
Functional Programs as Linked Data

Joshua Shinavier
josh@fortytwo.net

Soph-Ware Associates, Inc.,
624 W. Hastings Rd, Spokane, WA 99218 USA

http://www.soph-ware.com

Abstract. The idea of linked programs, or procedural RDF metadata,
has not been deeply explored. This paper introduces a dedicated scripting
language for linked data, called Ripple, whose programs both operate
upon and reside in RDF graphs. Ripple is a variation on the concatenative
theme of functional, stack-oriented languages such as Joy and Factor, and
takes a multivalued, pipeline approach to query composition. The Java
implementation includes a query API, an extensible library of primitive
functions, and an interactive command-line interpreter.

1 Introduction

Most of the data which populates today’s Semantic Web is purely descriptive in
nature, while the complex procedural machinery for querying, crawling, trans-
forming and reasoning about that data is buried within applications written in
high-level languages such as Java or Python, and is neither machine-accessible
nor reusable in the Semantic Web sense. This paper explores the notion of linked
or distributed programs as RDF graphs, and presents a functional, concatenative
interpreted language, closely related to Manfred von Thun’s Joy1, as a proof of
concept.

For a Turing-complete RDF query language, Ripple is an exercise in mini-
malism, both in terms of syntax and semantics. A Ripple program is a nested
list structure described with the RDF collections vocabulary, and is thereby a
first-class citizen of the Semantic Web. Significantly, the language is restricted to
a single RDF query operation: the forward traversal of links. Broadly speaking,
the goal of this project is to demonstrate that:

1. linked programs have all of the advantages of generic linked data2

2. a stack language is like a path language, only better
3. for most linked data purposes, forward traversal is all you need

1 http://www.latrobe.edu.au/philosophy/phimvt/joy/j01tut.html
2 http://www.w3.org/DesignIssues/LinkedData.html

2 Functional Programs as Linked Data

The Java implementation resolves HTTP URIs, dynamically, in response to
traversal operations, similarly to the Tabulator [1], the Semantic Web Client
Library3, and related tools4. Linked programs are drawn into the query environ-
ment in exactly the same manner, extending the the evaluation of queries to a
distributed code base.

2 Syntax

Ripple’s query model combines a computational scheme based on stack manip-
ulation with a functional ”pipes and filters” pattern. The stack paradigm makes
for minimal, point-free syntax at the RDF level, while the pipeline mechanism
accommodates RDF’s multivalued properties by distributing operations over ar-
bitrary numbers of intermediate results.

2.1 Textual Representation

The code samples in this paper are written in Ripple’s own RDF syntax, which
is very close to Turtle5.
Note: throughout this paper, the namespace prefixes rdf, rdfs, xsd, rpl, stack,
stream, math, graph, and etc are assumed to be predefined. Typing any of these
prefixes, followed by a tab character, at the command line will reveal a number
of terms in the corresponding namespace.

URIs may be written out in full or abbreviated using namespace prefixes.

<http://www.w3.org/2004/09/fresnel>. # a URI reference
rdfs:Class. # a qualified name
:marvin. # using the working (default) namespace
rdfs:. # this URI has an empty local name
:. # legal, and occasionally meaningful

Keywords are the local names of a fixed set of special URIs. Currently, the
local name of every primitive function is a keyword.

swap. # same as stack:swap

RDF Literals are represented as numbers and strings.

42. # an integer (xsd:integer for now)
3.1415926535. # a floating point value (xsd:double)
"the Universe". # a string Literal (xsd:string)
"English"@en. # a plain Literal with a language tag
"2007-05-07"^^xsd:date. # a generic typed Literal

3 http://sites.wiwiss.fu-berlin.de/suhl/bizer/ng4j/semwebclient/
4 http://moustaki.org/swic/
5 http://www.dajobe.org/2004/01/turtle/

Functional Programs as Linked Data 3

Blank nodes lose their identity between sessions, but it’s often useful to refer
to them within a session.

_:node129n4ttifx2. # a bnode with a generated id
_:tmp1. # a bnode with a user-defined id

Lists are indicated by parentheses.

("apple" "banana"). # a rdf:List

One symbol not found in Turtle is the slash operator (see Query Evaluation).
Where it is affixed to an RDF property, it is equivalent to the forward traversal
operator6 of Notation3. A likely extension to the language will add quantifiers
for regular path expressions, including /?, /*, and /+. E.g.

@define smush: /*owl:sameAs.

2.2 Commands and Queries

The interface distinguishes between two kinds of statements: queries, which are
expressions to be evaluated by the query processor, and commands or directives,
which perform specific tasks. Currently supported directives include:

Define a namespace prefix foo.
@prefix foo: <http://example.org/foo#>.

Define :bar as the list (1 2 3).
@define bar: 1 2 3.

Remove all statements about :bar
@undefine bar.

Write (a bnode closure of) the terms in namespace foo: to a file.
@export foo: "file.rdf".

Save the entire graph to a file.
@saveas "file.rdf".

Quit the application.
@quit.

2.3 Compositional Syntax

At the level of lists and nodes, Ripple queries are expressed in postfix notation,
or in diagrammatic order. Each query is a list in which the concatenation of
symbols represents the composition of functions. When the functions are RDF
properties, a query is equivalent to a path expression:
6 http://www.w3.org/DesignIssues/N3Alternatives

4 Functional Programs as Linked Data

=> "The RDF Vocabulary (RDF)"
("apple" "banana")/rdf:type/rdfs:isDefinedBy/dc:title.

This particular expression takes us from the list ("apple" "banana") to its
type, rdf:List, from the type to the ontology, rdf:, which defines it, and from
the ontology to its title, "The RDF Vocabulary (RDF)". The same idea applies
to primitive functions:

=> recently pinged DOAP documents
10 "doap" /pingTheSemanticWeb/toString.

Here, too, we can imagine data (a stream of lists or stacks) flowing from
the left hand side of the expression and emerging from the right hand side
of the expression (the head of the stack) after undergoing a transformation of
some kind. In this case, a stream of one stack containing the two arguments to
the built-in ”Ping the Semantic Web” function becomes a stream of ten stacks
containing URIs which toString then converts to string literals.

2.4 RDF Representation

Every Ripple program is expressible in RDF, where it takes the form of a sim-
ple RDF list. In the Java implementation, conversion between the RDF graph
representation of a list and its more efficient linked list counterpart is implicit.
For example, you may navigate a list using either list primitives or the RDF
collections vocabulary, interchangeably.

("apple" "banana")/rdf:first. # => "apple"
("apple" "banana")/uncons/pop. # => "apple"

When we assign a program a URI, we’re pushing its definition to the same
RDF model from which our query results are drawn:

@define hello:
"Hello world!".

Given an appropriate base URI and web-visible triple store, the program
itself becomes a part of the global graph of linked data, enabling remote users
and applications to read it in, execute it, and build upon it without restriction.

3 Query Evaluation

Ripple’s evaluation strategy hinges on a dichotomy between between active
and passive stack items. Active items exhibit type-specific behavior, whereas
passive items simply push a ”copy of themselves” to the stack. Every item has
a well-defined arity which, roughly speaking, is the number of arguments it
consumes. To be precise, the arity is the depth to which the stack must be
reduced before the item can be applied. For instance, the swap function requires
two arguments, so the evaluator must make sure that the stack is normalized

Functional Programs as Linked Data 5

to two levels before swap receives it. Evaluation proceeds, lazily, until all active
items have been eliminated from the head of the stack, at which point the stack
is said to be in normal form to one level. The only symbol active by default is
the rpl:op operator, which has the effect of making the preceding item active
as follows:

1. RDF properties consume a subject and map it to a stream of zero or more
objects

2. primitive functions exhibit ”black box”, custom behavior
3. lists become an extension of the stack (execution ”removes the parentheses”)
4. all other items consume nothing and produce nothing (they cause the stack

to disappear)

Note: in the text notation, rpl:op is abbreviated as the slash prefix attached
to the item it follows. For example, (2 /dup) is just a more compact way of
writing (2 dup rpl:op).

Now, consider the following definition and query:

x => x*x
@define sq: /dup/mul.

=> 16
4/:sq.

The major steps in the evaluation of the query are as follows:

1. (4 :sq rpl:op!) – rpl:op is active by default
2. (4 dup rpl:op! mul rpl:op!) – dereference and dequote list :sq
3. (4 dup rpl:op! mul!) – mul primitive becomes active
4. (4 dup! mul!) – mul needs two arguments. Recurse
5. (4 4 mul!) – dup consumes its one argument and applies its rewrite rule
6. (16) – mul now has two reduced arguments, and applies its rule, yielding 16

3.1 The Compositional Pipeline

Ripple differs from typical stack languages in that, rather than consuming a
single stack as input and producing a single stack as output, Ripple’s functions
operate on streams containing any number of stacks. For instance, the following
query yields not one, but several values:

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
<http://www.w3.org/People/Berners-Lee/card#i>/foaf:knows.

If we compose it with another query, the second query needs to be capable
of consuming not just a single stack, but many stacks, and of distributing its
operation over all of them:

<http://www.w3.org/People/Berners-Lee/card#i>/foaf:knows/foaf:name.

6 Functional Programs as Linked Data

To this end, Ripple conceives of functions as ”filters”, which behave like the
elements of a pipeline: receiving input, transforming it, and passing it on. Filters
may have state; for example, stream:limit filters (which count their input stacks
and stop transmitting them after a certain point) or stream:unique filters (which
remember their input stacks, and will not transmit a duplicate).

4 Examples and Use Cases

4.1 Arithmetic

In Ripple, as in Forth, stack shuffling operations take the place of bound variables
in complex expressions.

n => fibonacci(n)
@define fib:

0 1 /rolldown # push initial value pair and put n on top
(/swap/dupd/add) # push the step function
/swap/times # execute the step function n times
/pop. # select the low value

=> 13
7/:fib.

4.2 Recursion

Owing to the global nature of URIs, recursive definition is uncomplicated in Rip-
ple. Functions may reference each other, and themselves, arbitrarily. Evaluation
of @defined programs is delayed until forced by the evaluation of a query.

n => factorial(n)
@define fact:

/dup 0 /equal # if n is 0...
(1 /popd) # yield 1
(/dup 1 /sub /:fact /mul) # otherwise, yield n*fact(n-1)

/branch.

=> 120
5/:fact.

4.3 Exploring a FOAF Neighborhood

The ability to request and aggregate RDF metadata on the fly gives Ripple’s
query engine the properties of a web crawler. ”Intelligent” applications aside,
there are many conceivable use cases for simply discovering and aggregating a
large chunk of data in a configurable fashion. The following program targets the
decentralized, linked data of the FOAF network, beginning with Tim Berners-
Lee’s profile.

Functional Programs as Linked Data 7

@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

foaf1 => foaf1, foaf2, foaf3, ...
@define foafStep: # iterator for a FOAF crawler

(id # include foaf1 itself
owl:sameAs # include nodes identified with foaf1
foaf:knows # include those foaf:known by foaf1

)/each/i # apply all three patterns at once
/unique. # eliminate duplicate results

=> names of TBL and friends, and of friends of friends
<http://www.w3.org/People/Berners-Lee/card#i>

:foafStep 2/times /foaf:name.

4.4 Searching and Filtering in Revyu.com

Revyu.com is one of many7 innovative web services which offer linked RDF
views of their data. The web site links reviewers to reviews, reviews to things,
and some things to book metadata in the RDF Book Mashup8. Here, we’re more
interested in narrowing the search space to a handful of ”hits” than we are in
the aggregated data as a whole.

a f => a, if a/f is true, otherwise nothing
@define restrict:

/dupd/i # apply the filter criterion, f
id # keep the stack if a/f is true
scrap # throw the stack away if it isn’t

/branch.

@prefix scom: <http://sites.wiwiss.fu-berlin.de[no break]
/suhl/bizer/bookmashup/simpleCommerceVocab01.rdf#>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix owl: <http://www.w3.org/2002/07/owl#>.

r => r, if r is a book review, otherwise nothing
@define bookReviewsOnly:

(/foaf:primaryTopic # from review to topic
/owl:sameAs # from topic to possible book
/rdf:type scom:Book /equal # is it really a book?

)/:restrict.

@prefix rev: <http://purl.org/stuff/rev#>.

7 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets
8 http://sites.wiwiss.fu-berlin.de/suhl/bizer/bookmashup/

8 Functional Programs as Linked Data

=> labels of all of Tom’s more favorable book reviews
<http://revyu.com/people/tom> /foaf:made

/:bookReviewsOnly # books only
(/rev:rating 3 /gt)/:restrict # 4 stars or better
/rdfs:label. # from review to label

The query yields two results:

rdf:_1 ("Review of The Unwritten Rules of Phd Research, [...]")
rdf:_2 ("Review of Designing with Web Standards, by Jeff[...]")

Unlike the FOAF example, this program places a heavy burden on a single
network server. If possible, it would be in the best interest of both server and
client to offload query evaluation to the web service. Knowing when to use an
API for federated queries, as opposed aggregating data, probably has more to
do with the economics of distributed computing than with the rest of this paper.
However, the API itself is certain to be a simple one. It could even be as simple as
the passing of the dereferenceable URI of a single expression, to be resolved and
evaluated remotely. Perhaps a REST service and an OWL-S service description
could be generated, based on a given query pattern.

4.5 Graph Transformations and Other Side Effects

The Ripple implementation includes a number of ”experimental” primitives
which may be useful for graph transformations and in common metadata ”rewiring
scenarios”9. As these primitives affect the state of their environment (for in-
stance, by adding or removing statements), they are to be used with caution.
The following is an example of a ”safe” application of the new and assert prim-
itives. It transforms a resource description by creating a new blank node which
retains and renames a few of the original node’s edges.

Note: to see a description of these or any other primitive functions, type in
the name of the function at the command line, followed by a period.

@prefix foaf: <http://xmlns.com/foaf/0.1/>.

node map => a new node with "mapped" edges
@define mapped:

/each/i # distribute over a list of pairs
/new # create a new node
i/dipd/rotate/assert # assert a mapped statement
1/limit. # produce the node just once

Maps to a minimal FOAF-like vocabulary.
@prefix ex: <http://example.org/minimalFoaf#>.

9 http://simile.mit.edu/wiki/Rewiring Scenarios

Functional Programs as Linked Data 9

@define myMap:
(rdf:type rdf:type) # copy any rdf:type edges
(foaf:name ex:name) # map foaf:name to ex:name
(foaf:knows ex:knows). # map foaf:knows to ex:knows

=> minimal FOAF for TBL
<http://www.w3.org/People/Berners-Lee/card#i> :myMap/:mapped.

Other side effects may be more subtle. For instance, the following program
affects the ”Ping the Semantic Web” service which we queried earlier, possibly
influencing subsequent query results.

uri => PTSW’s ping response
@define ping:

/toString/urlEncoding
"http://pingthesemanticweb.com/rest/?url=" /swap/strCat
/get.

=> PTSW’s response to a ping of Ripple’s DOAP URI/document
<http://fortytwo.net/2007/03/ripple/doap#>/:ping.

Other potentially useful side-effects include the sending of an e-mail or the
firing of a system-specific event.

5 Implementation

Ripple is implemented in Java and uses the Sesame 2 (beta) RDF framework.
The command-line interface relies on ANTLR for lexer/parser generation and on
JLine for command history and tab completion. The project is built with Maven
and is distributed under an open source license. Software releases are available
at http://fortytwo.net/ripple.

6 Related Work

Ripple is strictly a resource-centric language and is not intended as an alter-
native to SPARQL. The fact that Ripple is rather like a path language makes
it much more effective for some tasks than the ”relational” SPARQL, and vice
versa. The same can be said of any of the other RDF Path10 languages, such as
Versa11 or the path portion of PSPARQL12. Possibly the closest thing to Ripple
is Ora Lassila’s Wilbur13 toolkit and path language, which integrates RDF with
Common Lisp (coming soon: Python!). Deep integration [2] of languages such
as Ruby [3] and Python [4] with RDF are related efforts, as well.
10 http://esw.w3.org/topic/RdfPath
11 http://copia.ogbuji.net/files/Versa.html
12 http://psparql.inrialpes.fr/
13 http://www.lassila.org/publications/2001/swws-01-abstract.shtml

10 Functional Programs as Linked Data

7 Conclusion and Future Work

Ripple is an exploratory project, which is to say that further development will be
driven by discoveries made along the way. If the hypertext web is any indication
of the future of the web of data, it will be vast, complex, and overall, loosely
structured. As it grows, we will need a sophisticated web of programs to keep
pace with it.

In addition to the command-line interpreter, the distribution contains a query
API, and the embedding of the Ripple query processor in further Semantic Web
applications is a very likely use case. In the short term, I would like to integrate
Ripple with a graphical RDF browser such as Longwell14, and investigate the
federated query scenario mentioned above.

Christopher Diggins has done some work on static typing for stack languages
[5], and it would be interesting to see whether and how such a type system could
be expressed with an ontology. Currently, Ripple’s type system is just a form of
API documentation, so a more rigorous one would definitely be a step forward.

Compilation is another interesting possibility. While Ripple will always have
an interpreted component, a modular Ripple program could be compiled to
optimized Java bytecode and then reinserted into the environment as a primitive
function.

References

1. Berners-Lee, T., et al., Tabulator: Exploring and Analyzing linked data on
the Semantic Web. In Proceedings of the 3rd International Semantic Web
User Interaction Workshop, 2006.

2. Vrandecic, D., Deep Integration of Scripting Languages and Semantic Web
Technologies. In 1st International Workshop on Scripting for the Semantic
Web, volume 135 of CEUR Workshop Proceedings. Herakleion, Greece, May
2005. ISSN: 1613-0073

3. Fernandez, O., Deep Integration of Ruby with Semantic Web Ontologies.
See http://obiefernandez.com/DeepIntegration.pdf

4. Babik, M., Hluchy, L., Deep Integration of Python with Web Ontology Lan-
guage. In 2nd International Workshop on Scripting for the Semantic Web,
volume 181 of CEUR Workshop Proceedings. Budva, Montenegro, June
2006. ISSN: 1613-0073.

5. Diggins, C., Typing Functional Stack-Based Languages. See http://www.cat-
language.com/paper.html

14 http://simile.mit.edu/wiki/Longwell

