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Abstract. In this paper an automatic parameter optimization method
for anisotropic diffusion filters used to de-noise MR images is presented.
This method is based on the incorporation of the filtering process into
a closed-loop system where the monitoring of the image improvement is
realized indirectly. The optimization is driven by comparing the charac-
teristics of the suppressed noise to those from the assumed noise model at
the optimum point. In order to verify the methods performance, exper-
imental results obtained with this method are presented together with
the results obtained by Median and k-Nearest Neighbor filters.

1 Introduction

High-resolution MR images are often affected by noise that results in undesired
intensity overlapping of represented tissues, making posterior segmentation and
classification difficult. Traditional noise-reduction linear filters, such as Mean or
Gaussian filters do not acknowledge the boundaries produced between regions
with different intensities. This results in the smoothing of these edges and the
elimination of sharp details. As a result, the produced images are blurred and
diffuse. Anisotropic diffusion filters overcome these shortcomings by adjusting
its diffusion strengths as a function of the local gradient magnitude. This ap-
proach results in the reduction of the noise while the edges are preserved. The
integration of such filters into a closed-loop system will open the possibility to
adjust the filter parameters according to the intermediate results, improving the
performance of these methods.

2 State of the art

Anisotropic diffusion filters were introduced by Perona and Malik based on the
scale-space theory [1]. They proposed two diffusion functions to adjust the diffu-
sion strength according to the region boundaries. Additional diffusion functions
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were proposed by Black et. al. [2] and Weickert [3]. For all of these functions
the main parameters that control the behavior of the smoothing process are the
diffusion factor and the number of iterations. The diffusion factor determines
the level of gradient intensity at which the filter maximizes its diffusion. For
de-noising applications, this diffusion factor needs to be adjusted in accordance
to the noise level. The estimation of the noise is usually performed by applying
some statistical methods that search for global characteristics or by hand-picking
some homogeneous areas and measuring the local variance.

The adjustment of the number of iterations is frequently made by hand, but
can also be estimated using an auto-stop criterion. Namely, the program can
consider the number of pixel (voxel) modifications occurred between the two last
iterations, an approach that also depends on the selection of the diffusion factor.
Obviously, an optimal selection of these parameters is crucial for a successful
reduction of the noise.

3 Main contribution

An automatic method is presented that produces an optimized estimate of the
two main filter parameters. This optimization is achieved by integrating the
filtering process into a closed-loop system, where the results of the filtering are
analyzed in order to adjust the parameters before the next iteration of the loop.
Because of the inherent difficulties in objectively determining the improvement
of the image without the use of references, an indirect monitoring method has
been conceived. This method compares the characteristics of the suppressed noise
against the expected characteristics of the noise at the optimum.

4 Methods

Three basic modules compose the close-loop system, the de-noising filters, the
evaluations method and the adjustment rules (Fig. la). The de-noising filters
module contains several anisotropic diffusion functions (e.g., PMAD2) to pro-
cess the data. A second set of these filters were also implemented following the
biased anisotropic formulation proposed by Nordstrém [4]. (e.g., PMAD2_ bias).
All these functions were implemented considering a regularized (smoothed) ver-
sion of the gradient.

The evaluation method was designed to produce the required feedback in-
formation about the improvement or degradation of the processed image. In
contrast to other techniques, such as image compression, de-noising techniques
do not have access to un-corrupted references, which could be used to control
the process by minimizing the error between the resulting and the reference im-
ages. The proposed evaluation method uses the residual information obtained by
subtracting the original image from the resulting one in order to analyze their
characteristics (Figure la). An assumption is made that when an optimal pa-
rameterization has been achieved, the residual image will contain only the part
of the image that corresponds to the noise. Thus, it would be possible to identify
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Fig. 1. a) Schematic representation of the closed-loop system; b) some results from
the anisotropic filter and from the residual image. The three examples correspond to a
lightly smoothed, near optimum smoothed and heavily smoothed MR image; ¢) results
of the evaluation function.
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this point because the characteristics of the noise in magnitude MR images are
sufficiently known [5]. In this case, it is expected to obtain Rice distributed noise
with homogeneous intensity across the entire data set. If large texture variations
are present in this image, this means that either the image is not filtered enough
or that the image was strongly smoothed and some anatomical structures have
started to emerge in this residual picture (Figure 1b).

Three main steps compose the evaluation module. The first step contains a
local variance operator that measures the variance with a 3x3 kernel at each
point of the residual image in order to produce a picture of the noise. In the
second step, the histogram of this noise is calculated to extract the distribution
of the obtained variance values. Finally, in the last step, an evaluation function
[6] produces the feedback value based on the maximum height, full width and
symmetry of the histogram. This feedback value becomes large when the local
variance of the differential image has a maximum height and a minimum width.
By plotting the results of this function a surface is generated (Fig. lc). Here
the pairs diffusion factor-number of iterations corresponding to the maximum
values in the figure are considered to be close to the optimal parameters.

The adjustment rules module was implemented to avoid the evaluation of
each combination of parameters on the surface while searching for the optimum.
These rules take samples of the surface (represented as white lines in Fig. 1c)
by fixing the number of iterations and examining the results of the evaluation
function along the diffusion factor axis. The optimum diffusion factor value of
each sample is obtained through a successive approximation scheme, which de-
termines the new diffusion factor based on its actual and previous values and
on the corresponding results produced by the evaluation function. The sampling
process is repeated several times changing the number of iterations. From the
obtained parameters of the samples, the median diffusion factor value and its
respective number of iterations are taken to finally process the image. This iter-
ative schema permits to reduce the searching time with respect to the complete
plotting of the surface around 4 times.
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Fig. 2. a) original image, b) corrupted image with Rician noise (0=18.330), c) results
from the anisotropic filter (PMAD2) using 10 iterations and 10.938 as diffusion factor,
d) results from the k-Nearest Neighbor filter.

5 Results

In order to evaluate the proposed method, a group of corrupted data sets with
increasing noise intensity was prepared. These data sets represent different over-
lapping levels between the most significant brain tissues (cerebrospinal fluid, gray
and white matter). The reference image was an averaged real image taken from
the MNI database [7] and the simulated Rician noise was generated following the
model x = \/((a + n1(0))? + (n2(c))?), where a is the original image and n1(c)
and n2(c) are two independent 3D images with zero-mean Gaussian-distributed
noise. The standard deviations (o) used to produce three noisy data sets were
9.166, 13.749 and 18.330.

These data sets were processed with the proposed optimization method using
the second Perona-Malik function PMAD2 and PMAD2_bias. The same data sets
were also processed using a Median filter (1 iteration) and a k-Nearest Neighbor
(KNN) filter with k=14 (3 iterations). In all the cases, the data was processed
considering a 26 voxel neighborhood. In Figure 2, some results are presented.
Here, the PMAD?2 filter produces a good approximation of the original image
but some speckle noise has not been reduced. The KNN filter also produces good
results, though less smooth in comparison with the anisotropic filter.

The corrupted data and the results were evaluated using the mean-absolute
error (MAE), the root-mean-square error (RMSE), the signal-to-noise ratio (SNR),
the peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM)
[8]. Table 1 resumes the results obtained. In the first line of each section, the
values corresponding to the corrupted image are presented as a reference. The
MAE and RMSE indicators, as usual, deliver smaller values when the image
is closer to the reference, on the contrary, the SNR, PSNR and the SSIM pro-
duces larger values when the similarity between the images is large. In all three
cases the automatic parameterization of the PMAD?2 filter produces the best
results. The results obtained with the k-Nearest Neighbor were the second best
at medium and large noise levels, only outperformed by the PMAD2_bias in the
lower noise-level case. The results of the Median filter were always inferior.
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Table 1. Experimental results obtained comparing the original MNI data set against
the corrupted and processed images.

MNI data set MAE RMSE SNR PSNR SSIM
0=9.166 Data + noise 10.0040 11.7578 21.8225 37.3934 0.9453
PMAD2 6.9734 7.5798 23.7292 39.3001 0.9784
PMAD2-Bias 7.4531 8.2321 23.3706 38.9416 0.9716
KNN 7.5586 8.3694 23.2988 38.8698 0.9702
Median 8.4830 9.4823 22.7566 38.3275 0.9604
o=13.749 Data + noise 14.9891 17.6222 20.0651 35.6361 0.8863
PMAD2 10.3752 11.3314 21.9829 37.5538 0.9477
PMAD2-Bias 11.6387 12.9623 21.3989 36.9698 0.9314
KNN 11.2986 12.6254 21.5133 37.0842 0.9338
Median 12.4390 13.9867 21.0686 36.6395 0.9202
o=18.330 Data + noise 19.4649 23.4785 18.8190 34.3900 0.8145
PMAD2 14.2163 15.7418 20.5552 36.1261 0.9017
PMAD2-Bias 15.8457 17.7252 20.0398 35.6108 0.8804
KNN 15.1200 17.0076 20.2193 35.7902 0.8882
Median 16.4562 18.5450 19.8435 35.4144 0.8718

6 Discussion

The definition of the procedure to evaluate the filtering results is based on the
characteristics of the expected noise model and therefore, enables the implemen-
tation of a closed-loop system to automatically optimize the filter parameters.
The obtained results, when compared to those obtained with the Median and
k-Nearest Neighbor filters, indicate that our method is not only viable but also
produces better results. In the near future, we intend to incorporate adaptive
versions of the anisotropic diffusion filters into the de-noising filters module.
These filters will additionally adjust the diffusion factor according to the time
(number of filter iterations) and to the local homogeneity characteristics of the
image. In addition, we plan to optimize the behavior of the evaluation method
according to the Rician noise model. We expect these measures to increase the
robustness and performance of the method.
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