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Abstract. There are numerous techniques for obtaining surface triangu-
lations from 3D image data. Some applications require efficient triangula-
tions, i.e. the source data should be represented as accurately as possible
with a minimum number of triangles. This work is based on an existing
algorithm, that adapts triangulation density to local surface curvature.
To be useful in clinical practice, robustness has been improved and pa-
rameterization has been simplified by reducing the number of required
arguments from twelve to a single detail control parameter. Triangula-
tion times are 115 sec for 1.5mio source triangles and 3 sec for 60.000
triangles on a 3GHz P4.

1 Introduction

Triangulation of three dimensional digital image data has many applications in
engineering and science and a great variety of different approaches exists today
[2]. In medical imaging in particular, it is of major interest to obtain triangular
surface models from segmented CT or MRI data. The source data consists of
large three dimensional voxel arrays (>107). However, if the surface mesh is
to be used for further computations, the amount of detail has to be reduced
dramatically. Hence an algorithm is required, that delivers simplified yet faithful
triangulations.

In this paper we propose a method that is especially suitable for triangula-
tions of anatomical data, which usually feature surfaces that are mostly smooth
and curved. The method deals efficiently with anisotropic properties of the source
data, which are typical for customary CT imagery. It is also robust, fast and easy
to control.

Previous Work. A common technique to obtain triangulations of 3D imagery
is the marching cubes algorithm. Because this algorithm produces very high
numbers of triangles, several per surface voxel, the output has to be processed
by a decimating algorithm to be useful. For a survey of existing techniques refer
to [3].

Another popular approach is to select a set of points on the object’s surface,
which are in turn used to create the equivalent of a 2D-Delaunay-triangulation on
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Fig. 1. Triangulations of hour-glass, lung and thorax.

the same surface [7]. Krahnstoever et al. [1] proposed a method that adapts the
density of vertex selection to local surface curvature. Their algorithm produces
satisfying results in terms of quality and efficiency, but lacked some important
properties. First, anisotropic properties of voxel images were ignored, leading
to elongated triangles in the output meshes. Second, the original method was
controlled by numerous arguments and required a trial and error approach to
operate. Third, despite elaborate post-processing repairs, the occurrence of holes
in the output mesh was not completly prevented.

Contribution. We propose a new method that is based on [1]. While anisotropic
features could be accounted for with small effort, parameterization and robust-
ness proved to be more difficult to improve. Krahnstoever et al. [1] forfeited the
option to use adaptive refinement (see [4,5] and section 2.3) for performance
reasons. In our approach the internal mesh connectivity was simplified by the
removal of edges. Thus the overall performance was critically improved, so that
adaptive refinement became feasable at last. Using this technique, the algorithm
is now guaranteed to produce meshes that are valid 2-manifolds. Parameteriza-
tion was reduced from a dozen of parameters to a single target polygon count

(TPC).

2 Curvature Adaptive Triangulation

Before we proceed to the improvements in the following subsections, we will
shortly introduce the basic method described in [1]. An intermediate represen-
tation of the source data is created, the micro mesh, which is composed of all
voxel surfaces separating object and background voxels. Edges and related con-
nectivity that were a part of the mesh structure in [1] have been eliminated. For
each micro mesh face the local face curvature is computed [1,6]. After that, the
actual triangulation can start.

A subset of the micro-mesh face centers is selected as vertices for our Delaunay-
triangulation. First, all faces are added to a priority-queue according to their lo-
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cal curvature value. Now the face with the highest curvature is extracted and a
region of faces of radius Rg (elimination radius) around this face will be blocked
from selection. This process is repeated until no faces are left for selection and is
called thinning. The size of the macro mesh triangles is indirectly controlled by
REg. To adapt the triangle sizes to local face curvature a balance function maps
from curvature to elimination radius.

Now a two dimensional approximation of a Voronoi-graph can be created
on the object surface. The selected vertices from the previous step are used
as region seed points. These regions are expanded until the entire surface of the
object is covered. The dual Delaunay-trianguliation to this Voronoi-graph is then
obtained by finding the vertices of the micro-mesh that are connecting three or
more different regions.

Anisotropic Data. Several steps of the algorithm - curvature patch, thinning
and voronoi graph - involve a variation of region growing. In the original method
all regions were expanded by one face at each border simultaneously, which
lead to elongated regions for anisotropic source data. By changing the distance
measure from counting faces to arithmetic distance, a priority queue was required
for region growing. Access times for priority queues are O(log n), but in this case
nis not determined by the size of input data, but by the average region size, which
does not scale with the size of input data. Hence the overall complexity for this
part of the triangulation remains unchanged.

Parameterization. Parameterization in [1] was composed of 12 arguments.
Due to the improved robustness (see 2.3), options concerning robustness became
obsolete. For other parameters like minimum and maximum thinning range and
curvature patch range, heuristics were found empirically that provided appropi-
ate settings for a given TPC.

The only argument that could not directly be controlled by the TPC was
the coefficient of the balance function, that controlled the distribution of detail.
However, the number of output triangles was strictly increasing by this coeffi-
cient. Thus an appropiate setting could be found by bisecting the coefficient until
a face count was achieved that was sufficiently close to the TPC. This can be
sped up significantly by not creating actual geometry during the process. Using
these techniques, only the TPC argument remains. The balance coefficient can
still be set manually to avoid the additional computation time required for bi-
secting. This is especially usefull if valid settings are already known for a certain
class of input data.

Robustness. Using a two-dimensional Delaunay-triangulation on a three-di-
mensional surface is problematic [4]. The authors of [4,5] solve these problems
by using adaptive subdivision. Krahnstoever et al. [1] tried a different approach
by applying post-processing repairs. However, it proved to be difficult to repair
all occurring artifacts, so we have chosen the adaptive subdivision approach. To
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do so, we have to identify all triangles that are part of an invalid configuration,
i.e. that are connected to more or less than three neighobours. These defective
areas are repaired by inserting additional vertices to the initial vertex selection.
This process is repeated until no more invalid configurations occur. It can be
shown, that this algorithm will always converge to a valid solution.

3 Results

The new algorithm has been tested with a variety of synthetical (cube, sphere,
pipe, hourglass, fractal and white noise) and anatomical objects (esp. lung and
heart).

The parameterization scheme is simple and requires no knowledge about the
algorithm. It delivers accurate detail for all ranges of TPC and a large variety
of objects.

The robustness was significantly improved. The 2-manifold condition can al-
ways be fulfilled. In some rare artifacts remain, which can be easily and efficiently
resolved with the use of standard mesh-fairing algorithms like e.g. centroid-
smoothing without significant loss of detail. One artifact is the occurrence of
small hooks, that are a by-product of an inappropiate Delaunay-triangulation.
Additionally, self-intersections of very close, near parallel surfaces may occur.

The computational performance has been improved. A typical anatomical
object (lung, 46x184x57 voxels, 59k micro mesh faces) can be triangulated in
2.9 seconds with a memory footprint of 17 MB (TPC=3000). Our most com-
plex sample (thorax skeleton, 465x285x457, 1.5 mio. micro mesh faces) was pro-
cessed within 116 seconds with memory footprint of 526 MB (TPC=20000). The
method of Krahnstoever et al. required 202 seconds and 437 MB on a Pentium
4 1.6 Ghz. Compared to our results, which were taken on a comparable 3.0 GHz
machine, the performance appears to be equivalent. However, our algorithm pro-
cesses eight partial and eighteen complete triangulations in the time of a single
triangulation with the original method. For more benevolent source data the
speed gain is even higher, for example the lung requires only five repair passes
to complete. In addition, resampling input data to an isotropic grid is no longer
necessary. Thus triangulations can be performed on the original data resolution,
improving detail and a avoiding the time for resampling (e.g. 30 seconds for the
thorax sample).

4 Conclusion

We have presented an algorithm for performing surface triangulations on three-
dimensional image data. It is especially suitable to faithfully and efficiently ap-
proximating objects featuring curved structures of varying size and is thus useful
to process CT or MRI data from the medical imaging domain. Its basic princi-
ple is to perform a two-dimensional Delaunay-triangulation on the surface of the
input object, whereas the density of vertex selection is adapted to local surface
curvature.
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Our new algorithm features a higher level of robustness and is controlled by
only a single parameter specifying the desired target polygon count. It is capable
of accounting for anisotropic features of source data, which are typically found
in data obtained by CT or MRI scans. It has been shown that the algorithm can
handle very large data sets and even highly pathological topologies. Triangula-
tion of typical data sets can be performed in a few seconds on standard hardware.
There is significant gain in speed for anisotropic data sets, since no resampling
is required. Memory requirements are linear to the number N of faces of the
input surface. Computational complexity is O(N(log N + r? log r?)), where ris
the size of the patch used for curvature estimation.

Future Work. There are many applications (e.g. heart modelling) that require
the triangulation of multilabel images. Such images feature inner surfaces and
T-joints of subsurfaces, which is an exception from the 2-manifold property. We
have investigated this particular challenge and conclude that such an extension
has to be carefully planned to avoid artifacts at subsurface-joints.

Since our algorithm merely assumes a set of connected faces and there is
a distance defined between faces, we have attempted to triangulate arbitrary
meshes. Experiments showed promising results, especially after we changed our
distance function to Euclidian distance. Potentially, the algorithm can be used
for curvature adaptive decimating of arbitrary high-resolution meshes. Finally, it
would be interesting to compare our technique to the accuracy and performance
featured by other techniques.

References

1. Krahnstoever N, Lorenz C. Computing curvature adaptive surface triangulations of
three dimensional image data. The Visual Computer 2003;20(1):17-36.

2. Kumar S. Surface triangulation: a survey. Department of Computer Science, Uni-
versity of North Carolina; 1996.

3. Heckbert P, Garland M. Survey of polygonal surface simplification algorithms.
School of Computer Science, Carnegie Mellon University; 1997.

4. Eck M, DeRose T, Duchamp T, et al. Multiresolution analysis of arbitrary meshes.
In: Proceedings on Computer Graphics, SIGGRAPH 95; 1995. p. 173-182.

5. Lotjonen J, Reissman PJ, et al. A triangulation method of an arbitrary point set
for bio-magnetic problems. IEEE Transactions on Magnetics 1998;34(4):2228-2223.

6. Stokely EM, Wu SY. Surface parameterization and curvature measurement of ar-
bitrary 3-D objects - 5 practical methods. TEEE Transactions on Pattern Analysis
and Machine Intelligence 1992;14(8):833-840.

7. Oblonsek C, Guid N. A fast surface-based procedure for object reconstruction from
3D-scattered points. Computer Vision and Image Unterstanding 1998;69(2):185—
195.





