CSP. Then it separates the QoS-based advertise-
ments into two categories: the ones that satisfy completely the QoS-based request
and the others that do not satisfy the request. However, this algorithm presents
four major drawbacks: 1) it performs syntactic metric matchmaking producing
false negative and false positive results; 2) QoS spec matchmaking relies on the
concept of conformance, which is not absolutely correct (see next paragraph); 3)
it does not provide advanced categorization of results; 4) it does not return any
result when QoS requests are over-constrained, where over-constrained problem
specifications happen very often in the real-world.

133

Matchmaking of QoS offers and demands is based on the concept of confor-
mance [3], which is mathematically expressed by the following equivalency:

conformance (Oi, D) ⇔ sat
(
Pi ∧ ¬PD

)
= false (6)

To explain, an offer Oi matches a demand D when there is no solution to the
offer’s CSP Pi that is not part of the solution set of the demand’s CSP PD. This
definition is slightly wrong as it excludes from the result set those QoS offers that
provide better solutions than that of the demand’s. For example, suppose that a
WS provider and requester use the same metric X, measuring the QoS Property
of Availability, that has as value type the set (0.0, 1.0) ↑, where ↑ denotes that
this type is positively monotonic i.e. greater values are better than lower ones.
Further assume that the WS provider’s CSP has the constraint: X ≥ 0.96 while
the WS requester’s CSP has the constraint: 0.95 ≤ X ≤ 0.999. Based on the
above definition, the provider’s offer does not match the request as it contains
solutions greater than that of the request’s, although these solutions are better.
Thus, a more correct definition of matchmaking is the following: an offer Oi

matches a demand D when its CSP Pi has solutions that are either contained
in the solution set of the demand’s CSP PD or are better that the demand’s
solutions.

Based on the deficiencies of [3] and the new definition of matchmaking, we
have proposed two QoS-based WS discovery algorithms [6]. The first one is only
restricted to unary constraints but is more effective and easy to implement while
the other is more generic but harder to implement. These algorithms presuppose
that the offers set {Oi} and the demand D are already aligned and transformed
to corresponding CSPs Pi and PD respectively. Due to space limitations of this
paper, we are going to analyze only the second algorithm.

Generic Discovery Algorithm This algorithm checks if the whole solution of
the offer is worse than all solutions of the demand by assigning a preference or
value to each CSP solution. So it is more closed to the definition of conformance
we have previously given in this section.

The big question is how the assignment of preferences to solutions takes
place. The technique we use is based on utility functions and weights on CSP
variables [3]. Each CSP variable (a map of a metric) is given a (user) weight
or preference (taking values from the set [0.0, 1.0]) to reflect the significance of
this variable to the preference/value of the solution. In addition, each possible
value of this variable is given also a preference (∈ [0.0, 1.0]) by the variable’s
utility function. The preference of a CSP solution is given by the following sum
on all variables Xj : ps =

∑
Xj

(wXj · ufXj (vXj
)), where wXj

is the weight of the
variable Xj , ufXj () is its utility function and vXj is its value.

Based on the above technique, a partial ordering of all solutions of a CSP
can be inferred. This is the appropriate mean in order to define matchmaking:
an offer’s CSP Pi matches the CSP PD of the demand if its worst solution has
a preference of greater or equal value with respect to the preference of the worst
solution of the demand. This definition leads to two main observations: a) CSOPs

134

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

for offers and demands have to be solved in order to find the preference of the
worst solution; b) constraints are only used to reduce the domain of the variables.
The second observation hides an important conclusion: constraint relaxation is
inherent to the optimization of CSPs based on preference functions. To explain,
a matching offer may have a (worst) solution that violates constraints of the
demand affecting one or more variables of less significance. However, this solution
surely provides better values for variables of higher significance/preference. It is
like relaxing some constraints of the demand in order to match this offer. The
next paragraph provides a sketch of the QoS-based WS discovery algorithm,
while the last one provides a simple example of its application.

Algorithm. [Matchmaking] We compute the preferences pD
s1

and pD
s2

of the
demand’s CSP PD worst sD

1 and best sD
2 solution respectively by solving two

CSOPs (minimization and maximization) [5]. For each offer’s CSP Pi, we com-
pute the preferences pi

s1
and pi

s2
of its worst si

1 and best si
2 solution respectively

in the same manner as above. Then, we consider four cases:

1. If (pi
s2
≤ pD

s1
), then the offer is put in the fail match list.

2. If (pi
s2

> pD
s1
∧ pi

s1
< pD

s1
), then the offer is put in the partial match list.

3. If (pi
s1
≥ pD

s1
∧ pi

s2
≤ pD

s2
), then the offer is put in the exact match list.

4. If ((pi
s1
≥ pD

s1
∧ pi

s2
> pD

s2
) ∨ (pi

s1
≥ pD

s2
)), then the offer is put in the super

match list.

The first case expresses the fact that the offer’s best solution is not better than
the worst solution of the demand and justifies the classification of the offer as
failed. The second case expresses the fact that the offer has some bad solutions
but also some good solutions so it is considered as a partial result. The third case
concerns offers that contain a subset of the solutions of the demand and justifies
their classification as exact. The last case is about offers that contain not only
solutions of the demand but also better ones. That’s why they are classified as
super results/matches.

[Selection] In this process, either the best two categories of results (if not
empty) or the third category are ordered based on the weighted sum of the
preferences of their worst and best solutions [5].

Example. To demonstrate our QoS-based WS discovery algorithm, we supply a
simple example of its application to a small set of four QoS offer CSPs Pi and
one demand CSP PD. Assume that all CSPs have the following three definitions:
X1 :: (0.0, 86400.0] ↓, X2 :: (0, 100000] ↑ and X3 :: (0.0, 1.0) ↑. Based on these
variable definitions, assume that each CSP has the following constraints: P 1 :
[X1 ≤ 10.0, X2 ≤ 100, X2 ≥ 50, X3 ≥ 0.9], P 2 : [X1 ≤ 4.8, X2 ≤ 50, X2 ≥
40, X3 ≥ 0.95], P 3 : [X1 ≤ 16, X2 ≤ 40, X2 ≥ 30, X3 ≥ 0.98], P 4 : [X1 ≤
16, X2 ≤ 50, X2 ≥ 40, X3 ≥ 0.98], and PD : [X1 ≤ 15.0, X2 ≥ 40, X2 ≤ 60, X3 ≥
0.99]. Moreover, assume that the WS requester does not provide weights to
the constraints of his demand and associates the following weights to the three
metrics/variables: X1 ← 0.3, X2 ← 0.3, X3 ← 0.4, while a = 0.7 and b = 0.3 [5].

135

In addition, assume that the following utility functions are applied to the CSOPs:
ufX1 = (16−X1)/16, ufX2 = (X2 − 30)/70, ufX3 = (X3 − 0.9)/0.1 [5].

For each offer CSP Pi we have the following preferences: [P1 : p1
s1

= 0.1982, p1
s2

=
1.0],[P2 : p2

s1
= 0.4528, p2

s2
= 0.7857], [P3 : p3

s1
= 0.32, p3

s2
= 0.7428], [P4 : p4

s1
=

0.3628, p4
s2

= 0.7428]. The demand’s CSP PD has the following preferences:
PD : [pD

s1
= 0.4216, pD

s2
= 0.8285]. So the discovery algorithm will produce the

following results lists: Super = [], Exact = [O2], Partial = [(O1), (O3), (O4)],
Fail = [].

As it can be seen, offer O2 is in the Exact match list although it violates
the last constraint of the demand. The reason for this is that the preference
of its worse solution is greater than the preference of the worse solution of the
demand. To put it in another way, O2 provides a far better lowest value for the
X1 attribute with respect to the worse lowest value for the X3 attribute. Another
observation is that O1 pays the penalty of providing the minimum possible value
for the X3 attribute and is considered a partial result.

4.4 QoS-based Web Service Discovery Engine

We are currently in the development phase of our QoS-based WS discovery
engine by using the Pellet reasoner for ontology reasoning and the ECLiPSe
(http://eclipse.crosscoreop.com) system for solving linear constraints, while the
Java programming language is used as a bridge between them. Pellet is chosen
because it supports the tasks of ontology validation and reasoning, OWL 1.1
datatype reasoning and partial SWRL inferencing. ECLiPSe is chosen as it sup-
ports advanced linear constraint solving and extends the common facilities of
Prolog. Additionally, it can be extended to support non-linear constraint solving
through external solvers. More details about the architecture and the function-
ality of the main components of the discovery engine can be found in [6].

5 Future Work

As future work, we plan to evaluate our metric matching and discovery algo-
rithms in order to show their performance and accuracy. We also intend to
exploit advanced techniques for solving over-constrained problems like semi-ring
based constraint satisfaction [16]. We also plan to extend OWL-Q with the de-
scription of the context of both the WS and the WS requester so as to achieve
Context-aware QoS-based WS discovery. Our ultimate and final goal is to ac-
complish QoS-based and context-aware WS composition.

References

1. Klusch, M., Fries, B., Sycara, K.: Automated semantic web service discovery with
owls-mx. In: AAMAS ’06: Proceedings of the fifth international joint conference
on Autonomous agents and multiagent systems, New York, NY, USA, ACM Press
(2006) 915–922

136

First International Joint Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web

2. Zhou, C., Chia, L.T., Lee, B.S.: Daml-qos ontology for web services. In: ICWS ’04:
Proceedings of the IEEE International Conference on Web Services (ICWS’04),
Washington, DC, USA, IEEE Computer Society (2004) 472

3. Cortés, A.R., Mart́ın-Dı́az, O., Toro, A.D., Toro, M.: Improving the automatic
procurement of web services using constraint programming. Int. J. Cooperative
Inf. Syst. 14(4) (2005) 439–468

4. Van Hentenryck, P., Saraswat, V.: Strategic directions in constraint programming.
ACM Computing Surveys 28(4) (1996) 701–726

5. Kritikos, K., Plexousakis, D.: Semantic qos metric matching. In: ECOWS ’06:
Proceedings of the European Conference on Web Services, Washington, DC, USA,
IEEE Computer Society (2006) 265–274

6. Kritikos, K., Plexousakis, D.: Semantic qos-based web service discovery algorithms.
In: ECOWS ’07: Proceedings of the European Conference on Web Services, Wash-
ington, DC, USA, IEEE Computer Society (2007) (accepted).

7. Ran, S.: A model for web services discovery with qos. SIGecom Exch. 4(1) (2003)
1–10

8. Maximilien, E.M., Singh, M.P.: Conceptual model of web service reputation. SIG-
MOD Rec. 31(4) (2002) 36–41

9. Tosic, V., Pagurek, B., Patel, K.: Wsol - a language for the formal specification of
classes of service for web services. In Zhang, L.J., ed.: ICWS, CSREA Press (2003)
375–381

10. Keller, A., Ludwig, H.: The wsla framework: Specifying and monitoring service
level agreements for web services. Technical Report RC22456 (W0205-171), IBM
(2002)

11. Tian, M., Gramm, A., Nabulsi, M., Ritter, H., Schiller, J., Voigt, T.: Qos integra-
tion in web services. Gesellschaft fur Informatik DWS 2003, Doktorandenworkshop
Technologien und Anwendungen von XML (October 2003)

12. Oldham, N., Verma, K., Sheth, A., Hakimpour, F.: Semantic ws-agreement partner
selection. In: WWW ’06: Proceedings of the 15th international conference on World
Wide Web, New York, NY, USA, ACM Press (2006) 697–706

13. Kritikos, K., Plexousakis, D.: Requirements for qos-based web service description
and discovery. compsac 2 (2007) 467–472

14. Hobbs, J.R., Pan, F.: An ontology of time for the semantic web. ACM Trans.
Asian Lang. Inf. Process. 3(1) (2004) 66–85

15. Fenton, N.E.: Software Metrics: A Rigorous and Practical Approach. International
Thomson Computer Press, Boston, MA, USA (1996)

16. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and
optimization. J. ACM 44(2) (1997) 201–236

137

