Ultrasound Computer Tomography, Distributed
Volume Reconstruction and GRID Computing

Tim Oliver Miiller, Nicole Valerie Ruiter, Rainer Stotzka,
Michael Beller, Wolfgang Eppler and Hartmut Gemmeke

Institute of Data Processing and Electronics, Forschungszentrum Karlsruhe,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen
Email: Tim.Mueller@ipe.fzk.de

Abstract. At Forschungszentrum Karlsruhe the demonstrator of a new
medical imaging system based on 3D ultrasound computer tomography
will be available at the beginning of 2005. This system requires not only
the recording but also the processing of very large datasets of about
3.5 GBytes. On a single PC the reconstruction of a high resolution vol-
ume will take up to several weeks. However the reconstruction process
can be parallelized. Our long term goal is to accelerate the reconstruc-
tion process significantly by the use of GRID technologies. In this paper
we present our approach to parallelize the reconstruction by A-scan—
decomposition using Java RMI and Matlab.

1 Introduction and Motivation

Improving medical imaging often leads to significantly increasing amounts of
data. In particular this concerns 3D ultrasound computer tomography (USCT)
for breast cancer detection developed at the Forschungszentrum Karlsruhe that
requires the processing of approximately 3.5 GBytes (580 thousand A-scans)
to reconstruct a volume from the dataset. At present the reconstruction of a
volume of 256x256x256 voxels from a simulated dataset using a PC (1.6 GHe,
Pentium 4, 1 GByte memory) takes approximately three weeks. Though the im-
plementation of the algorithms is experimental, a significant acceleration of the
reconstruction process is inevitable to achieve acceptable reconstruction times
in the range of minutes and thus making 3D ultrasound computer tomography
clinically relevant. The reconstruction can be accelerated either by using faster
computing hardware or by parallelizing the algorithms. The use of fast super-
computers would be too expensive for a single institution like e.g. a hospital.
Parallelized algorithms require massive computing power, but only for a very
short time. Such erratic burst requests for computing power are optimally cov-
ered by a GRID that is a network of several thousand computing units. The
computing units of a GRID are shared between many users, which integrate
their own computing units into the GRID and in exchange consume computing
power from other users just at the time they need it.



421

The processing of any application can be accelerated using a GRID if a) the
application can be decomposed into many subprocesses of lower complexity and
b) the results of mentioned subprocesses can be composed into the final result
fast enough.

2 Methods

To transfer the USCT volume reconstruction to GRID, two objectives have to be
covered. In this paper we show the decomposition of the reconstruction process
and the distribution of the subprocesses to computing units using Java RMI.
The derived methods will be integrated into GRID services in future work to
achieve our long term goal.

2.1 3D Ultrasound Computer Tomography

So far a 2D demonstrator of ultrasound computer tomography has been success-
fully developed and reproducible images of high resolution [1] were obtained.
Because of this promising results we build an experimental 3D hardware setup
that will be finished in early 2005 [2]. The algorithms for 3D reconstruction and
data handling in Matlab have been implemented and tested. The reconstruction
of a volume of 64x64x56 voxels of simulated point-spread objects was successful
and took approximately 8 hours on a 1.6 GHz Pentium 4.

For a methodical measurement the 2D algorithms and data have been chosen,
because of the significant shorter runtime. However the reconstruction algorithms
of 2D and 3D are identical. The reconstruction principle for 2D/3D ultrasound
computer tomography is explained in [2, 3]. For this algorithms two different
decomposition methods have been considered:

Pixel/Voxel-Decomposition: The image/volume to be reconstructed is di-
vided into subimages/subvolumes. The smallest possible subprocess is the
reconstruction of a single pixel/voxel. The size of the result is the number
of pixels/voxels times their size in bytes. For each subprocess the complete
dataset is required.

A—Scan—Decomposition: The reconstruction algorithms base on the principle
of superposition. Basically this means the contribution of each A—scan to
all pixels/voxels can be summed up. The smallest possible subprocess is
the reconstruction of a full image/volume using only a single A—scan. The
size of the result is the number of computing units times the size of the
reconstructed image/volume. For each subprocess only a small part of the
dataset is needed.

For now we decided to use the A—scan—decomposition, because the reconstruction
of 2D images of 1024x1024 pixels leads to a transfer size of 3.5 GBytes (size of
the whole dataset) and 8 MBytes for the result per computing unit, whereas the
pixel/voxel-decomposition would need for e.g. 8 computing units 28 GBytes of
network traffic.



422

2.2 GRID Technologies and Client—Server Models

The main idea behind GRID computing is to provide transparent services (GRID-
services) for high—intensive computing applications using a computer network.
GRID-services need an abstract coordinating layer called middleware. Exam-
ples of well known middleware are the GlobusToolkit based on OGSA (Open
Grid Service Architecture) [4], AliEn or gLite [5]. An easy to use middleware
for USCT is not yet available. Existing technologies i.e. development drafts or
implementations need to be adapted and reimplemented. But until now no ”win-
ner”is in sight and the choice of a suitable middleware is delayed. Therefore for
the test the distributed algorithms are provided on a conventional Client—Server
model. The experience with this model will be integrated into the development
of suitable GRID-services.

Well known conventional Client—Server models are Applets, Servlets, Com-
mon Gateway Interface (CGI), etc. Another widely used technology to control
parallel processes is the Message Passing Interface (MPI), which is available for
many different platforms. Each of these technologies has its advantages, but we
prefer the Java RMI [6] as Client—Server model, because it fits best into our
existing Java projects. It is easy to implement, virtually platform independent
and provides several security mechanisms. Last but not least the development of
graphical user interfaces is very easy in Java. But almost any other model would
have been suitable as well.

2.3 Implementation of Framework

Our model of distributed processing is very similar to the organization of a bee
hive. The bee queen (as client) has knowledge of a set of tasks that have to be
executed. The bees of the hive (service providers, i.e. servers) register at the bee
queen and wait for tasks to process. The bee queen deploys tasks to idle bees.
The deployment is performed using a parameterized remote procedure call of a
Java RMI interface. After a server has successfully finished its task, it notifies
the client. Again a task is deployed until no more tasks are left. From time to
time the bee queen checks for dead bees i.e. malfunctioning servers. If a server
does not answer this request it is presumedly dead and deleted from the task
deployment list. The task for this bee is revoked and deployed to another bee.
Bees may enter or leave the hive dynamically.

The client possesses a graphical user interface for visual feedback of the
status. The active bees are displayed and several levels of communication may
be logged and visualized. The deployment of the tasks is triggered manually via
the GUI or automatically at start—up. The Client—Server model is implemented
as java library. Communication and data structures can be easily recycled for
other applications, which are suited for distributed processing. For any other
application, only two new interfaces need to be implemented: the interface Task
that wraps the concrete decomposed task to be performed for this application,
and the interface Tusklterator, which enumerates the decomposed tasks in a
suitable order.



423

Table 1. Overview of computing units. All units contain Pentium 4 processors except
for unit 3, which i1s a Pentium 3. The total column contains the sum of the rows.

CPU| L 2 3 4 5 6 Total

Clock GHz 16 3.0 1.0 3.2 2.2 3.0 14.0
Memory MBytes 512 2048 512 1024 1024 1024 6144
MFlops 227 429 193 453 313 429 2044

Table 2. Running times in hours:minutes for different resolutions and numbers of
computing units. The units are combined in order of tab. 1.

Resoluti0n| 1 CPU 2 CPUs 3 CPUs 4 CPUs 5 CPUs 6 CPUs

64x64 3:19 1:14 1:05 0:47 0:41 0:38
128x128 4:34 1:44 1:25 0:59 0:48 0:39
256x256 11:05 3:34 3:08 2:09 1:40 1:18
512x512 34:54 11:06 9:37 6:12 4:44 3:45

The dataset for 2D image reconstruction consists of 100 emitter positions
each with 1456 receiver positions. A Tusk was defined as a the reconstruction of
an image of size NxN from a single emitter position, thus leading to 100 different
task, which the Tasklterator iterates from position 1 to 100. Each task executes a
system command starting Matlab with a dynamically generated Matlab—Script.
The required data is accessed via a network shared drive. After finishing the
task the resulting image is summated to a previous image, if existing, and stored
locally as previous image for the next task. After all tasks are finished, the images
from the different computers are composed on the client’s computer for the final
result.

3 Results

The 2D reconstruction was measured for different resolutions and an increasing
number of computing units. A network with very different computing units (see
tab. 1) has been used. Tab. 2 shows the running time for different resolutions
adding more and more computing units. Fig. 1 shows the speed—up in percent
adding more and more computing units. Overall, the acceleration of the recon-
struction follows almost linear the number of units/clock frequency for the six
computing units used. For the resolutions 256x256 and 512x512 no limit caused
by decomposition/composition was found yet. However the runtime using six
computing units at resolution 128x128 and 64x64 is almost identical, which in-
dicates that no further acceleration is possible for this resolutions. This limit
is caused by accessing the dataset from a shared network directory. For recon-
struction the complete dataset of 20 GBytes has to be transferred, which on a
100 MBit ethernet network takes approximately 27 minutes theoretically without
any overhead considered.



424

Fig. 1. The figure shows the speed—up depending on the number off computing units.
Except for the resolution of 64x64 pixels the reconstruction is accelerated virtually
linearly. Using 6 CPUs the absolute runtime for 64x64 and 128x128 pixels is almost
identical (see Tab. 2), indicating that no further acceleration is possible because of the
network shared dataset.

1000% —
900% | N
800% —
700% —
Q
_g 600% Resolution
.
$ 500% 4 512612;
& 0% | > 256x256;
a 126x128;
300% — v 64xb64:
200% —
100% —
0% T T T T ]

1 2 3 4 5 6
Number Processig Units

4 Discussion and Future Work

The results show clearly the potential of distributed reconstruction for USCT.
The performance gain was virtually linear for all resolutions limited only by
accessing the dataset from a network shared directory. A solution may be to
replicate locally the dataset. Though the linear performance gain was expected,
the usability of the proposed decomposition/composition is still to be shown in
a "real”’ GRID with e.g. 100 computing units. However, the required speed—up
of several magnitudes can only be achieved if an alternative for distributing the
dataset via a network shared drive is used.

The implementation of the distributed image/volume reconstruction as Java
RMI is a first step to use GRID technologies and middleware, which are in-
evitable for our vision of realtime USCT imaging.

References

1. Stotzka R, Ruiter NV, Miiller TO, et al. High resolution image reconstruction in
ultrasound computer tomography using RF signal deconvolution. In: SPIE Medical
Imaging; 2005.

2. Miiller TO, Stotzka R, Ruiter NV, et al. 3D Ultrasound—Computertomography:
Data Acquisition Hardware. In: MIC — IEEE Medical Imaging Conference; 2004.

3. Stotzka R, Wiirfel J, Miller TO, et al. Medical Imaging by Ultrasound-
Computertomography. In: SPIE Medical Imaging. vol. 4687; 2002. p. 110-119.

4. Alliance Globus. Homepage. http://www.globus.org/; 2004.

. Project AliEn. Homepage. http://alien.cern.ch/; 2004.

6. Wollrath A, Waldo J. SUN Java Homepage — The Java RMI Tutorial.
http://java.sun.com/docs/books/tutorial /rmi/index.html; 2004.

[





