
Rapid ontology-based Web application development with JSTL

Angel López-Cima1, Oscar Corcho2, Asunción Gómez-Pérez1

1OEG - Facultad de Informática. Universidad Politécnica de Madrid (UPM) Campus de Montegancedo, s/n. 28660
Boadilla del Monte. Madrid. Spain

{alopez, asun}@fi.upm.es
2University of Manchester. School of Computer Science. Oxford Road, Manchester, United Kingdom

Oscar.Corcho@manchester.ac.uk

Abstract. This paper presents the approach followed by the ODESeW framework for the
development of ontology-based Web applications. ODESeW eases the creation of this type of
applications by allowing the use of the expression language JSTL over ontology components, using a
data model that reflects the knowledge representation of common ontology languages and that is
implemented with Java Beans. This framework has been used for the development of a number of
portals focused on the dissemination and management of R&D collaborative projects.

Introduction

Current Web applications can be designed and implemented with a wide variety of programming
languages and underlying frameworks, techniques and technologies (.NET, AJAX, Java, PHP, ASP, JSP,
JSTL, JDO, COM, J2EE, etc.). These technologies are widely accepted, what eases their reuse in
application development, from code snippets to large applications. Besides, most of them are supported
by Web authoring tools (e.g., Macromedia, FrontPage), making it easier for non-experts to create Web
applications.

In the context of the Semantic Web there is already a large diversity of tools for editing and managing
ontologies, annotating resources, querying and reasoning with them, etc. These tools constitute the basic
building blocks of the underlying infrastructure for ontology-based application development [8]. In the
past few years there have been also many efforts focused on the provision of technology for the rapid
development of ontology-based Web applications. [3] describes the most relevant technologies according
to a set of characteristics like their model storage, API paradigm, supported serialization formats, query
languages, etc. Most of these efforts are oriented towards the easy management of RDF resources,
statements and models, with a lack of approaches for the management of the most usual ontology
components (classes, properties, hierarchies, and individuals). This is classified as the ontology-centric
view in [3], and it is only supported by some of the most common Java APIs (Sesame, Jena, Protégé-
OWL, etc.), which operate at a lower infrastructure level, and two other more user and Web oriented
APIs, such as Spiral1 and RAP [16], integrated with .NET and PHP respectively.

On another dimension, authoring tools are also being created for non-experts. Some of the most recent
work on this side has been focused on the development of semantic wikis (e.g., [10], [14]), which allow
non-experts to include ontology-based annotations (and in some cases even ontology term definitions) of
the Web pages that they edit, and on the development of semantic desktops (e.g., [4], [11], [6], [1]).

In this paper we present how the ODESeW framework [10] combines both types of approaches,
scripting languages for developers that want to create ontology-based Web applications and ontology-
based Web authoring tools for non-experts, in a common framework. On the first aspect, ODESeW
proposes the use of Java Beans for the management of ontology components and ontology-based
annotations, and JSTL default and extended tags for the visualisation of ontology-based annotations.
These technologies can be easily combined with other standard visualisation and navigation ones, hence
improving reuse and maintainability. On the second aspect, ODESeW provides forms that are
automatically generated from the underlying ontologies and allow a more structured edition of
annotations.

The structure of this paper is organized as follows. Section 2 describes the ODESeW architecture.
Sections 3, 4 and 5 focus on the most relevant components of this architecture together with some
examples from the Person and Organization ontologies in R&D collaborative project. Section 6 provides
some conclusions and future work.

1 http://www.semanticplanet.com/library/Spiral/HomePage?from=RdfLib

The ODESeW Architecture

The ODESeW architecture, shown in Fig. 1, is based on the Model-View-Controller design pattern [7],
which is currently widely used for developing Web applications. This pattern is useful to develop
applications where the same information may have several visualisations. It divides functionality among
three types of objects: the model, the view and the controller.
• The model represents business data, and the business logic that governs its access and modification. In

ODESeW, business data is represented with three models, coordinated by the Data Model Manager:
• The Data Model, which contains domain information, represented by means of ontologies.
• The User Model, which stores user profiles.
• The External Information Gateway (EIG), which accesses external resources and annotates them

with domain information.
• Views render the contents of models. They access data from the model and specify how that data

should be presented. They also update data presentation when their corresponding model changes, and
forward user inputs to the controller.

• The controller defines the application behaviour. It dispatches user requests (button clicks, menu
selections, form input texts, etc.), also known as user gestures or actions, interpreting and mapping
them into actions to be performed by the model. These actions can perform navigation of the user from
one view to another and also execute business logic of the application.

Messenger
Service

 Fig. 1. ODESeW Architecture

The ODESeW architecture also includes other services, such a the Messenger Service, in charge of
communicating ODESeW applications with external applications. For instance, the controller may send a
message to external applications when an instance is created, updated or removed, or receive a message
when an external information source changes. Another important component is the permission manager,
which filters user requests and responses according to the user that is accessing the application. The
description of how these components work is out of scope of this paper, and can be found in [12].

Data Model

The ODESeW data model uses a frame-based ontology representation model, based on the WebODE [2]
knowledge representation ontology, which is the underlying ontology repository used by ODESeW. Fig.
2 shows the components in this model (concepts, attributes, relations, instances, etc.) and the relations
between them, and Fig. 2 shows all the attributes and relations of each component of the model. This
model has been implemented with Java Beans [9], what enables the use of a large amount of third party
Web application development technologies.

The Data Model Manager manages connections to the ontology repositories that store the domain
application and the user models. This includes starting up connections, managing their lifetime, and
identifying the relevant ontologies to be used. Since the current implementation connects to WebODE,
ontologies implemented in a range of languages (including RDF Schema and OWL) can be imported in
the system and used.

Controller

MODEL

View

Messenger
Service

Navigation
&

Composition
Model

Data Model

Permission Manager

User
Model Domain Model

External
Information
Gateway

Communicators

Mappers

Data Model Manager

Controller

MODEL

View
Navigation

&
Composition

Model

Data Model

Permission Manager

User
Model Domain Model

External
Information
Gateway

Communicators

Mappers

External
Information
Gateway

CommunicatorsCommunicators

MappersMappers

Data Model ManagerData Model Manager

Fig. 2. ODESeW Data Model diagram

View

ODESeW views are implemented with XHTML, for static pages, and with JSP [15], for dynamic pages.
The JSP pages use a combination of standard JSTL tags with the Expresion Language [15], and of custom
tags to access information from the data model, as illustrated in Fig. 3 and Fig. 5.

The code included in Fig. 3 is included in the page instance.jsp, and uses JSTL to execute a set of
commands that display the information about a person. The commands are executed are the following: 1)
get the instance “Angel López-Cima” from the ontology “Person Ontology”; 2) print the instance name,
3) iterate for all pairs <Attribute, Value[]> of instance values; 4) set the attributes attribute and values
from the pair <Attribute, Value[]>; 5) store in the attribute multivalue if the instance has more than one
value for the attribute att, and in that case create an enumeration list with the following instructions; 6)
print the attribute name of the pair <Attribute, Value[]>; 7) iterate for all values in the pair <Attribute,
Value[]>; 8) and print a value. Fig. 4 is the page that results from the execution of the code inside this
page. To display any other instance, no matter which ontology it comes from or which concept it belongs
to, the web developer only needs to change the values in step 1) in Fig. 3.

Fig. 3. Instance.jsp, a simple view of an instance.

Fig. 4. Simple visualization of an instance of the
concept Person.

<sew:ontology var=“persOntology" name="Person Ontology">
<sew:instance var="instance" name="Angel López-Cima"/>

</sew:ontology>

<h1>${instance.name}</h1>
<table>
<c:forEach var=“pairAttVals" items="${instance.values}">
<c:set var=“attribute” value=“${pairAttVals.key}”/>
<c:set var=“values” value=“${pairAttVal.value}”>
<c:set var="multivalue" value="${fn:length(values)>1}"/>

<tr>
<th align="left" valign="top">${attribute}:</th>
<td align="left">
<c:if test="${multivalue}"></c:if>
<c:forEach var="value" items="${values}">
<c:if test="${multivalue}"></c:if>
${value}
<c:if test="${multivalue}"></c:if>

</c:forEach>
<c:if test="${multivalue}"></c:if>
</td>

</tr>
</c:forEach>
</table>

1

2

3
4
5

7

8

6

<sew:ontology var=“persOntology" name="Person Ontology">
<sew:instance var="instance" name="Angel López-Cima"/>

</sew:ontology>

<h1>${instance.name}</h1>
<table>
<c:forEach var=“pairAttVals" items="${instance.values}">
<c:set var=“attribute” value=“${pairAttVals.key}”/>
<c:set var=“values” value=“${pairAttVal.value}”>
<c:set var="multivalue" value="${fn:length(values)>1}"/>

<tr>
<th align="left" valign="top">${attribute}:</th>
<td align="left">
<c:if test="${multivalue}"></c:if>
<c:forEach var="value" items="${values}">
<c:if test="${multivalue}"></c:if>
${value}
<c:if test="${multivalue}"></c:if>

</c:forEach>
<c:if test="${multivalue}"></c:if>
</td>

</tr>
</c:forEach>
</table>

1

2

3
4
5

7

8

6

The code included in Fig. 5 executes the following commands: 1) get the concept “Person” from the
ontology “Ontology Person”; 2) print the name of the concept; 3) iterate for all direct and indirect
instances of the concept; 4) print the name of an instance. Fig. 6 is the page that results from its execution.
To display any other concept, the web developer only needs to change the value in 1) in Fig. 5.

Fig. 5. Concept.jsp, a simple view of a concept

Fig. 6. Simple visualization of the list of
instances of the concept Person.

<sew:ontology var="persOnto" name="Person Ontology">
<sew:concept var="concept" name="Person"/>

</sew:ontology>
<h1><c:out value="${concept}"/></h1>

<c:forEach var="instance" items="${concept.allInstances}">
${instance.name}

</c:forEach>

1

2
3
4

<sew:ontology var="persOnto" name="Person Ontology">
<sew:concept var="concept" name="Person"/>

</sew:ontology>
<h1><c:out value="${concept}"/></h1>

<c:forEach var="instance" items="${concept.allInstances}">
${instance.name}

</c:forEach>

1

2
3
4

Controller

The ODESeW Controller receives user requests, which contain the actions to be performed, and
completes or checks requests with the information model in the Data Model (including both the domain
and the user models). Then it reads and executes the navigation and composition model, described below,
and returns the next view that should be rendered for the user.

We will describe first the ODESeW Navigation and Composition Model, and then the steps followed
by the Controller to execute actions.

The Navigation and Composition Models

The navigation model represents the navigation of a user through the application. This model is
explicitly separated from the design of views so that changes in the navigation do not affect the
implementation of views. Besides, it allows representing declaratively the navigation of a user, enabling
in this way an easy study of the behaviours of the user of an application.

The navigation model is a directed named graph in which nodes represent views and edges represent
navigation actions from one view to another.
• Nodes have 2 attributes: “precondition” and “view URL”. The first one specifies preconditions to allow

the execution of a view and the second one specifies the location of the view. If the precondition is
empty, it is considered to be true. If the viewURL attribute is empty this means that the view is abstract.
That is, it is a view that cannot be rendered directly and has to be specialised by other views so as to be
used by the Controller.

• Edges identify actions that can be performed from a view. Besides redirecting users from a view to
another, edges are attached to a task execution: instance edition, instance removal, message sending,
etc. An edge may not have an origin node, that is, the action represented by this edge can be executed
from all pages, represented or not in the navigation model. Besides, edges can be concatenated to
perform different tasks in a navigation step.
The navigation model also allows describing specialisation/generalisation relations between two views

(defined with the subclass-of relationship). A view is a specialisation of another if it visualises the same
content as its parent view but providing more specific visualisation items. For instance, a default view
may be used to render any instance and for other more specific instances, such as instances of persons,
instances of publications, etc., other more specific views can be created.

Fig. 7 shows an example of a navigation model with 9 views defined and several types of actions and
specialisation/generalisation relations defined between them.

The composition model is similar to the navigation model, though its rationale is different: it allows
including a set of views inside another and is normally used when complex sets of information have to be
presented at once.

One common example of the use of the composition model is for displaying a default view that render
attribute values and for other more specific types of values, such as e-mail addresses, URLs, image files,
sound files, video files, etc., other more specific views can be created.

View3
URL3

PRECOND3

View2
URL2

PRECOND2

View1
URL1

PRECOND1

View4

PRECOND4

View5
URL5

PRECOND5

View7
URL7

PRECOND7

View8
URL8

PRECOND8

View9
URL9

PRECOND9

subclass-of

subclass-of

subclass-ofsubclass-of

subclass-of
action a

action a

View10
URL10

PRECOND10

action b

Fig. 11. Example of a navigation model

The elements used in the composition model are the same as those for the navigation model: views are
represented as nodes, with the attributes “precondition” and “view URL”; views can be specialized with
other views; and actions are represented as edges. The only constraint is the type of actions that can be
represented in this model, which only consists in the action of inclusion of a view inside another.

Controller Execution

Actions received by the Controller contain two elements: task and control flow operation. The task is the
specific operation to be performed, while the control flow operation specifies what to do after the
execution of the task.

Developers can use any of the default tasks provided by ODESeW or create new ones, either from
scratch or by reusing and extending any of the default ones. The following default tasks are available:
sewView. It renders the view specified in the user request by redirecting users to it; sewRemove. It deletes
the set of concept and relation instances specified in the user request; sewEdit. It updates or creates the set
of concept and relation instances specified in the user request; sewSearch. It searches for a set of concept
and relation instances that satisfy the query; sewRouter. It is used to execute another action from a list
specified in the user request. These actions have a guard condition, and the sewRouter task selects the
first one whose guard condition is satisfied; sewLogin. It authenticates a user and loads his/her profile in
the user session.

With respect to control flow operations, there are four available: Forward: the user request is
concatenated to another action or view; Redirect: the user request ends and a new user request starts. This
new request consists in showing another view or performing another action; Include: the execution of a
new action or view is included in the original view or action, so that it will be performed later; Empty: the
execution ends without any more control flow actions. In fact, a view is actually defined as a rendering
action, optionally followed by other additional include actions, and which has an empty control flow at
the end.

When a user requests an action from a view, the Controller executes the navigation model, following
these steps:
1. Identify the view from which the user request is originated, and find it in the navigation model.
2. Find the requested action in the source view. The action can be defined explicitly in the source view or

in any of its ancestor views.
3. Select the target view for the requested action. In the navigation model, an action applied to a specific

view may have several target views, and at least one of them has to be selected. To perform this
selection, the Controller verifies whether the precondition of any of the target views specified in the

action is satisfied given the request parameters. If no precondition is satisfied, an exception raises and
the error is reported to the portal administrator.

4. Find whether any of the specialisations of the selected target view is also valid. Once the controller
found a valid candidate view, it will try to find another one among its specialisations. To do this, the
Controller checks the preconditions of the view specialisations. If any of them is satisfied, that view is
a new valid candidate view and the Controller repeats this step with its children views, until a valid
view does not have more specialisations or none of the preconditions of its specialisations are satisfied.
The last valid candidate view is the final target view.
Let us see an example based on the navigation model presented in Fig. 11. Let us assume that the user

requests the action a from the view View3, and that the parameters of the request satisfy the
preconditions Precondition4, Precondition8 and Precondition9 and do not satisfy the preconditions
Precondition5 and Precondition7.

First, the Controller finds the source view (View3). Taking into account that the user wants to perform
action a, the possible candidate views are the View4 and View8.

The first candidate to be checked is View4. However, View4 is abstract, so the Controller has to check
the preconditions of its specialisations (View5 and View7). Neither of them satisfies the preconditions, so
View4 nor its specialisations are valid target views. Hence, View4 is discarded by the Controller and the
next candidate view (View8) is analysed. The Precondition8 is satisfied, hence the View8 is a valid
candidate view. Then, the Controller starts looking for its specialisations (View9). The precondition of
View9 is also satisfied and, since View9 does not have specialisations, the final target view for the
execution of action from View3 is the View9 (see Fig. 12).
Both models, the navigation and composition, can be included and executed under the technologies
Struts2 or JSF [5].

View3
URL3

PRECOND3

View2
URL2

PRECOND2

View1
URL1

PRECOND1

View4

PRECOND4

View5
URL5

PRECOND5

View7
URL7

PRECOND7

View8
URL8

PRECOND8

View9
URL9

PRECOND9

subclass-of

subclass-of

subclass-ofsubclass-of

subclass-of
action a

action a

View10
URL10

PRECOND10

action b

1

2

1.1
1.2

1.3

2.1

2.2

Fig. 12. Example of a navigation model execution.

Examples of composition and navigation

Now we show how we can improve the visualisation of the examples presented in Fig. 3 and in Fig. 5 by
including specialised visualisations for images, emails and relations to other instances, using the
composition and navigation models described above.

Using the Composition Model, we include a hierarchy of visualization of values where each node of
the hierarchy is a type of attribute and a visualization of instances inside the visualization of a concept
that lists all instances in a concept Fig. 15 shows a Navigation Model for visualizing values in an instance
and instances in the list of instances from a concept and Fig. 16 it shows the JSP code that visualized each
type of attributes and the instance.

Executing the page presented in the Fig. 3, but substituting the line marked with number 8) with the
following line:

<sew:out action=“includeView” value=“${value}” attribute=“${att}”/>
and Fig. 5, but substituting the line marked with number 4) with the following line:
<sew:out action=“includeView” value=“${instance}”/>
the portal displays to the user the visualization presented in Fig. 17 in the left side.

2 http://struts.apache.org/index.html

When the web server executes the page instance.jsp and finds the tag <sew:out>, the ODESeW
controller looks for the best visualization that matches the original view instance.jsp, executing the action
includeView with the parameters depending on the attribute of the value and the actual value to be
displayed. And when the web server executes the page concept.jsp and finds the tag <sew:out>, the
ODESeW controller includes refInstance.jsp inside the page concept.jsp.

In this way, web developers delegate to the Composition Model how to visualize each type of
information, saving a lot of time that would be needed to create a large set of if-then-else or switch-case
commands in all dynamic pages that are used to visualize, in a specific format, attribute values. In the last
example, if we remove the lines marked by 1) in Fig. 3 and in Fig. 5 , the view is fully reusable for
displaying any instance and concept, and if the user click on any destination instance, ODESeW executes
the same instance.jsp but displaying another instance, as shown in Fig. 17.

instance.name

email.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${value}”>

</sew:url>
${value.name}

relation.jsp

${value}

instance_attribute.jsp

${value}

url.jsp

image.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${instance}”>

</sew:url>
${instance.name}

refInstance.jsp

instance.name

email.jsp
instance.name

email.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${value}”>

</sew:url>
${value.name}

relation.jsp
<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${value}”>

</sew:url>
${value.name}

relation.jsp

${value}

instance_attribute.jsp
${value}

instance_attribute.jsp

${value}

url.jsp
${value}

url.jsp

image.jsp

image.jsp

<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${instance}”>

</sew:url>
${instance.name}

refInstance.jsp
<sew:url var=“link” value=“instance.jsp”>
<sew:param name=“instance” value=“${instance}”>

</sew:url>
${instance.name}

refInstance.jsp

Instance
URL

Instance.jsp
PRECONDITION
!empty instance

Instance
URL

Instance.jsp
PRECONDITION
!empty instance

Attribute
URL

PRECONDITION
!empty attribute

Attribute
URL

PRECONDITION
!empty attribute

Relation
URL

relation.jsp
PRECONDITION
attribute.relation

Relation
URL

relation.jsp
PRECONDITION
attribute.relation

InstanceAttribute
URL

instance_attribute.jsp
PRECONDITION

attribute.instanceAttribute

InstanceAttribute
URL

instance_attribute.jsp
PRECONDITION

attribute.instanceAttribute

URL
URL

url.jsp
PRECONDITION

attribute.type==‘URL’

URL
URL

url.jsp
PRECONDITION

attribute.type==‘URL’

String
URL

PRECONDITION
attribute.type==‘String’

String
URL

PRECONDITION
attribute.type==‘String’

Image
URL

image.jsp
PRECONDITION

util:isImage(value)

Image
URL

image.jsp
PRECONDITION

util:isImage(value)

EMail
URL

email.jsp
PRECONDITION

attribute.name==‘e-mail’

EMail
URL

email.jsp
PRECONDITION

attribute.name==‘e-mail’

includeView

concept
URL

concept.jsp
PRECONDITION
!empty concept

concept
URL

concept.jsp
PRECONDITION
!empty concept

instanceRef
URL

refInstance.jsp
PRECONDITION
!empty instance

instanceRef
URL

refInstance.jsp
PRECONDITION
!empty instance

includeView

Fig. 16. Value visualizations Fig. 15. Composition Model for value visualizations

Now, the instance.jsp and concept.jsp pages can be used to create generic views for displaying any
instance and concept in the Data Model. However, in most of the cases, the generic view is not what the
web developer wants to display in all cases. ODESeW allows web designers to create specific
visualizations for different types of information in the Data Model in the same way as it is done with the
Composition Model, but using the Navigation Model instead.

In the Knowledge Web portal, we set a navigation model with specific views for displaying persons
involved in the project, organization partners in the project, instances of persons and instances of
organizations. The resulting navigation and visualization is presented in Fig. 18 and the result of their
execution is shown in Fig. 19.

Fig. 17. Visualization of different instances with the same instance.jsp and concept.jsp

To execute the navi , we substitute the value of
the attribute value of ce.jsp shown in Fig. 16
from the value in <sew:out var=”link”
value=”/sew/viewTerm”>… receives a request for executing the
action viewTerm, and , then it shows the page
/concept/organization.j , then it shows the page
/concept/person.jsp the generic concept
visualisation page zation, Person, etc.

eate specific forms for editing
 of custom JSTL tags provided by

ng form objects, as shown in Table 2.
nstances, all the ODESeW tags of the

 (here the web designer specifies which instance is
instance attribute is being edited); and

by the user will be appended to the
des, in this case, the attribute

bm

gation through the global navigation action viewTerm
 the tag <sew:out> of the files relation.jsp and refInstan
stance.jsp to the value /sew/viewTerm (e.g.

). In this way, when the portal
the parameters contain a class or subclass of Organization
sp. If the parameters contain a class or subclass of Person

. If the parameters contain any other class, then it shows
concept.jsp. Similarly this will happen with instances of Organi

Fig. 18. Navigation Model

Fig. 19. Visualization of different objects
in the Data Model.

Instance edition

ODESeW also provides a set of tags that help to cr instances, together with
actions to store those modifications inside the Data Model. The set
ODESeW are extensions of the well-known HTML tags for creati

In the case that the form is editing an instance or a group of i
HTML form object have 3 new attributes: instance
being edited); attribute (here the web designer specifies which
mode (here the web designer specifies whether the value input
existing values or will replace the old values stored in the ontology). Besi
value is used to specify a destination instance of a relation.

Table 2. ODESeW tag for HTML forms

Specification of a form and how information will be su itted. <sew:form>
name, action, enctype, method, target, all event
triggers

Standard attributes from the <form> tag

Object form: text input, checkbox, option, button, text area, a combo list and a multivalue list
accept, accesskey, align, alt, border, checked, cols,
datafld, datasrc, disabled, id, ismap, maxlength, name,
readonly, rows, size, src, style, tabindex, type, usmap,

l event triggers

Standard attributes from the <input>,
<textarea>, <button> and <select> tag.

al
value Standard attribute, but it can contain any

term of the Data Model.
instance Sets the instance that is being edited
attribute Sets the instance attribute being edited

<sew:input>
<sew:textarea>
<sew:button>
<sew:select>

mode Sets whether the value in this tag will be
appended [append] in the instance or
will be used to replace the old values
[update].

Option in a combo box
disabled, label, selected Standard attributes from <option> tag

<sew:option>

value Standard attribute, but it can contain any
 of the Data Model. term

Term /concept/organization.jsp

/concept/person.jsp

/instance/organization.jsp

/instance/person.jsp

viewTerm

viewTerm

mviewTer

URL

PRECONDITION

Concept
URL

concept.jsp
PRECONDITION
!empty concept

Instance
URL

instance.jsp
PRECONDITION
!empty instance

Organization
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.

subclassOf[‘Organization’]

Person
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.
subclassOf[‘Person’]

viewTerm

orgConcept
URL

/concept/organization.jsp
PRECONDITION

concept.subclassOf[‘Organization’]

Term

personConcept
URL

/concept/person.jsp
PRECONDITION

concept.subclassOf[‘Person’]

URL

PRECONDITION

Term
URL

PRECONDITION

Concept
URL

concept.jsp
PRECONDITION
!empty concept

Concept
URL

concept.jsp
PRECONDITION
!empty concept

Instance
URL

instance.jsp
PRECONDITION
!empty instance

Instance
URL

instance.jsp
PRECONDITION
!empty instance

Organization
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.

subclassOf[‘Organization’]

Organization
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.

subclassOf[‘Organization’]

Person
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.
subclassOf[‘Person’]

viewTerm

Person
URL

/instance/organization.jsp
PRECONDITION
instance.instanceOf.
subclassOf[‘Person’]

orgConcept
URL

/concept/organization.jsp
PRECONDITION

concept.subclassOf[‘Organization’]

personConcept orgConcept
URL

/concept/organization.jsp
PRECONDITION

concept.subclassOf[‘Organization’]

URL
/concept/person.jsp
PRECONDITION

concept.subclassOf[‘Person’]

personConcept
URL

/concept/person.jsp
PRECONDITION

concept.subclassOf[‘Person’]

In the case t ,
concept, attribu tance), the attribute value can contain one of these terms, which is passed as a

 the

 u s
e f ise behaviour in the generated HTML

and allow web d heir own javascript functions a
Fig. 22 shows t tion model for editing instances, and F

specified very si o how they are done in the normal visuali they
can generate a generic form for any instance.

instance” of
the form as a new
the ng for the name of
the instance represente e concept of the
instance; 4) te; 6) prints the
minimum an action specifying the

 that instance.
The command i attributes of the

Fig. 25. Visualization of editInstance.jsp

hat the form is requesting an attribute that contains
te or ins

 a term of the Data Model (ontology

parameter to action of the form.
These tags include a set of javascript functions that are in charg

sed in an editing instance action from ODESeW
orm. These javascript functions do not generate no

rs to include t

e of generating hidden controls in the
to collect the values of the instanceform that are

entered in th
esigne

he composi
s usual.
ig. 24 and Fig. 25 show that forms are

milarly t zation shown in Fig. 19, and that

EditInstance

Fig. 22. Composition Model for editing instances

The code include in the Fig. 24 executes the following commands: 1) sets the parameter “
variable of the form with the name “instance” and this new instance is an instance of

concept represented by the variable “concept”; 2) prints a text field in the form aski
d in the variable “instance”; 3) iterates among all attributes of th

 prints the name of the attribute; 5) prints the name of the type of the attribu
d the maximum cardinality of the attribute; 7) calls the includeView

instance and the attribute to include an HTML object form to edit values for that attribute in
n 7) calls the composition model shown in Fig. 22 iteratively among all

concept of the instance and presents as a result the visualization shown in Fig. 25.

Fig. 24. editInstance.jsp for editing instances.

URL
editInstance.jsp

PRECONDITION
!empty instance

Attribute
URL

PRECONDITION
!empty attribute

Relation
URL

editRelation.jsp
PRECONDITION
attribute.relation

InstanceAttribute
URL

editInstanceAttribute.jsp
PRECONDITION

attribute.instanceAttribute

URL
URL

editURL.jsp
PRECONDITION

attribute.type==‘URL’

Boolean
URL

editBoolean.jsp
PRECONDITION

attribute.type==‘Boolean’

includeView

EditInstance

Date
URL

editDate.jsp
PRECONDITION

attribute.type==‘URL’

URL
editInstance.jsp

PRECONDITION
!empty instance

EditInstance
AttributeURL

editInstance.jsp
PRECONDITION
!empty instance

URL

PRECONDITION
!empty attribute

Attribute
URL

PRECONDITION
!empty attribute

Relation
URL

editRelation.jsp
PRECONDITION
attribute.relation

Relation
URL

editRelation.jsp
PRECONDITION
attribute.relation

InstanceAttribute
URL

editInstanceAttribute.jsp
PRECONDITION

attribute.instanceAttribute

InstanceAttribute
URL

editInstanceAttribute.jsp
PRECONDITION

attribute.instanceAttribute

URL
URL

editURL.jsp
PRECONDITION

attribute.type==‘URL’

URL
URL

editURL.jsp
PRECONDITION

attribute.type==‘URL’

Boolean
URL

editBoolean.jsp
PRECONDITION

attribute.type==‘Boolean’

includeView

Boolean
URL

Date

editBoolean.jsp
PRECONDITION

attribute.type==‘Boolean’

URL
editDate.jsp

PRECONDITION
attribute.type==‘URL’

Date
URL

editDate.jsp
PRECONDITION

attribute.type==‘URL’

<sew:form name="form" action="/sew/sewEdit" debug="false">
<sew:instance name="instance" var="instance" instanceOf="${concept}"/>

<table border=1>
<tr>
<td>Instance Name:</td>
<td colspan="3">
<sew:input type="text" name="instanceName" size="80"

instance="${instance}" attribute="name"/>
</td>

</tr>
<tr>
<th>Attribute</th>
<th>Range</th>
<th>Cardinality</th>
<th>Value</th>

</tr>

var
<c:forEach var="att" items="${concept.allAttributes}"
Status="status">
<c:set var="att" value="${att.key}"/>

<tr>
<td>${att.name}</td>
<td>${att.type.name}</td>
<td>(${att.minCardinality}-${att.maxCardinality})</td>
<td>
<sew:out value="${instance}" type="${att}"/>

</td>
</tr>
</c:forEach>

</table>
<input type="submit">
</sew:form>

1

2

3

4
5

7

6

<sew:form name="form" action="/sew/sewEdit" debug="false">
<sew:instance name="instance" var="instance" instanceOf="${concept}"/>

<table border=1>
<tr>
<td>Instance Name:</td>
<td colspan="3">
<sew:input type="text" name="instanceName" size="80"

instance="${instance}" attribute="name"/>
</td>

</tr>
<tr>
<th>Attribute</th>
<th>Range</th>
<th>Cardinality</th>
<th>Value</th>

</tr>

var

1

2

<c:forEach var="att" items="${concept.allAttributes}"
Status="status">
<c:set var="att" value="${att.key}"/>

<tr>
<td>${att.name}</td>
<td>${att.type.name}</td>
<td>(${att.minCardinality}-${att.maxCardinality})</td>
<td>
<sew:out value="${instance}" type="${att}"/>

</td>
</tr>
</c:forEach>

</table>
<input type="submit">
</sew:form>

3

4
5

7

6

Conclusions and future work

In this paper we have presented how the ODESeW framework allows the rapid development of ontology-
echnologies, such as Java Beans, custom JSTL

opers that are familiar with those technologies to
ons easily. The main advantages

ng instances), on the advanced navigation and
andard HTML form edition technologies.

 Semantic Web portals: Knowledge Web (EU
icweb.org; OntoGrid (EU project portal) at

portal) at http://droz.dia.fi.upm.es/neon; Ontology
ttp://www.oeg-upm.net; and Red Temática en Web

 devoted to the development of the External
s external resources, annotates them with the

 model and gives access to these annotated resources as if they

based Web applications using standard Web development t
tags and the Expression Language. This allows devel
access ontology-based information to generate ontology-based applicati
are on the visualisation of ontology components (includi
composition models, and on the edition of instances using st

This framework has been used to generate several
Network of Excellence) at http://knowledgeweb.semant
http://www.ontogrid.eu; NeOn (EU project
Engineering Group (research group portal) at h
Semántica (Spanish Network) at http://www.redwebsemantica.es.

Most of the future work on this framework will be
Information Gateway (EIG). This component accesse
domain ontologies in the ODESeW data
were p The specification and design of this component are
already finished, and the implementation is currently in progres

Acknowledgements

U IST Network of Excellence Knowledge Web (FP6-507482).

ine
24

ache, R. Palma, J. Euzenat, F.
nn, S. Dasiopoulou.

http://java.sun.com/products/javabeans/
. Rendle, M. Stritt, L. Schmidt-Thieme. “Ideas and Improvements for Semantic Wikis”.

3rd European Semantic Web Conference (ESWC 2006), Budva, Montenegro.
05

[12] A. López-Cima, O. Corcho, A. Gómez-Pérez.. “A platform for the development of Semantic Web portals”. In:
Proceedings of the 6th International Conference on Web Engi-neering (ICWE2006). Stanford, July 2006.

ima, O. Corcho, MC. Suárez-Figueroa, A. Gómez-Pérez. “The ODESeW platform as a tool for
managing EU projects: the KnowledgeWeb case study”. In: Proceedings of the 15th International Conference on

art of the internal ODESeW data model.
s.

This work has been supported by the E

References

[1] A. Cheyer, J. Park, R. Giuli. “IRIS: Integrate. Relate. Infer. Share”. ISWC Workshop on Semantic Desktop.
2005.
[2] JC. Arpírez, O. Corcho, M. Fernández-López, A. Gómez-Pérez. “WebODE in a nutshell”. AI Magaz

(3):37-48. Fall 2003
[3] C. Bizer, D. Westphal. “Developers Guide to Semantic Web Toolkits for different Programming Languages”.
http://sites.wiwiss.fu-berlin.de/suhl/bizer/toolkits/. Last updated: January 2007.
[4] D. Karger, K. Bakshi, D. Huynh, D. Quan, V. Sinha. “Haystack: A General Purpose Information Management
Tool for End Users of Semistructured Data”. CIDR 2005
[5] E. Burns, R. Kitain. “JavaServer Faces”. JSR-000252. http://jcp.org/en/jsr/detail?id=252
[6] G. Tummarello, C. Morbidoni, M. Nucci, “Enabling Semantic Web communities with DBin: an overview”,
Proceedings of the Fifth International Semantic Web Conference ISWC 2006, November 2006, Athens, GA, USA
[7] E. Gamma, R. Helm, J. Vlissides, R. Jhonson. “Design Patterns: Elements of Reusable Object-Oriented
Software”. Boston: Addison-Wesley, 1995.
[8] R. García-Castro, MC Suárez-Figueroa, A. Gómez-Pérez, D. Maynard, S. Cost
Lécué, A. Léger, T. Vitvar, M. Zaremba, D. Zyskowski, M. Kaczmarek, M. Dzbor, J. Hartma
“D1.2.4 Architecture of the Semantic Web Framework”. Knowledge Web technical report, December 2006.
[9] G. Hamilton. “JavaBeans v1.01”. 1997
[10] J. Fischer, Z. Gantner, S

[11] L. Sauermann. “The Gnowsis Semantic Desktop for Information Integration”. IOA Workshop of the WM20
Conference. 2005

[13] A. López-C

Knowledge Engineering and Knowledge Management Managing Knowledge in a World of Networks (EKAW2006).
Podebrady, October 2006.
[14] M. Krötzsch, D. Vrandečić, M. Völkel. “Wikipedia and the Semantic Web - The Missing Links”. Proceedings of
the WikiMania2005.
[15] P. Delisle, J. Luehe, M. Roth. “JavaServer Pages”. JSR-000245. http://jcp.org/en/jsr/detail?id=245
[16] R. Oldakowski, C. Bizer, D. Westphal. „RAP: RDF API for PHP”. ESWC2005 workshop on Scripting for the
Semantic Web (SFSW2005). Heraklion, Crete, May 2005.

