Snakes on Triangle Meshes

Stephan Bischoff, Tobias Weyand and Leif Kobbelt

Lehrstuhl fir Informatik VIII, RWTH Aachen, 52062 Aachen
Email: {bischoff|kobbelt}@informatik.rwth-aachen.de

Abstract. In this work we introduce a new method for representing and
evolving snakes that are constrained to lie on a prescribed surface (tri-
angle mesh). The new representation allows to automatically adapt the
snake resolution to the surface tesselation and does not need any (un-
stable) back-projection operations. Furthermore, it enables efficient and
robust collision detection and gives us complete control on the topologi-
cal behaviour of the snakes, i.e. snakes may split or merge depending on
the intended task. Possible applications include enhanced mesh scissoring
operations and the detection of constrictions of a surface.

1 Introduction

Active contour models (snakes) have been used in a wide variety of applications
in computer vision and image analysis ranging from motion capturing to image
segmentation. Traditionally snakes are only applied in uniform setups, i.e. curves
for segmenting images and surfaces for segmenting volume data. However, there
are many applications that would benefit from more general settings. In this
work we consider in particular the case of curves that are embedded on arbi-
trary surfaces. Note that this setup is much more complex than a simple image
segmentation problem as the embedding surface can be arbitrarily curved in the
surrounding three-space.

As an example consider the problem of accurately locating and measuring
(e.g. vascular) constrictions [1]. In this case, the embedding surface is just the
surface of the vessel. Initially, the user places a curve on this surface which
runs around the vessel. If we let evolve this curve according to its curvature it
will become a locally shortest curve (geodesic) and its length will be a measure
for the vessel’s diameter. Other application scenarios include automatic mesh
partitioning and interactive mesh editing.

Early attempts for modeling embedded snakes were limited to particular
applications and suffered from low accuracy due to the restriction of snaxels to
mesh vertices [2] or supported only expanding fronts [3]. Only recently attempts
were made to fully support geometric snakes on triangles meshes [4, 5]. These
approaches, however, do not offer topological flexibility and furthermore rely
on an elaborate piecewise parameterization of the underlying meshes. To avoid
difficulties that are due to parameterization artifacts, we base our framework on
the parameterization-free active contour models presented in [6].

209

Fig. 1. Snake representation: A valid piecewise linear snake on a triangle mesh (a).

Invalid snaxels (b) are removed in a cleaning conquest (c).

a)

2 Contribution

We introduce a new representation for snakes that are embedded on a given
surface. For the sake of clarity, the surface will be represented by a triangle
mesh, however, the method also easily extends to arbitrary polygonal meshes.
The main features of this representation are:

1. Adaptivity: The sampling of the snake automatically and locally adapts
to the resolution of the triangle mesh. In particular there is no need for
elaborate resampling strategies based on intrinsic properties of the snake
or of the surface like curvatures which are susceptible to parameterization
artifacts.

2. Collision detection and topology control: The topological behavior of the
snakes can be adjusted to fit the requirements of the application. In addi-
tion to a fixed connectivity, our model also supports merging or splitting of
snakes. Collision detection can be performed efficiently and robustly.

3. Robustness: Our model avoids any numerically unstable (back-) projections
of snaxels onto the mesh. In particular, the snake is gnaranteed to always lie
exactly on the mesh.

3 Methods

3.1 Representation

We represent a snake by a (possibly open) polygon in space. However, we enforce
two consistency constraints which guarantee that the snake is actually embedded
on the underlying triangle mesh (Fig. 1):

1. The vertices of the snake (snazels) have to lie on mesh edges.
2. The segments of the snake have to lie in the interior of triangles.

Furthermore, we assume that the snaxels are oriented, i.e. each snaxel s can
be represented as

s=(1—d)vfrom +dve, de0,1)

210

Fig. 2. Flattening. As the snakes are embedded on a surface, snaxel velocities have to
be computed by locally flattening the configuration around a snaxel into a plane and
then scaling the velocity magnitude according to the projection of the geodesic normal
onto the snaxel’s supporting edge. This is done using an exponential map (a) or a hinge
map (b).

D& 2D

where vy, and v, are the endpoints of the supporting edge. It is important
that this orientation is consistent along the snake, i.e. that all snaxels point to the
same side of the snake. In particular, no two consecutive snake segments should
lie in the same triangle. Snaxels adjacent to two such segments are called invalid
and can iteratively be removed in a cleaning conquest linking their respective
neighboring snaxels.

Note that such a piecewise linear representation is in general sufficient to
capture any detail defined on the mesh. Consider e.g. a level set of a scalar field
which is evaluated at the mesh vertices. As the scalar field is interpolated linearly
over each triangle, the level set is just a straight line segment on the triangle,
which can be exactly represented by our model.

3.2 Evolution

The evolution of the snakes is governed by internal and external forces that are
usually derived from their bending energy or the curvature distribution of the
underlying mesh. Without loss of generality, we will think of the forces as a user-
defined black box that assigns to each snaxel s a scalar-valued velocity v;. We
then model the snake propagation according to Huygen’s principle which states
that every snaxel should move along its geodesic normal, i.e. the projection of its
(spatial) normal onto the tangent plane of the underlying surface. We estimate
the geodesic normal at a snaxel s as the angle bisector of the two adjacent snake
segments after locally flattening the configuration into a plane using a hinge map
or an exponential map [7], depending on whether the snaxel lies on an edge or
on a vertex, resp., cf. Fig. 2. Let a; be the angle between the geodesic normal
and the supporting edge of s. We then compute the projected velocity o5 of s
along its supporting edge as

. Us

COS (v

If multiple consecutive snaxels sy, ..., s; coincide at a vertex, the above com-
putation fails, and we instead estimate the common geodesic normal from the
snaxels sg, 51, 541 but compute the projected velocities 91, . .., 0 for each snaxel
individually (depending on the angle a; to its supporting edge). In practice, we

211

Fig. 3. Collision detection and topology control. Collisions can only happen on mesh
edges (a) and hence can easily be detected (b). Two snakes can be merged by removing
the colliding snaxels and relinking their neighbors (c). Spurious invalid snaxels are
removed in a cleaning conquest (

2459

do not need to explicitly compute the hinge or exponential map, but just sum up
and normalize angles between snake segments and mesh edges. After calculating
the snaxel speeds, we move the snaxels forward in time using an Euler scheme

dy = ds + At 0 /|fes]|

where e, is the supporting edge of s and where we limit the timestep At such
that the snaxels just do not cross mesh vertices,

At = ming (1 —d;) /0,

When a snaxel runs into a vertex of valence n, it is split into (n — 1) new
snaxels that are put on the outgoing edges. Their distance values are reset to
0, so they all lie at the same spatial position (although their supporting edges
are different). This split may result in a consistency violation, which is easily
resolved by a cleaning conquest as described above.

3.3 Collision detection and topology control

The consistency constraints in section 3.1 imply that two snakes (or two parts
of the same snake) can only collide at snaxels, i.e. it is impossible for a snaxel to
cross the interior of a snake segment. Hence collision detection can be efficiently
performed by storing for each mesh edge the snaxels that lie on that edge and
testing before and after each snaxel move whether the order of the snaxels on the
edge has changed. If so, we determine the point of contact by linearly extrapo-
lating the snaxel positions. In case of a collision, we may then choose depending
on the application whether to join the two colliding snakes or not.

— In case of a join, we relink the snakes by removing the colliding snaxels
and by connecting their predecessors and successors respectively. We then
perform a cleaning conquest to remove spurious invalid snaxels (Fig. 3).

— In case of a collision, we mark the colliding snaxels as “frozen” and exclude
them from the remaining update steps.

212

Fig. 4. Detecting constrictions. An initial snake is placed interactively around the vessel
(a). After a few iterations the snake has contracted around the locally narrowest part

of the vessel (b).

4 Results

We have implemented our new representation and tested it on a variety of ge-
ometric models. The implementation is straightforward and runs at interactive
speeds even on a standard PC. In addition to standard segmentation problems
we considered the problem of detecting constrictions on a model: First the user
depicts a sequence of vertices on a given input mesh. These vertices are then
linked using a discrete shortest path algorithm (Dijkstra) along the edges of the
mesh. The result is the initial snake which we then let evolve according to its
curvature and hence minimize its length, cf. Fig. 4. The final snake is a locally
shortest path whose length measures the diameter of the constriction.

As a snake can only detect local minima, we plan to distribute a number of
snakes on the vessel by performing cross sections orthogonal to the skeleton of
the vessel. By letting all these snakes minimize their length and selecting the
shortest one it should be possible to reliably and globally detect any constriction.
We also plan to exploit the topological flexibility of our snakes to evaluate the
structure of whole vessel trees. Here the snake runs along the branches of the
tree and splits at each furcation thereby revealing the structure of the tree.

References

1. Hetroy F, Attali D. From a closed piecewise geodesic to a constriction on a closed
polyhedral surface. In: Pacific Graphics Proceedings; 2003. p. 394-398.

2. Milroy MJ, Bradley C, Vickers GW. Segmentation of a wrap around model using
an active contour. Computer Aided Design 1997;29(4):299-320.

3. Lee H, Kim L, Meyer M, Desbrun M. Meshes on Fire. In: Eurographics Workshop
on Computer Animation and Simulation; 2001. p. 75-84.

4. Lee Y, Lee S. Geometric snakes for triangular meshes. Computer Graphics Forum
2002;21(3):229-238.

5. Lee Y, Lee S, Shamir A, Cohen-Or D, Seidel HP. Intelligent mesh scissoring using
3d snakes. In: Pacific Graphics Proceedings; 2004. p. 279-287.

6. Bischoff S, Kobbelt L. Parameterization-free active contour models. The Visual
Computer 2004;20:217-228.

7. Lee AWF, Sweldens W, Schroder P, Cowsar L, Dobkin D. MAPS: Multiresolution
Adaptive Parameterization of Surfaces. In: SIGGRAPH 98; 1998. p. 95-104.

