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Abstract. Intraoperative movement of brain tissue is a central prob-
lem in the context of accuracy of image-guided neurosurgery. One of
the strategies compensating for this issue is to perform a physically-
based biomechanical simulation of the occurring phenomenon. Thereby,
the computational expense is of big concern. In this paper, we present
a parallel framework for modeling the intraoperative brain deformation.
Within this system, it is possible to perform simulations on high reso-
lution meshes even consisting of millions of elements. Experiments with
the implemented algorithm using a cluster equipped with eight proces-
sors showed a great improvement in computation time in comparison to
a standard single processor implementation.

1 Introduction

The accuracy of neuronavigation systems suffers from intraoperative brain de-
formation known as ”brain shift”. Commercially available image guided surgery
systems are based on extrinsic (e.g. fiducial markers) or anatomical features (e.g.
skin surface points). However, with this information, only rigid transformations
between pre- and intraoperative data can be calculated and subsequently used
for navigation. This does not account for the highly complex non-linear defor-
mation of brain tissue during the course of surgery. Therefore, the assessment
of brain shift has been subject of intensive research of various groups in recent
years. In this context, a number of methods has been developed including regis-
tration approaches [1] and simulation strategies based on biomechanical models
[2, 3]. However, algorithms simulating deformations of soft tissue under the influ-
ence of real physical factors are characterized by high computation times. This
makes their application difficult for intraoperative use.

In [4], a fast simulation method was presented, where volumetric calculations
were reduced with the use of a condensation technique into a model considering
surface nodes only. Hansen et al. [5] used regions of interest to select levels of ac-
curacy between different parts of the brain. In this hybrid approach, a dynamic
finite element model was applied around the surgical target point, whereas in
other parts of the brain static computations were performed. A parallel imple-
mentation accelerating brain shift simulation was presented in [6]. This approach,
however, suffers from imbalance of matrix assembly among processors.
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In order to compensate for and analyze the brain shift phenomenon, we have
already introduced a biomechanical model describing and simulating brain defor-
mation [7]. In this paper, an extension of the previous work is presented. Aiming
at the use of the simulation model during neurosurgery, a parallel simulation ap-
proach has been developed in order to accelerate the calculations. The efficiency
of this parallel implementation has been evaluated on a PC cluster exhibiting
a great improvement in computation time over the single processor approach.
Within this framework, it is also possible to follow and visualize the direction
and the magnitude of the simulated deformation of brain tissue. Furthermore,
insight into volumetric changes of brain structures is obtained, thus providing
additional information contributing to the improvement of surgical outcomes.
The simulation model has been already applied to surgical cases, based on pre-
and intraoperative MR, data, demonstrating its value [7, 8]. In this work we
concentrate on the details of the parallel framework.

2 Parallel Framework

In the numerical deformation model, the brain is assumed to be a linearly elastic
tissue saturated by a viscous fluid. This is expressed in a coupled set of equations
describing the behavior of poroelastic materials [7]. This system of constitutive
equations is discretized based on the Galerkin weighted residuals method. In
order to perform a numerical simulation, volumetric geometry has to be pro-
vided. For this purpose, a surface consisting of regular triangles is generated
from preoperative MR brain data in a first step. Based on this representation, a
tetrahedral geometry is created.

In order to perform parallel assembling of the presented equations, the gen-
erated mesh has to be partitioned. In order to optimally use computational
resources of all processors, it is important to ensure that local parts of the mesh
have approximately the same number of elements and corresponding vertices.
On the other side, connectivity between local parts shall be taken into account
in order to minimize the communication between the processors, which is a time
consuming event. In this context, the optimal partitioning is accomplished using
the METIS package [9]. Thereby, a unique number corresponding with one of
the available CPUs is assigned to each mesh element. According to this parti-
tioning, the elements and their corresponding vertices are distributed among all
processors with the use of message passing interface (MPI) commands. The op-
timized partitioning contributes to a better balance in the matrix assembly and
linear system solving process. However, the vertices located at the boundary of
neighboring partitioning regions are accounted for in a separate way since they
have to be distributed to more than one processor. These special vertices are
called ”ghost vertices”. Additionally, local-to-global mappings are appropriately
defined in order to operate efficiently on both distributed elements and vertices.

In a further step, a part of the global matrix is assembled by each processor
based on the locally stored mesh structure and the boundary conditions are set.
Subsequently, the results from all processors are summed up and the global linear
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Table 1. Cluster architecture (per node)

Component Description

CPU 2 x 2.66 GHz Intel Xeon, 533 MHz, 512 KB Cache
Memory 3 GB ECC DDR-RAM

Network onboard dual port 10/100/1000 BASE-T Gigabit Ethernet
Hard disk hotplug ST336607LC 36.7 GB Ultra320 SCSI

Operating system Linux Suse 8.2

system is created. Finally, the system of equations is solved with the Portable,
Extensible Toolkit for Scientific Computation (PETSC) library [10].

Based on the resulting displacement vector field, the input intensity data is
recalculated and both the deformed brain volume and the visualization of the
simulated displacements are provided for analysis.

3 Results

A series of computational experiments with the described method were con-
ducted in patients undergoing craniotomy. In this context, three pairs of pre-
and intraoperative T1-weighted scans consisting of 512 x 512 x 160 voxels of size
0.44 mm x 0.44 mm x 0.89 mm were considered. In a preliminary step, volumetric
tetrahedral meshes of varying resolution were generated from the preoperative
images rigidly registered to the corresponding intraoperative data.

The performance of the presented parallel framework was analyzed on a TA32
cluster. The architecture consisted of 4 blade servers (see Table 1) networked
with 1000 Mbps Gigabit Ethernet.

For each mesh, 5 simulation runs using identical conditions were performed
on one, two, four and all eight processors, respectively. Altogether 20 simulations
were performed for each case, giving the number of 60 runs in all experiments,
which provided sufficient data for statistical evaluation of the computation times.
The mean values of the measured times (calculated from 5 experiments each)
for all three series of experiments are presented in Figure 1.

In addition to the performance analysis, visualization of the simulated brain
deformation was conducted showing good correlation of the obtained results and
the acquired intraoperative MR scans (Figure 2).

4 Discussion

In the conducted experiments, our implementation showed scaling behavior with
respect to the number of nodes used for the computation. The times required
for matrix assembly and solving resulting system of equations were drastically
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Fig. 1. Resulting performance of the parallel implementation with logarithmic scaling
of the x-axis. Mesh with a) 123496, b) 545235 and ¢) 1691150 tetrahedra. In case of the
highest resolution, the runs could only be performed on four and on eight processors
due to insufficient memory for storing the mesh and additional data structures
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Fig. 2. Visualization of a simulated brain deformation. The color coding denotes the
magnitude of displacement
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reduced in comparison to a sequential version of the algorithm. Using a moder-
ately (with respect to the underlying complex deformation) scaled tetrahedral
grid, one time step for a sparse linear system consisting of 107820 equations was
performed on eight CPUs within 11 seconds. Compared to this, the computation
time took about 50 seconds using the single processor approach (see Figure la).

A successful experiment was performed for a huge mesh consisting of 1691150
tetrahedra, which resulted in 1357332 linear equations and a parallel computa-
tion time of about 3.5 minutes. In addition to accelerated computation times,
the parallel implementation was the only approach which allowed conducting
simulation based on a very high resolution mesh that would not fit into address
space of a single processor machine.

The overall time required for an entire simulation must also comprise brain
segmentation and mesh generation. This can be, however, conducted in a prepro-
cessing step and is therefore not a limitation for a practical application during
surgery. After simulation and computation of the respective deformation field,
the corresponding image data has to be reconstructed accordingly. Up to now,
this step is performed with a sequential approach requiring a few seconds only.
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Conclusion

We presented a parallel framework for biomechanical simulation of brain de-
formation. The presented approach allows predicting the intraoperative shift
of brain tissue. Employing a parallel architecture, low computation times were
achieved, which makes clinical application possible. The approach was evaluated
with preoperative MR data. The results of the simulation were compared to
intraoperatively acquired data, showing the practical value of the method.
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