
Multi-staged and Multi-viewpoint Service
Choreography Modelling

Alistair Barros1, Gero Decker2, Marlon Dumas3

1 SAP Research Centre, Brisbane, Australia
alistair.barros@sap.com

2 Hasso-Plattner-Institute, University of Potsdam, Germany
gero.decker@hpi.uni-potsdam.de

3 Queensland University of Technology, Australia
m.dumas@qut.edu.au

Abstract. Recent approaches to service-oriented systems engineering
start by capturing the interactions between services from the perspec-
tive of a global observer, leading to so-called service choreographies.
The rationale is that such choreographies allow stakeholders to agree
on the overall structure and behaviour of the system prior to developing
new services or adapting existing ones. However, existing languages for
choreography modelling, such as WS-CDL, are implementation-focused.
Also, these proposals treat choreographies as monolithic models, with
no support for multiple viewpoints. This paper proposes a multi-staged
and multi-viewpoint approach to choreography modelling. For the initial
stages, the approach promotes the partitioning of choreography models
and the design of role-based views; while for subsequent stages, milestone
and scenario models are used as an entry point into detailed interaction
models. The paper presents analysis techniques to manage the consis-
tency between viewpoints. The proposal is illustrated using a sales and
logistics model.

1 Introduction

As implementation-level web service interoperability standards mature, the need
for analysis and design methods for service-oriented systems becomes even more
pressing. In early proposals for service-oriented analysis and design methods [8, 2,
22, 16], global models of service interactions, also known as conversation protocols
or service choreographies, play a key role during the initial stages of analysis and
design. Service choreographies capture the interactions in which a collection of
services engage, from the perspective of an ideal observer who would be able
to see every interaction occurring between the involved services. By providing a
“birds-eye” view over interactions, service choreographies allow business and IT
stakeholders to build a common understanding of the structure and behaviour
of the overall system, prior to approaching implementation issues.

Languages such as BPSS [20] and WS-CDL [14] have been proposed as a basis
for modelling choreographies. However, these languages focus on detailed inter-



2 Alistair Barros, Gero Decker, Marlon Dumas

action flows and treat choreographies as monolithic development artifacts. WS-
CDL in particular goes down to supporting the description of choreographies in
a quasi-executable form, using programming constructs such as sequence, block-
structured conditional and loop structures, and variable assignment. While these
languages partly support an implementation-independent approach to service-
oriented system design, it is questionable that they are suitable for the early
phases of the development lifecycle, where the incremental acquisition of a com-
mon understanding by multiple stakeholders with different concerns and back-
grounds is crucial. It is unlikely that business stakeholders and system analysts
operating at a high level of abstraction will benefit from manipulating chore-
ography models that include executable data manipulation steps. Instead, they
are likely to be interested in viewing choreographies without the interaction flow
details (e.g. role-based viewpoints), or to view milestones and specific scenarios.
Only at later stages does the refinement of choreography models into executable
code becomes a concern. Thus, languages and methods for choreography mod-
elling should be compatible with multi-staged and multi-viewpoint design. By
supporting multiple modelling viewpoints, it is possible to break down a ser-
vice design into smaller more manageable parts that are handled by different
stakeholders.

In this setting, the proposition of this paper is an approach to choreography
modelling based on viewpoints layered on top of a choreography modelling lan-
guage, namely Let’s Dance [21]. Let’s Dance has a formal semantics defined in
terms of π-calculus [6] and has been shown to be expressive enough to capture
common service interaction patterns [3] and to serve as a basis for generating lo-
cal views on service interactions for subsequent refinement into executable mod-
els [21]. In this paper, we define role-based, milestone-based, and scenario-based
viewpoints into service choreographies, and propose techniques for managing the
consistency between these viewpoints and the interaction-based viewpoints na-
tively supported by Let’s Dance. The outcome is a set of notational elements
and consistency checking techniques that provide a basis for defining service-
oriented analysis and design methods that bridge the gap between business and
IT concerns. The notational elements have been used to capture a refined ver-
sion of a logistics collaboration model proposed by the Voluntary Inter-industry
Commerce Solutions Association (VICS).4 Meanwhile, the consistency checking
algorithms have been validated through implementation and testing.

After an informal introduction to the proposal using the VICS global logistics
model (Section 2), the paper defines an abstract syntax for each of the proposed
modelling viewpoints (Section 3). Next, the techniques for inter-viewpoint con-
sistency verification are presented in Section 4. Finally, related work is discussed
in Section 5 while Section 6 concludes.

4 See www.vics.org



Multi-staged and Multi-viewpoint Service Choreography Modelling 3

2 Multi-view choreography design by example

This section provides the practical setting through which the proposed chore-
ography modelling viewpoints and extensions to the Let’s Dance language are
motivated and developed. Insights are drawn from a case study inspired by the
Sales and Logistics component of the VICS EDI Architecture Guide. The case
study is related to the supply chain between retailers and manufacturers, cov-
ering processes where products are ordered through cyclic stock replenishment
agreements over a time-horizon (e.g. 12 months), shipped and paid for. Along
the way, shipments need to be managed and optimised through different types of
carriers (land, rail, air, ocean), consolidated at intermediaries, crossed through
the “red tape” of customs and quarantine, and delivered to consignment nodes
where they are dispatched to retail stores. As a result of delivery, fulfilment of
an order needs to be assessed with respect to quantity, timeliness and damage
to ensure quick turn-around for payment and reimbursement. To close the loop,
supply and consumer patterns are dynamically fed back into the next cycles of
merchandising and collaborative forecasting, planning and replenishment.
Domains and roles. End-to-end modelling of interactions of value-chains as
vast as Sales and Logistics require a careful scoping of processes being anal-
ysed. To facilitate such scoping and provide a focus on models (e.g. interaction
models) developed for common business objectives, we propose the notion of
collaboration domains. These domains group a set of logically related models.
The set of collaboration domains for the Sales & Logistics case study is depicted
in Figure 1. As apparent from the figure, the collaboration domains (ellipses)
scope different areas of business interest. For example, a distinction is made be-
tween Collaborative Forecasting Product Replenishment (out of which an order
is produced), Logistics (governing shipment of goods), Payments, Exceptions,
Order Release and Product Merchandising. Given the size and complexity of
domains, we propose that they should be arranged in a hierarchical structure.
For example, in Figure 1, we can see that the logistics domain is decomposed
into four sub-domains: Tendering, Carrier Appointment, Delivery, and Claims
& Returns.

To go from collaboration domains into individual processes with detailed in-
teractions, we propose an intermediate viewpoint: the role-based choreography
view. A role-based choreography is defined for each leaf-level domain (since non-
leaf domains are purely used for the purpose of abstraction). This viewpoint
is illustrated for the Delivery domain in Figure 1. This viewpoint shows col-
laborating roles (boxes) and their interaction dependencies, expressed through
channels. A channel captures the fact that there is at least one direct interaction
between two or more roles and the purpose of this/these interactions. Channels
are represented by small circles on lines.

Cardinality constraints on channels are used to express how many partici-
pants of one role can interact with one participant of the other role. As illus-
trated, a Shipper interacts with a number of Carriers for Carrier Planning, while
a Carrier interacts with one Shipper. A Shipper, a Consignee and a Consolida-
tor all interact for the purpose of agreeing on a Detailed Shipment Schedule.



4 Alistair Barros, Gero Decker, Marlon Dumas

Exceptions

Consignee

Carrier

Land 
Carrier

Rail 
Carrier

Ocean 
Carrier

Air
Carrier

Breakdown 
Service

Locative 
Service

Insurance

Shipper

Manu-
facturerRetailer

Distribution 
Center

Store

Consolidator

Customs / 
Quarantine

Delivery Negotiation

Detailed Shipment Schedule

Carrier Planning

Coverage 
Notification

Detailed Ship-
ment Schedule

Clearance Pre-
notification

Clearance 
Monitoring

Delivery 
Monitoring

Truck Breakdown 
Provision

Traffic Optimization 
Guidance

Arrival/Pickup Conf.

Special 
Cover

Delivery 
Planning

1

1

1

1

1

1 1

1

1

1

1

Delivery / 
Dispatch Plan

Shipment 
Schedule

1

1 1

1

1

* 1

1

1

*

* 1*

1 *

1 11 *

* *

Dispatch
*

Product 
Merchandising

Order Release

Payments

Collaborative 
Forecasting Product 

Replenishment

Tendering

Carrier 
Appointment

DeliveryClaims & 
Returns

Logistics

Fig. 1. High-level role-based view for Delivery domain of Logistics

Multiplicity of roles can be explicitly shown, as with Shipper and Carrier for
instance. This indicates that several participants of role Carrier (overlaid boxes)
are involved in one choreography instance as opposed to only one participant of
role Shipper taking part (single box).

Another notational element, used in the representations for the Carrier and
the Consignee roles, is that of role hierarchies (roles within roles). Role hierar-
chies can be used to express different relationships, and the exact relationship
being represented needs to be specified by the modeller. In the case of the Con-
signee, the hierarchies mean that at least one of the sub-roles is involved in the
interaction expressed against the super-role, i.e. a part-of relationship. Consignee
also illustrates that further interaction dependencies can be expressed between
sub-roles. Alternatively, the relationship between super- and sub-roles could re-
flect specialisation, where all sub-roles carry the same interaction dependencies
as the super-role, and each may carry additional dependencies. This applies to
the Carrier and its sub-roles.

With interaction dependencies between roles, through channels, in place,
individual message exchanges can be captured. We propose that channels are
assigned a set of message interactions in terms of message type and direction of
flow. By this assignment to channels, the message interactions between collabo-
rating roles is captured, although they remain unordered.

Milestones, scenarios and interactions. The models described so far are
static: they do not describe control flow relationships between interactions. Be-
low, we introduce viewpoints where interactions and their relationships are cap-
tured in more detail. Since the number of participants and interactions can be
very large, these detailed viewpoints can be difficult to build and comprehend.
Thus, a mechanism is needed to partition these models. This is achieved through
the notion of milestones depicted in Figure 2.

Milestones (diamonds) represent the main global states choreography in-
stances can be in and as such are used as “sign-posts”. In complex choreogra-



Multi-staged and Multi-viewpoint Service Choreography Modelling 5

Payments Exceptions

Collaborative
Forecasting Product
Replenishment

Carrier
Appointment

Delivery

Carriers
Selected

Operational
Delivery
Contract
Established

Delivery
Event
Planning

Variations
from Delivery
Contract Finalised

Ad-hoc
Requests
Finalised

Shipment
Schedule
Prepared

Carrier
Variations
Processing

Shipment
Schedule
Finalised

Variations
Prepared

Carrier
Variations
Identified

Varied
Carriage
Issued

Final
Shipment
Schedule
Issued

Customs/
Quarantine
Pre-Clearance
Processing

Carrier
Pick-up/
Delivery
Confirmation

Consolid.
Pick-up/
Delivery
Confirmation

Shipment
Commenced

Claims & Returns

Fig. 2. Milestones related to Delivery domain

phies, milestones are useful since the details of processes which lead to milestones
being reached can be omitted. To illustrate the point, Figure 2 depicts milestones
primarily concerning Delivery, with some links to related milestones in processes
of other domains shown. In this example, some milestones are related through
Precedes relationships (arrowed lines). Some milestones might never be reached
for a particular instance of a choreography. For example and as explained in de-
tails later, if a guard attached to an interaction evaluates to false, the interaction
is skipped, and so are all other interactions that directly or transitively follow it
according to the Precedes relation. Also, some milestones may be skipped as a
result of Inhibits relationships. An Inhibits relationship (line crossed by a bar)
expresses that if a milestone is reached, the target milestone can no longer be
reached for the current instance of the choreography (i.e. it will be skipped). In
the example, a Shipment Schedule Prepared milestone being reached will result
in either a Shipment Schedule Finalised (SSF) or Carrier Variations Identified
(CVI) milestone being eventually reached, but not both since these milestones
“inhibit” each other. If we want to express that a milestone can still be reached
even if a “preceding” milestone has been skipped, we should use a Weak Precedes
relationship (arrowed dashed line) instead of a Precedes ones. Following the same
example, Final Shipment Schedule (FSS) is “weak preceded” by the both the
SSF and CVI milestones, and thus the FSS milestone will be reachable after one



6 Alistair Barros, Gero Decker, Marlon Dumas

of these two milestones has been reached and the other has been skipped. This
example corresponds to a more general pattern where a Weak Precedes relation-
ship is used to join two mutually exclusive paths. Another example of a Weak
Precedes is given by the Delivery Event Processing milestone (e.g. next week’s
delivery) which is reached after the Operational Delivery Contract Established
milestone is reached, whether or not the milestones Variations from Delivery
Contract Finalised and Ad-Hoc Requests Finalised have been reached.

The last extension is to introduce scenarios, or specific “threads” of interac-
tions, and to merge these scenarios to obtain detailed interaction-based chore-
ography models (also called interaction models for short). The modelling of in-
teractions is the central theme of choreography languages, however support for
capturing scenarios (a well-established feature of analysis and design) is left
open. With milestones in place, under our approach, scenarios identify interac-
tions which serve to progress the milestones. Figure 3 illustrates how scenarios
relate to milestones drawn from Figure 2, starting with a scenario yielding a
milestone that is used as input for a second scenario. In the third scenario de-
tailed in the example, the Retailer and Manufacturer negotiate required stock,
and finally the Manufacturer releases order quantities. The Manufacturer then
determines through the Shipper whether the allocated Carriers have capacity or
not for the shipment, and accordingly two exclusive milestones result from the
scenario. How large or small a scenario is, should reflect user requirements. In
addition, scenarios might be split into sub-scenarios in order to allow for different
variants of parts of a scenario.

Store/inventory report

Retailer Manufacturer

Final delivery replenishment

Manufacturer Retailer

Replenishment acknowledgement

Retailer Manufacturer

Carrier capacity sufficient

Manufacturer Retailer

Carrier capacity insufficient

Manufacturer Retailer

Shipment 
Schedule 
Prepared

Carrier
Variations
Identified

Shipment
Schedule 
Finalised

Investigate
Replenishment for
Delivery Event

Fig. 3. Scenario for replenishment

Design method. The above considerations are summarised as a choreography
design method in Figure 4. The rounded rectangles in this figure depict the ac-
tivities of the choreography design method. The arrows describe which other
activities are influenced by the outcome of an activity. First, domains need to
be identified and decomposed into sub-domains. Next comes the identification of
participants in the different domains. This identification mostly takes place early
in the process but participants can also be included in later stages. With par-
ticipants in place, role-based choreography models can be obtained by defining
interaction dependencies between them.



Multi-staged and Multi-viewpoint Service Choreography Modelling 7

Domain scoping

Participant 
identification

Milestone 
definition

Scenario 
modeling

Message 
identification

Choreography 
finalization

Service 
implementation 

for Role N

Service 
implementation 

for Role 1

Choreography 
View for Role N

Choreography 
View for Role 1

Fig. 4. Method for choreography design

Milestone models provide a high-level view of the behavioural aspect of chore-
ography models, describing the main global states choreography instances can
be in. Scenarios describe which interactions are needed to get from one mile-
stone to another and thus only focus on one part of a choreography. During
scenario modelling the designers might realise that they have to introduce more
participants than they have considered so far. Furthermore, re-discussing the
scope of a domain might be needed when scenario modelling goes down to the
level of message exchanges. It might not be obvious to what domain a certain
interaction belongs to, and this may affect the grouping of scenario models and
interaction models into domains. For example, does a scenario triggered by an
interaction “Pickup Appointment Change Request” belong to the domain “Car-
rier Appointment” or to “Delivery”? Message exchanges between the different
participants are identified in this activity. First, only high-level descriptions are
given. Later, message structures and contents are specified in detail.

The domain-relevant parts of the scenarios are aggregated into an integrated
interaction model for the domain. Therefore, all participants, milestones, inter-
actions and relationships between them are captured in this integrated chore-
ography. Subsequently, the individual participants’ views on the choreography
model are generated and distributed to the participants who now proceed to
design and implement their parts of the choreography. In our previous work [21],
we have proposed algorithms for generating such local participants’ views in the
context of the Let’s Dance language. Finally, existing implementations might be
checked to determine if they already comply with the choreography model or if
changes have to be made.

3 Choreography modelling viewpoints

The top-level viewpoint of the proposed choreography design method is the do-
main model. A domain model is composed of a set of domains arranged in a
hierarchical relation. Leaf-level domains are mapped to different models corre-
sponding to the proposed viewpoints on a choreography. Specifically, each leaf
domain maps to: (i) a role-based model, (ii) a milestone model, (iii) a set of in-
teraction models corresponding to scenarios, and (iv) an integrated interaction



8 Alistair Barros, Gero Decker, Marlon Dumas

model. In this section, we present an abstract syntax for each of these types of
models.

3.1 Role-based choreography models

The previous section has already motivated role-based models and has intro-
duced the intended meaning of the different elements of such models. Figure 5
summarises the corresponding graphical representations: Rectangles represent
roles. Concrete participants are bound at design-time or at run-time. Small

Role2

G

E FA B C Dm11 *

1 1

Fig. 5. Diagram elements for role-based models

circles represent channels while message links are depicted as dashed arrows.
Message links are directed channels with a particular message type assigned.
Cardinality of channels is represented by either “1” or “*” attached to the end-
point of a channel. Multiplicity of roles is represented by a double rectangle like
for role B. Hierarchy is represented by containment in the diagram.

We define a role-based choreography model CR to be a tuple (R, RM , C,
Senders, Receivers, Card, Msg, CM , Parent) where:

– R is the set of all roles,
– RM : R → {one,many} is a function assigning a multiplicity to a role,
– C is the set of all channels,
– Senders, Receivers : C → ℘(R) assign the set of roles to a channel who can

send / receive messages over the channel, if the sets of senders and receivers
are disjunct, the channel is a message link (ML := {ml ∈ C | Senders(c) ∩
Receivers(c) = ∅}),

– Card : {(c, r) ∈ C × R | r ∈ Senders(c) ∪ Receivers(c)} → {one,many} is
a function assigning a cardinality to role r for channel c,

– Msg is the set of all message types,
– CM : ML → Msg is a partial function linking message links to message

types,
– Parent ⊆ R × R specifies the hierarchical relationships between a role and

its sub-roles (Parent must be acyclic) and
– the cardinality “many” is only used in the presence of the multiplicity

“many” of the corresponding role: ∀(c, r) ∈ Card [c = many ⇒ RM(r) =
many].

3.2 Milestone, scenario and interaction models

In previous work [21] we have presented Let’s Dance as a language for modelling
service interactions and their dependencies. Below, we enrich the language with



Multi-staged and Multi-viewpoint Service Choreography Modelling 9

milestones. That way models like they were motivated in section 2 are specified.
Figure 6 contains the graphical elements for representing milestone and inter-
action models. Milestones are represented by diamond shapes and interactions

m1 {A, B}

message msg5

A B

message msg6

B C
repeat until x msg sent (B)

If condition X fulfilled (B)

message msg3

A B

message msg4

B C

message msg1

A B

message msg2

B C

m2 {all} m3 m4 m5 m6

Fig. 6. Diagram elements for milestone and interaction diagrams

using rectangles. These roles indicated in brackets describe which participant
has to be notified as soon as the milestone is reached. If all participating roles
are to be synchronised “all” appears in brackets or the brackets are omitted.

The Precedes relationship between two elements (milestones or interactions)
e1 and e2 indicates that e1 must have been executed / reached before e2 can be
executed / reached. A WeakPrecedes relationship between e1 and e2 indicates
that e2 can only be executed / reached after e1 has been either executed /
reached or after it has been skipped. An Inhibits relationships between e1 and
e2 indicates that e2 cannot be executed / reached after e1 has been executed
/ reached (i.e. e2 is then skipped). Two-directional Inhibits relationships are
represented like in the case of m3 and m4.

Interactions can either be elementary or composite. In the case of elementary
interactions a participant of a certain role sends a message of a given type to
another participant. In Figure 6 a participant of role A sends a message of type
m1 to a participant of role B. Composite interactions allow for grouping of one
or more interactions. Interactions can be guarded, i.e. they may only occur if a
guard condition evaluates to true, or they can be repeated. It is specified which
participant evaluates the guard condition and the repetition expression.

Below, we introduce three types of models corresponding to different view-
points into a choreography: milestone, scenario and interaction models. Milestone
models are composed only of milestones and relationships between them. Mean-
while, scenario models are composed of milestones, interactions and relationships
between them. The purpose of a scenario model is to show how to go from a
set of milestones to another. Scenario models are not limited to one domain and
may be used to show dependencies between milestones and interactions from dif-
ferent domains. Scenario models can be nested, i.e. different sub-scenario models



10 Alistair Barros, Gero Decker, Marlon Dumas

may refine a given scenario model, showing specific variants. A similar notion
can be found in Message Sequence Charts [18] which capture specific paths of
interactions between a number of parties. But in contrast to traditional MSCs,
we allow scenario or sub-scenario model to show alternative paths (i.e. we allow
conditional branching in scenario models)5. Finally, interaction models show all
milestones and interactions from one domain as well as their relationships.

We introduce a unified abstract syntax for milestone, scenario and interaction
models by defining interaction models as the most general viewpoint, and the
other two as special cases. An interaction model CI is a tuple (I, M , RI, RT ,
GI, R, RM , c0, Precedes, WeakPrecedes, Inhibits, Parent, Sends, Receives,
MR, Msg , IM ) where

– I is the set of milestones and interactions,
– M ⊆ I is the set of milestones,
– RI ⊆ I \M is the set of repeated interactions,
– RT : RI → {w, r, fs, fc} links a repeated interaction to a repetition type

(either while, repeat, for each (sequential) or for each (concurrent)),
– GI ⊆ I \M is the set of guarded interactions,
– R is the set of roles,
– the function RM : R → {many, one} specifies whether many or just one

participant of a role is involved in the choreography,
– c0 ∈ I \M is the top-level interaction of the choreography,
– Precedes,WeakPrecedes, Inhibits ⊆ I × I are binary relations over I,
– Parent ⊆ (I \ M) × I is the relation between interactions and their direct

sub-interactions and milestones, defining the set of elementary interactions
EI := {i ∈ (I \M) | i /∈ range(Parent)}

– the partial functions Sends,Receives : EI → R link elementary interactions
to sending and receiving roles,

– MR : M → ℘(R) links milestones to sets of roles that are to be synchronised,
– Msg is the set of all message types and
– IM : EI → Msg links elementary interactions to message types.

A milestone model CM is an interaction model where I = M ∪ {c0}. Mean-
while, a scenario model is an interaction model where no milestone is both the
source and the target of Precedes and/or WeakPrecedes relationships, that is:
∀m ∈ M [¬∃i, j ∈ I ((i Precedes m ∨ i WeakPrecedes m) ∧ (m Precedes j ∨
m WeakPrecedes j))]

4 Consistency analysis

Consistency checking is an essential aspect in multi-viewpoint approaches [8].
In this section we introduce consistency rules between role-based choreography
models and interaction models as well as between milestone models and inter-
action models based on the abstract syntaxes given in the previous sections.
5 While this feature is not supported in traditional MSCs, it is supported in various

extensions to MSCs such as Live Sequence Charts (LSCs) [10].



Multi-staged and Multi-viewpoint Service Choreography Modelling 11

4.1 Role-based choreography models vs. interaction models

Consistency between a role-based choreography model CR = (RR, RMR, CR,
SendersR, ReceiversR, CardR, MsgR, CMR, ParentR) and an interaction
model CI = (II , MI , RII , RTI , GII , RI , RMI , c0, Precedes, WeakPrecedes,
Inhibits, ParentI , SendsI , ReceivesI , MRI , MsgI , IMI) is given if:

– all roles of CI are present in CR and have the same multiplicity: RI ⊆ RR

and RMI ⊆ RMR,
– for all elementary interactions there is a corresponding channel (one channel

can correspond to many interactions): ∀i ∈ EII [∃c ∈ CR (SendsI(i) ∈
SendersR(c) ∧ ReceivesI(i) ∈ ReceiversR(c) ∧ (CMR(c) = IMI(i) ∨ c /∈
dom(CMR)))] and

– each role has to be involved in at least one corresponding elemen-
tary interaction for every channel it is connected to: ∀c ∈ CR∀r ∈
SendersR(c)∪ReceiversR(c) [∃i ∈ EI ((r ∈ {SendsI(i)}∩SendersR(c)∨r ∈
{ReceivesI(i)} ∩ReceiversR(c)) ∧ (CMR(c) = IMI(i) ∨ c /∈ dom(CMR)))].

4.2 Milestone models vs. interaction models

Consistency between a milestone model CM = (IM , MM , RIM , RTM , GIM ,
RM , RMM , c0M , PrecedesM , WeakPrecedesM , InhibitsM , ParentM , SendsM ,
ReceivesM , MRM , MsgM , IMM ) and an interaction model CI = (II , MI ,
RII , RTI , GII , RI , RMI , c0I , PrecedesI , WeakPrecedesI , InhibitsI , ParentI ,
SendsI , ReceivesI , MRI , MsgI , IMI) is given if all constraints defined in the
milestone model are ensured in the interaction model. Constraints are given by
the PrecedesM , WeakPrecedesM and InhibitsM relationships.

1: I(1,1) := {i ∈ II | ¬∃j ∈ RII (j Parent∗I i ∧RTI(j) 6= r)∧
2: ¬∃j ∈ II(j Precedes∗I i ∧ (j ∈ GII ∨ (∃k ∈ II(k Inhibits+ j))))}
3: ∀(m1, m2) ∈ PrecedesM [m1 Precedes+

I m2∨
4: (m1 ∈ I(1,1) ∧m1(PrecedesI ∪WeakPrecedesI)

+m2)]
5: ∀(m1, m2) ∈ WeakPrecedesM [m1(PrecedesI ∪WeakPrecedesI)

+m2]
6: ∀(m1, m2) ∈ InhibitsM [∃i, j ∈ II(i InhibitsI j ∧ j Precedes∗I m2∧
7: (i Precedes∗I m1 ∨ (i ∈ I(1,1) ∧ i(PrecedesI ∪WeakPrecedesI)

∗m1)))]

Fig. 7. Consistency checking between milestone models and interaction models

Figure 7 presents how consistency between a milestone model CM and an
interaction model CI can be checked. We assume that all composite interactions
are repeated and that all interactions and milestones are reachable. Further-
more, all Inhibits relationships must have an effect. In previous work [21] we
have introduced algorithms for expanding choreography models and for identify-
ing unreachable interactions and obsolete Inhibits relationships. A PrecedesM

relationship is ensured in CI if there is a path of PrecedesI relationships from
one milestone to the other or if the first milestone is always eventually reached
(m1 ∈ I(1,1)) and there is a path of PrecedesI and WeakPrecedesI relation-
ships (lines 3-4). Lines 1-2 present how I(1,1) can be identified: There must be



12 Alistair Barros, Gero Decker, Marlon Dumas

no preceding guarded interaction or an InhibitsI relationship targeting a pre-
ceding interaction. A WeakPrecedesM relationship is ensured if there is a path
of PrecedesI and WeakPrecedesI relationships. Finally, an InhibitsM relation-
ship is ensured if a preceding interaction of m1 is the source of an InhibitsI

relationship targeting a preceding interaction of m2.
Additional constraints can be added in the interaction model. For example,

if two milestones m1 and m2 are not ordered in the milestone model, we can
introduce a PrecedesI relationship between m1 and m2 in the interaction model
without violating the consistency rules.

5 Related work

Service choreography description has been the subject of intensive research and
standardisation. An early attempt was BPSS [20] where global models are cap-
tured as flows of interactions using flowchart-like constructs. WSCI [1] represents
another approach wherein global service interaction models are defined as col-
lections of inter-connected local models (as opposed to a single global model).
Control dependencies are described within each individual local model. More
recently, the WS-CDL initiative [14] led to a language that follows the line of
BPSS insofar as global service behaviour is described as flows of interactions.
WS-CDL goes further than BPSS in the level of details at which interaction flows
are described. In fact, WS-CDL can be seen as a programming-in-the-large lan-
guage for Web services since it relies on imperative programming constructs. The
work presented in this paper is complementary to these initiatives, as it defines
viewpoints and notational elements that operate at a higher level of abstraction.

In [4], the authors consider the use of state machines for describing local
models of service interactions. While state machines lead to simple models for
highly sequential scenarios, they may lead to spaghetti-like models when used to
capture scenarios with parallelism and cancellation (e.g. scenarios where a given
interaction may occur at any time during the execution of another set of inter-
actions). Nonetheless, state machines have been shown to be a suitable formal
foundation for reasoning about service models, e.g. determining the bounded-
ness of service queues in service conversations [11]. This latter reference surveys
a number of approaches for describing service interaction models based on com-
municating state machines.

The concept of multi-viewpoint modelling of distributed systems has been ad-
vocated in the RM-ODP reference model [12], which defines various viewpoints
such as enterprise viewpoint (high-level purpose and policies), computational
viewpoint (functional decomposition and interface definition), information view-
point, etc. Dijkman [7] defines a framework for capturing multiple viewpoints
over distributed systems and applies the framework to formalise RM-ODP’s en-
terprise and computational viewpoints. Dijkman’s framework is defined as an
extension to an Architecture Description Language (ADL), namely ISDL, that
includes notational elements similar to those found in the role-based and inter-
action viewpoints considered in this paper, although ISDL does not directly sup-



Multi-staged and Multi-viewpoint Service Choreography Modelling 13

port our role decomposition construct. A discussion on the application of ISDL
for service choreography modelling is presented in [17]. However, the suitabil-
ity of ISDL for capturing complex service interactions (e.g. involving multicast)
is unproven. Also, ISDL does not have a counter-part for the milestone-based
viewpoint which is useful when dealing with large service choreographies.

Colombo et al [5] propose a methodology for service composition that starts
with the definition of so-called social models that capture business entities and
their dependencies. These models are similar to our role-based models, with the
difference that our role-based models capture more detail than social models,
e.g. role-based models capture the multiplicity of interaction dependencies be-
tween roles. In the second phase of the methodology of Colombo et al., a process
model capturing the behaviour of a service composition is constructed. This
process model is derived from a set of ECA rules and it is encoded as a finite
state machine. This approach is suitable for capturing sequential interactions,
but arguably not for capturing concurrent interactions. In contrast, we take as
starting point a language in which concurrent interactions can be naturally cap-
tured. Indeed, if two interactions in a Let’s Dance model are not related through
a “Precedes” dependency, either directly or transitively, these interactions may
occur in any order or concurrently.

Foster et al. [9] propose a method for Web service composition in which
scenario models expressed as MSCs are compared with orchestration models ex-
pressed in BPEL. In this context, orchestration models are choreography models
projected over a single role (i.e. a local view on a choreography model). To check
consistency between scenario models and orchestration models, these models are
compiled into Labelled Transition Systems (LTSs). The resulting LTSs are com-
pared in terms of their traces to check that the behaviour of the scenario model
is contained in the behaviour of the orchestration model. Our proposal is com-
plementary insofar as we focus on capturing the relationships between scenario
models and higher-level models (i.e. milestone models and role-based models).

Seel et al. [19] present a requirements framework for inter-organizational
business process models. A distinction is made between interaction points for
collaborating employees and departments and interaction points for information
systems. Corresponding extensions to Event-driven Process Chains (EPC [15])
are introduced.

The role-based view presented in this paper can be seen as a formalized
representation of the “service decomposition” diagrams proposed in [13]. Our
role-based views contain more information than those of [13] and they can be
directly linked with milestone, scenario and detailed interaction models.

6 Conclusion and outlook

We motivated the need for choreography languages to unhinge from present fo-
cus on implementation considerations concerning message interactions, in service
to analysis and design of wide-spanning B2B domains, and the collaborations
of interacting participants in particular. Our proposal was illustrated using the



14 Alistair Barros, Gero Decker, Marlon Dumas

VICS global supply chain standard, offering insights into the large and intricate
landscape that needs to be penetrated to get down to detailed interaction-based
choreography models. We developed domain scoping (essentially equivalent to
process hierarchies) and role-based choreography models as horizontal parti-
tions, together with milestones as vertical partitions. For lower levels, we refined
interaction-based choreography modelling to support scenarios through which
milestones are progressed. Consistency of models was formally analysed, with
one question being left open: how to integrate a set of scenario models for a
given domain into a single choreography model? This integration, which is left
as future work, should be guided by the milestone model of the domain, given
that each scenario model covers a different set of milestones.

Further research will spawn in two directions which are relevant for impact
in web services composition environments. The first is to validate the modelling
views against further use cases and to refine the modelling proposals accordingly.
The second is to determine how well such extended considerations of choreogra-
phy modelling can be mapped into intermediate, more implementation focused
languages such as WS-CDL and WS-BPEL. Along the way, the Let’s Dance tool
will be extended to support the extensions proposed.
Acknowledgement. The authors wish to thank Remco Dijkman for valuable
feedback on a draft of this paper. The third author is funded by a fellowship
from Queensland Government and SAP.

References

1. Assaf Arkin et al. Web Service Choreography Interface (WSCI) 1.0. Technical
report, Aug 2002. http://www.w3.org/TR/2002/NOTE-wsci-20020808.

2. K. Bäına, B. Benatallah, F. Casati, and F. Toumani. Model-driven web services de-
velopment. In Proceedings of the 16th International Conference on Advanced Infor-
mation Systems Engineering (CAISE’04), Riga, Latvia, 7-11 June 2004. Springer.

3. A. Barros, M. Dumas, and A. ter Hofstede. Service interaction patterns. In Pro-
ceedings of the 3rd International Conference on Business Process Management,
Nancy, France, September 2005. Springer.

4. B. Benatallah, F. Casati, F. Toumani, and R. Hamadi. Conceptual modeling of web
service conversations. In 15th International Conference on Advanced Information
Systems Engineering (CAiSE), volume 2681 of LNCS, pages 449–467, Klagenfurth,
Austria, June 2003.

5. E. Colombo, J. Mylopoulos, and P. Spoletini. Modeling and analyzing context-
aware composition of services. In Proceedings of the 3rd International Confer-
ence on Service-Oriented Computing (ICSOC), pages 198–213, Amsterdam, The
Netherlands, December 2005. Springer.

6. G. Decker, J. M. Zaha, and M. Dumas. Execution semantics for service choreogra-
phies. In Proceedings 3rd International Workshop on Web Services and Formal
Methods (WS-FM 2006), Vienna, Austria, Sept 2006. Springer.

7. R. Dijkman. Consistency in Multi-Viewpoint Architectural Design. PhD thesis,
University of Twente, The Netherlands, 2006.

8. R. Dijkman and M. Dumas. Service-oriented design: A multi-viewpoint approach.
International Journal of Cooperative Information Systems, 13(4):337–368, Decem-
ber 2004.



Multi-staged and Multi-viewpoint Service Choreography Modelling 15

9. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: a tool for model-
based verification of web service compositions and choreography. In Proceeding
of the 28th international conference on Software Engineering (ICSE) – Research
Demonstration, pages 771–774, Shanghai, China, May 2006. ACM Press.

10. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using
LSCs and the Play-Engine. Springer, 2003.

11. R. Hull and J. Su. Tools for composite web services: a short overview. SIGMOD
Rec., 34(2):86–95, 2005.

12. ITU-T/ISO. Open distributed processing reference model. Technical Report ITU-
T X.901..904 – ISO/IEC 10746-1.4, ITU-T/ISO, 1994–1997.

13. S. Jones. Enterprise SOA Adoption Strategies. InfoQ Enterprise Software Develop-
ment Series, 2006. Available at: http://www.infoq.com/minibooks/enterprise-soa.

14. N. Kavantzas, D. Burdett, G. Ritzinger, and Y. Lafon. Web services choreography
description language version 1.0, w3c candidate recommendation. Technical report,
November 2005. http://www.w3.org/TR/ws-cdl-10.

15. G. Keller, M. Nttgens, and A.-W. Scheer. Semantische Prozessmodellierung auf
der Grundlage Ereignisgesteuerter Prozessketten (EPK). Verffentlichungen des
Instituts fr Wirtschaftsinformatik (IWi) 89, Universitt des Saarlandes, January
1992.

16. M. Papazoglou and W. van den Heuvel. Service-oriented design and development
methodology. International Journal of Web Engineering and Technology (IJWET),
2006.

17. D. Quartel, R. Dijkman, and M. van Sinderen. Methodological support for service-
oriented design with ISDL. In Proceedings of the 2nd Intenational Conference on
Service-Oriented Computing (ICSOC), pages 1–10, New York NY, USA, November
2004. Springer.

18. E. Rudolph, J. Grabowski, and P. Graubmann. Tutorial on Message Sequence
Charts. Computer Networks and ISDN Systems, 28(12):1629–1641, 1996.

19. C. Seel and D. Vanderhaeghen. Meta-Model based Extensions of the EPC for
Inter-Organisational Process Modelling. In Proceedings 4th Workshop on Geschft-
sprozessmanagement mit Ereignisgesteuerten Prozessketten (EPK 2005), volume
167 of CEUR, pages 117–136, Hamburg, Germany, December 2005.

20. UN/CEFACT and OASIS. ebXML Business Process Specification Schema (Version
1.01). http://www.ebxml.org/specs/ebBPSS.pdf, 2001.

21. J. M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker. Service in-
teraction modeling: Bridging global and local views. In Proceedings 10th IEEE
International EDOC Conference (EDOC 2006), Hong Kong, China, October 2006.

22. O. Zimmermann, P. Krogdahl, and C. Gee. Elements of service-oriented analysis
and design. Available at: www.ibm.com/developerworks/library/ws-soad1, 2004.


