
Approved for Public Release, Case Number 07-0393. Copyright 2006-2007, The

MITRE Corporation. All Rights Reserved.

The Web Mashup Scripting Language Profile

Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

The MITRE Corporation

202 Burlington Rd.

Bedford, Massachusetts 01730

ms@mitre.org

Abstract. This paper provides an overview of the Web Mashup Scripting

Language (WMSL) and discusses the WMSL-Profile. It specifies the HTML

encoding that is used to import Web Service Description Language (WSDL)

files and metadata, in the form of mapping relations, into a WMSL web page.

Furthermore, the WMSL-Profile describes the conventions used to parse the

WMSL pages. It is envisioned that these WMSL pages scripted out by end-

users using an easy-to-use editor will allow mashups to be created quickly to

integrate Web services. The processing of these WMSL pages will be

accomplished automatically and transparently to generate aligned ontologies

sufficient for interoperability.

Key Words: Semantics, Scripting, Ontologies, Mapping Relations, Web

Services, Mashup

1 Introduction

The Web Mashup Scripting Language (WMSL) [1] enables an end-user (“you”)

working with a browser—not even needing any other infrastructure, to quickly write

mashups that integrate any Web services on the Web. The end-user accomplishes this

by writing a web page that combines HTML, metadata in the form of mapping

relations, and small piece of code, or script. The mapping relations enable not only

the discovery and retrieval of other WMSL web pages, but also affect a new

programming paradigm that abstracts many programming complexities from the

script writer. Furthermore, the WMSL web pages written by disparate end-users

(“you”) can be harvested by crawlers to automatically generate the concepts needed to

build aligned ontologies sufficient for interoperability [4].

Despite many advances in Semantic Web technologies, such as OWL [6] and RDF

[7], we have not observed widespread adoption of these technologies that was once

anticipated. In comparison, a number of lightweight technologies such as

Microformats [8], Ajax [9], RSS [10], and REST [11] enjoy substantial momentum

and support from Web communities. The apparent reason for the success of these

technologies is that they are effective in addressing needs and fairly simple to use.

We believe the adoption of Semantic Web technologies has been slow largely

because they involve heavyweight infrastructure and substantial complexities. Adding

to these issues are the multiple competing standards in Semantic Web Services [12],

2 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

e.g. OWL-S [13] and WMSO [14], and how they can be harmonized with existing

W3C standards. Therefore, one key issue to address is this: Can we adopt Semantic

Web technologies in a manner sufficient to our needs that is lightweight and much

less complex for Web communities to use? Our previous research has clearly

indicated that light semantics are sufficient in many applications, and can be used as a

transitional step to rich semantics. For example, we concluded in [3] that we can

achieve workflow automation from the pair-wise mappings of data models and from

their mapping to some shared context, regardless of whether OWL\RDF, XML

Schemas, or UML is used to describe the data models.

Another challenge to widespread adoption of rich semantics is the lack of social

processes for the design of ontologies as is in the case for Folksonomies or in the

social tagging case. Despite these difficulties, we cannot escape the fact that

semantics are absolutely needed to enable automated reasoning on the web, or to

enable information exchange in the enterprise. How can we promote Web user

participation in using semantics without requiring deep understanding of ontology?

We believe WMSL, when combined with existing schemas such as WSDL files,

offers sufficient semantics for many applications. That is, WMSL leverages all the

semantics that exist in XML schemas while offering the facilities to assert further

semantics that may be missing from XML Schemas. This positions WMSL as the

glue that takes in XML schemas and yields formal ontologies. Since WMSL is

HTML and scripting, it therefore has Web scale. Furthermore, WMSL is lightweight,

and can be run from a browser. Also, our solution enables a light SOA approach

where anyone can write a WMSL script to implement a mashup in support of

information sharing requirements. Finally, WMSL can automatically generate the

semantics needed to index and search structured data as is done with free text today.

In the next section, we provide an overview of WMSL. In section 3, we use an

example to describe the encoding conventions of WMSL followed by its parsing

conventions in section 4. In section 5, we relate this approach to the literature,

discuss its implications, and point out the next steps to conclude the paper.

2 WMSL Overview

The WMSL script is divided into four blocks to contain different types of statements:

1. Imports of Web Service Description Language (WSDL) files [2], schemas,

ontologies, and other WMSL scripts

2. Alignments of entities and concepts

3. Workflow statements

4. Mediation statements

Each of these blocks can be encoded either in HTML or a script. For the purpose

of this paper, we discuss the WMSL-Profile: the encoding of the import and

alignment blocks in the HTML of a WMSL web page. That is, we describe the

conventions of encoding and of parsing the WMSL-Profile. We also describe the

automatic generation of aligned ontologies from the WMSL-Profile. It is envisioned

The Web Mashup Scripting Language Profile 3

that WMSL pages are created by end-users with the help of an easy-to-use editor, and

the parsing of the WMSL pages, which yields the aligned ontologies, is accomplished

automatically and transparently.

Figure 1 shows a WMSL page for a use case presented in [3] and [4]. The use case

discusses the integration of two air flight systems: Air Mobility (AM), and Air

Operations (AO). The AM system is responsible for many different types of missions

including: mid-air refueling, the movement of vehicles, and the tasking of Air Force

One. The AO system is primarily concerned with offensive and defensive missions.

Each system was developed independently and built for the specific needs of the

users. In both systems, a mission is represented as a set of position reports for a

particular aircraft.

<html>
 <head profile="http://mitre.org/wmsl/profile">
 <title>WSML Use Case</title>
 <base href=" http://mitre.org/owl/1.1/"/>
 <link rel="schema.AM" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AM#"/>
 <link rel="schema.AO" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AO#"/>
 </head>
 <body>
 <dl class="owl-equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
 </dl>
 <dl class="owl-sameAs">
 <dt>AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>
 <dl class="mappings-match">
 <dt><a AM#AircraftType">AM#AircraftType</dt>
 <dd><a AO#AircraftType">AO#AircraftType</dd>
 </dl>
 <dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 </dl>
 <dl class="mappings-hasRelation">
 <dt></dt>
 <dd></dd>
 </dl>
 <dl class="rdfs-subclassOf">
 <dt></dt>
 <dd></dd>
 </dl>
 </body>
</html>

<html>
 <head profile="http://mitre.org/wmsl/profile">
 <title>WSML Use Case</title>
 <base href=" http://mitre.org/owl/1.1/"/>
 <link rel="schema.AM" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AM#"/>
 <link rel="schema.AO" type="text/xml"
 href="http://www.mitre.org/xsd/1.1/AO#"/>
 </head>
 <body>
 <dl class="owl-equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
 </dl>
 <dl class="owl-sameAs">
 <dt>AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>
 <dl class="mappings-match">
 <dt><a AM#AircraftType">AM#AircraftType</dt>
 <dd><a AO#AircraftType">AO#AircraftType</dd>
 </dl>
 <dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 </dl>
 <dl class="mappings-hasRelation">
 <dt></dt>
 <dd></dd>
 </dl>
 <dl class="rdfs-subclassOf">
 <dt></dt>
 <dd></dd>
 </dl>
 </body>
</html>

Fig. 1. A Sample WMSL Profile for the AM-AO Use Case

In this scenario these two systems will be integrated so that the AO system can be

kept apprised of all the AM missions. To accomplish this integration a WMSL page

will be created. As stated earlier we will be focusing only on the import and

alignment blocks. First, the WMSL imports the WSDL files of the AM and AO, and

the WSDL of shared context which is the GeoTrans translator service that translates

between geo-coordinate systems. These imports yield the aligned ontologies

necessary to reconcile syntactic, structural, and representational mismatches between

the AM and the AO schemas as was demonstrated in [3] and [4]. Moreover, these

imports also yield the ontological description of web services necessary for their

4 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

automatic invocation and for handling their response—that aspect will not be

addressed here but in a future paper.

Then, the WMSL uses six mapping relations to align entities between the AM and

AO schemas and for their mappings to the WSDL of Geotrans [5]. Our previous

work [3] and [4] provides us a basis and insight to identify a minimal set of mapping

relations for reconciling mismatches between data models in most cases if not all.

The mapping patterns which are discussed in greater detail in our previous work are

shown in Figure 2. The minimal set includes only these mapping relations:

owl:equivalentClass owl:sameAs rdfs:subclassOf

hasMatch hasContext hasRelation

AO-FLIGHT

EVENT

AIRCRAFT
CONFIG

AO-AIRCRAFT-
TYPE

HAS-
ACFTTYPE

F-16E

CALLSIGN
NAME

HAS-
CALLSIGN
NAME

AIR
FIELD

AO-COORD
(Geodetic)

A010A

IS-A

HAS-
AIRCRAFTCONFIG

HAS-
LOCATION

HAS-EVENT

HAS-COORD

AM-FLIGHT

AM
MISSION

AIRCRAFT

HAS-
MISSION-
AIRCRAFT

AM

AIRPLANE
TYPE

HAS-
ACFTYPE

AM
CALLSIGN

HAS-CALLSIGN

AM
SORTIE
EVENT

HAS-
LOCATION

AM
LOCATION

AM
COORD
(UTM)

HAS-
COORD

F-16

IS-A

A10A

IS-A

HAS-EVENT

EquivalentClass

HAS-MATCH

owl:sameAs

owl:sameAs

HAS-MATCH

Air Mobility Air Operations

IS-A

LATITUDE

LONGITUDE

LATLONHTCOORDINATE
_WGE

HAS-
LATITUDE

HAS-
LONGITUDE

HAS-

CONTEXT

COORD
ZONE

COORD
NORTHING

UTMCOORDINATE
_WGE

HAS-ZONE

HAS-

CONTEXT

COORD
EASTING

COORD
HEMI

HAS-
HEMI

HAS-
EASTING

HAS-
NORTHING

Pattern 1

Pattern 2

Pattern 3

Fig. 2. Aligned Ontologies for the AM-AO Use Case

The first three relations are used in accordance with the specifications that they

were taken from. The hasMatch, and hasContext relations are needed in order to

resolve structural, syntactic, and representational mismatches between the legacy

schemas. The hasRelation establishes a generic relationship between a subject and an

object. To conclude this section we highlight the fact that the imports of the WSDL

files and the existence of these mapping relations in the WMSL enable an open-

source/collaborative model of building aligned ontologies sufficient for

interoperability.

The Web Mashup Scripting Language Profile 5

3 WMSL-Profile Specifications

3.1 Encoding of the Schema Declarations Using the Header Block

We now specify the conventions used in encoding the WMSL-Profile. Other

encodings are certainly possible, and we would welcome help for defining better

encoding scheme. We have chosen HTML in which to define WMSL because of its

already widespread acceptance and familiarity to Web communities. And there is no

need to introduce new syntax and tags when the familiar standard HTML tags would

suffice for WMSL.

To direct the user agent to follow the WMSL conventions in parsing this

document, we use the standard HTML profile attribute of the head tag as shown in

Figure 3.

 <head profile= http://mitre.org/wmsl/profile > <head profile= http://mitre.org/wmsl/profile >

Fig. 3. Use of the Profile Attribute

To declare the WSDL files employed by the integration, we use a method

compliant with that used by the embedded RDF specification as well as the method

used by the Dublin Core to embed metadata in HTML using the link and meta tags.

Specifically, we use the rel, type and href attributes of the link tag. The general

pattern is shown in Figure 4 followed by examples in Figures 5 and 6.

 <link rel="schema.prefix" type=”MIME Content Type” href="uri" />
<link rel="schema.AM" type="text/xml“ href="http:// www.mitre.org/xsd/1.1/AM#"/>
<link rel="schema.AO" type="text/xml" href="http:// www.mitre.org/xsd/1.1/AO#"/>

 <link rel="schema.prefix" type=”MIME Content Type” href="uri" />
<link rel="schema.AM" type="text/xml“ href="http:// www.mitre.org/xsd/1.1/AM#"/>
<link rel="schema.AO" type="text/xml" href="http:// www.mitre.org/xsd/1.1/AO#"/>

Fig. 4. Import of the WSDL Files Using the Link Tag

The above statements also declare a schema prefix that can be used later in the

HTML. Next we declare the schema of the mapping relations. Notice that we adopt

the type value “application/rdf+xml” to indicate an ontology file.

 <link rel="schema.map" type="application/rdf+xml“
href="http://www.mitre.org/mappings/1.1/mappings#"/ >

 <link rel="schema.map" type="application/rdf+xml“
href="http://www.mitre.org/mappings/1.1/mappings#"/ >

Fig. 5. Use of the Type Attribute

Next, we specify the handles for using relations from the RDFS and OWL

specifications. In the next section we will show how these handles are used.

 <link rel="schema.owl" type="text/html" href="http: //www.w3.org/2002/07/owl#"/>
<link rel="schema.rdfs" type="text/html"

href="http://www.w3.org/2000/01/rdf-schema#"/>

 <link rel="schema.owl" type="text/html" href="http: //www.w3.org/2002/07/owl#"/>
<link rel="schema.rdfs" type="text/html"

href="http://www.w3.org/2000/01/rdf-schema#"/>

Fig. 6. Use of Schema Handles

6 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

3.2 Encoding of the Mapping Relations in the Body Tag

The technique used for alignment requires six mapping relations used in three design

patterns. As stated earlier the mapping relations are: owl:equivalentClass,

owl:sameAs, rdfs:subclassOf, hasMatch, hasContext, hasRelation. In this section we

define the encoding of the mapping patterns in HTML. For these relations the class

attribute of DL tag is used in combination with the anchor, DT and the DD tags. The

interpretation of the encoding is also addressed in the next section.

The encoding of the owl::equivalentClass relation between two entities is shown in

Figure 7. Note the use of the OWL prefix in the class attribute of the DL tag, this is

the same prefix that was declared in the rel attribute of the link tag of Figure 6.

 <dl class="owl - equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
</dl>

 <dl class="owl - equivalentClass">
 <dt>AM#CallSign</dt>
 <dd>AO#CallSignName</dd>
</dl>

Fig. 7. Encoding of the owl:equivalentClass

The encoding of the owl:sameAs relation between two entities is similar to that of

the owl:equivalentClass, and is shown in Figure 8.

 <dl class="owl - sameAs">
 <dt> AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>

 <dl class="owl - sameAs">
 <dt> AM#A10A</dt>
 <dd>AO#A010A</dd>
 </dl>

Fig. 8. Encoding of the owl:sameAs

Next, we demonstrate the encoding of the hasMatch and hasContext relations. The

first example shown in Figure 9 specifies that the triple AM AircraftType hasMatch

the AO AircraftType. The second example shown in Figure 9 specifies the triples

AOCoord hasContext Coord-GEODETIC-WGE, and AMCoord hasContext Coord-

UTM-WGE.

 <dl class="mappings - hasMatch">
 <dt>AM#AircraftType</dt>
 <dd>AO#AircraftType</dd>
</dl>
<dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 <dt>AM#AMCoord</dt>
 <dd>

position#Coord-UTM-WGE</dd>
</dl>

 <dl class="mappings - hasMatch">
 <dt>AM#AircraftType</dt>
 <dd>AO#AircraftType</dd>
</dl>
<dl class="mappings-hasContext">
 <dt>AO#AOCoord</dt>
 <dd>

position#Coord-GEODETIC-WGE</dd>
 <dt>AM#AMCoord</dt>
 <dd>

position#Coord-UTM-WGE</dd>
</dl>

Fig. 9. Encoding of the hasMatch and hasContext

The encoding of the rdfs:subclassOf relation to specify that the aircraft A10A is a

subclass of AircraftType is shown in Figure 10.

The Web Mashup Scripting Language Profile 7

 <dl class="rd fs - subclassOf">
 <dt> </dt>
 <dd></dd>
</dl>

 <dl class="rd fs - subclassOf">
 <dt> </dt>
 <dd></dd>
</dl>

Fig. 10. Encoding of the rdfs:subclassOf

Finally, the hasRelation mapping relation, shown in Figure 11, is encoded in

HTML to specify that that the entity Coord-UTM-WGE has two generic relations

with UTM, and WGE. A generic relation is a genetic property where the name is not

significant.

 <dl class="mappings - hasRelation">
 <dt></dt>
 <dd></dd>
 <dt></dt>
 <dd></dd>
</dl>

 <dl class="mappings - hasRelation">
 <dt></dt>
 <dd></dd>
 <dt></dt>
 <dd></dd>
</dl>

Fig. 11. Encoding of the hasRelation

4 Automatic Generation of the Aligned Ontologies When Parsing

the WMSL-Profile

In our previous work, we have demonstrated that given the aligned ontologies of

Figure 2, we can automatically translate an instance of the Air Mobility (AM) to an

instance of the Air Operations (AO). How can we obtain the aligned ontologies of

Figure 2? The WSDL files specified in the import block of the WMSL-Profile can be

converted into ontologies. However, the WSDL files may not contain all the entities

necessary to enable the information exchange; hence, we use the mappings in the

WMSL-Profile to specify, or create, the missing semantics. The end result is that the

parsing of the WMSL-Profile yields the aligned ontologies sufficient for integration.

(For now, we will ignore the case where the schema declared in the WMSL may

themselves be ontologies.) More details on generating aligned ontologies are

described in the next sections.

4.1 Generating Ontologies from WSDL Files

We start building the ontology by leveraging the semantics already existing in the

WSDL file. To do that, we create mapping patterns between XML schema primitives

and the OWL/RDF vocabulary; the complete set of patterns will be discussed in a

future paper. For example, class membership is derived from the XML schema

sequence (xs:sequence), and restrictions on properties from the

minOccurs/maxOccurs attributes of the xs:sequence tag. Figure 12 shows a snippet of

xml schema and Figure 13 shows the corresponding ontology of it. Since XML

schema does not contain property names, we use a generic relationship in the RDF

8 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

triple. From our previous work we found that the property name of the triple within

an ontology does not play a role in the reasoning necessary to reconcile syntactic,

structural, and representational mismatches between data models.

 <xs:complexType name="AircraftC onfigType">
 <xs:sequence>
 <xs:element name="AircraftType" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="CallSignName" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 </xs:sequence>

 <xs:complexType name="AircraftC onfigType">
 <xs:sequence>
 <xs:element name="AircraftType" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 <xs:element name="CallSignName" type="xs:string"

minOccurs="0" maxOccurs="1"/>
 </xs:sequence>

Fig. 12. Snippet of XML Schema

 <owl:Class rdf:ID="AIRCRAFTCONFIG">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-AIRCRAFTTYPE"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#AIRCRAFTTYPE"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-CALLSIGNNAME"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#CALLSIGNNAME"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

 <owl:Class rdf:ID="AIRCRAFTCONFIG">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-AIRCRAFTTYPE"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#AIRCRAFTTYPE"/>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS-CALLSIGNNAME"/>
 <owl:minCardinality rdf:datatype="&xsd;string">0</owl:minCardinality>
 <owl:maxCardinality rdf:datatype="&xsd;string">1</owl:maxCardinality>
 <owl:allValuesFrom rdf:resource="#CALLSIGNNAME"/>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Fig. 13. OWL Statements Corresponding to the XML Schemas of Figure 12

After the ontologies have been generated from the WSDL files, we proceed to

augment these ontologies with semantics from the mapping relations in the WMSL-

Profile.

4.2 Augmenting the Ontologies with Semantics Derived from Mapping Relations

This step is illustrated by generating the semantics from the mappings presented in the

previous sections. The owl:equivalentClass relation that was presented in Figure 7

yields the following OWL (Figure 14).

 <owl:Class rdf:ID="CALLSIGNNAME">
 <owl:equivalentClass rdf:resource="&AM;CALLSIGN"/>
</owl:Class >

 <owl:Class rdf:ID="CALLSIGNNAME">
 <owl:equivalentClass rdf:resource="&AM;CALLSIGN"/>
</owl:Class >

Fig. 14. OWL Statements Corresponding to the WMSL of Figure 7

The owl:sameAs and rdfs:subclassOf mapping relations, presented in Figure 8 and

Figure 10 respectively, yield the following OWL in the AM ontology and the AO

ontology (Figure 15).

The Web Mashup Scripting Language Profile 9

 <owl:Class rdf:ID="A10A">
 <rdfs:subClassOf>
 <owl:Class rdf:about="&AM;AIRCRAFTTYPE"/>
 </rdfs:subClassOf>
 <owl:sameAs rdf:resource="&AO;A010A" />
</owl:Class>

<owl:Class rdf:ID="A010A"/>

 <owl:Class rdf:ID="A10A">
 <rdfs:subClassOf>
 <owl:Class rdf:about="&AM;AIRCRAFTTYPE"/>
 </rdfs:subClassOf>
 <owl:sameAs rdf:resource="&AO;A010A" />
</owl:Class>

<owl:Class rdf:ID="A010A"/>

Fig. 15. OWL Statements Corresponding to the WMSL of Figure 8

The hasRelation mapping relation shown in Figure 11, yields the following OWL

(Figure 16).

<owl:Class rdf:ID="C oord - UTM- WGE">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;UTM" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;WGE" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="C oord - UTM- WGE">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;UTM" />
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#HAS_RELATION"/>
 <owl:someValuesFrom rdf:resource="&position;WGE" />
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

Fig. 16. OWL Statements Corresponding to the WMSL of Figure 10

Note that the OWL above is inserted into a position ontology that was included in

the WMSL-Profile. In similar fashion, the remaining mapping relations yield OWL

definitions. When we finish the parsing of the WMSL-Profile, the aligned ontologies

are created as shown in the Figure 2 above.

5 Relation to the Literature and Future Work

The ideas presented in this paper draw on the proliferation of semantic matching

techniques found in Semantic Web Services [13] literature. We abstract one such

technique and formulate it in HTML. In the process, we demonstrated how WMSL is

used to leverage existing schemas to produce ontologies. This allows us to think of

WMSL as the glue between schemas and ontologies. WMSL can potentially enable

matching between schemas irrespective of their formalisms. Today, techniques to

embed semantics in HTML are emerging, but with a different purpose from that of

WMSL. For example, the hCard Microformat is used to embed contact information in

HTML pages. RDFa [15] serves to embed metadata such as those defined by the

Dublin Core, in HTML. In contrast to RDFa, WMSL is designed to embed mapping

relations in HTML. Another key distinction between the approach presented here and

the Microformats is that WMSL builds on schemas, and not text pages. Moreover, the

10 Marwan Sabbouh, Jeff Higginson, Caleb Wan, Salim Semy, Danny Gagne

embedding of the mapping relations in HTML serves to promote crosswalks for the

purpose of building ontologies. This is a key differentiator from the tagging

phenomenon that is so relevant in Folksonomies or the annotation technique enabled

by SAWSDL. That is, crosswalks may prove to be as significant to the structured

data sources as tags are to resources. Furthermore, since anyone can publish WMSL

for existing WSDLs, we conclude that WMSL enables an open source model for

building ontologies.

In conclusion, this paper describes how metadata in the form of mapping relations

are embedded in HTML. We also described the parsing conventions of WMSL by a

user agent. Our next steps, which will be described in a separate paper, are to

demonstrate how the mapping relations abstract workflow composition and to make

available libraries for enabling the execution of WMSL web pages.

References

[1] Sabbouh, M., Higginson, J., Semy, S., Gagne, D. Web Mashup Scripting Language.

Available at : http://semanticweb.mitre.org/wmsl/wmsl.pdf
[2] Webservice Description Language (WSDL) 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-

20010315, June 2006

[3] Gagne D., Sabbouh M., Powers S., Bennett S. Using Data Semantics to Enable Automatic

Composition of Web Services. IEEE International Conference on Services Computing

(SCC 06), Chicago USA. (Please see the extended version at:http://tinyurl.com/28svgr)

[4] Sabbouh M. et al. Using Semantic Web Technologies to Enable Interoperability of

Disparate Information Systems, MTR:

http://www.mitre.org/work/tech_papers/tech_papers_05/05_1025/
[5] Schroeder, B., & Sabbouh, M. (2005). Geotrans WSDL,

http://www.openchannelfoundation.org/orders/index.php?group_id=348, The Open

Channel Foundation

[6] Web Ontology Language (OWL), World Wide Web Consortium,

http://www.w3.org/2004/OWL

[7] Resource Description Framework (RDF), World Wide Web Consortium,

http://www.w3.org/rdf/

[8] More information on Microformats available at: http://microformats.org/

[9] More information on Asynchronous Javascript and XML (AJAX) available at:

http://www.ajaxmatters.com/

[10] Really Simple Syndication (RSS) 2.0 specification, available at:

http://www.rssboard.org/rss-specification

[11] Fielding, R.T., Architectural Styles and the Design of Network-based Software

Architectures, PhD Dissertation in Information and Computer Science, 2000, available at:

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

[12] McIlraith S., &Son T.,Zeng H. (2001). Semantic Web services. In IEEE Intelligent

Systems (Special Issue on the Semantic Web)

[13] OWL-S: Semantic Markup for Web Services, http://www.w3.org/Submission/OWL-S/,

November, 2004

[14] Web Service Modeling Ontology (WSMO), http://www.w3.org/Submission/WSMO/, June

2005

[15] RDFa Primer 1.0, available at: http://www.w3.org/TR/xhtml-rdfa-primer/

