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Abstract. There has been an increased interest in recent years to incor-
porate uncertainty in Description Logics (DLs), and a number of propos-
als have been put forward for modeling uncertainty in DL frameworks.
While much progress has been made on syntax, semantics, and query
processing issues, optimizing queries in this context has received little
attention. In this paper, we study query processing for a tableau-based
DL framework with uncertainty and focus on optimization of resolution
of certainty inequality constraints, obtained from a translation in query
processing phase. We develop a running prototype which evaluates DL
knowledge bases with ABoxes and TBoxes annotated with uncertainty
parameters and computes the corresponding semantics encoded as a set
of constraints in the form of linear and/or nonlinear inequations. We
also explore various existing and new opportunities for optimizing the
reasoning procedure in this context. Our experimental evaluation indi-
cates that the optimization techniques we considered result in improved
efficiency significantly.

1 Introduction

Uncertainty is a form of imperfection commonly found in the real-world in-
formation, and refers to situations where the truth of such information is not
established definitely. Despite of recent advances on extending Description Log-
ics (DLs) with various forms of uncertainty (such as vagueness or probability),
there is generally a lack of effort in studying optimization aspects of uncertainty
reasoning. This paper is the first step in this direction.

This work is a continuation of our previous theoretical work on extending the
DL fragment ALC with various forms of uncertainty [4–6] in which we abstract
away the notion of uncertainty in the description language, the knowledge base,
and the reasoning services, and we encode their corresponding semantics as a set
of constraints in the form of linear and/or nonlinear inequations. In this paper,
we explore various opportunities for optimizing the tableau-based reasoning pro-
cedure for the prototype of our generic framework called GURDL – a Generic
Uncertainty Reasoner for the DL ALC.

The rest of this paper is organized as follows. Section 2 provides a brief
overview of our generic framework for DL with uncertainty. We also review the



existing tools that are available in this area. In Section 3, we present some op-
timization techniques that are implemented in GURDL, while Section 4 reports
our performance evaluation results. Finally, we conclude in Section 5 with some
directions for future work.

2 Related Work

In this section, we first give a brief overview of our generic framework for DL with
uncertainty. We then survey the existing tools that are available for reasoning
with DL and uncertainty.

2.1 Generic Framework for DL with Uncertainty

As mentioned in [6], existing extensions of DLs with uncertainty can be classi-
fied into one of the three approaches according to the underlying mathematical
foundation and the type of uncertainty they model: (1) the fuzzy approach (such
as [9, 10]), based on fuzzy set theory, essentially deals with the vagueness in the
knowledge; (2) the probabilistic approach (such as [1, 3, 8]), based on the classi-
cal probability theory, deals with the uncertainty due to lack of knowledge; (3)
the possibilistic approach [7], based on possibility theory, allows necessity and
possibility measures to be handled in the same formalism.

In order to support the various forms of uncertainty within the same frame-
work, we abstracted away the notion of uncertainty (fuzzy logic, probability,
possibilistic logic) and proposed a generic framework for DL with uncertainty
[5]. In particular, our generic framework consists of three components:

1. Description Language with Uncertainty: In our framework, we keep the syn-
tax of the description language identical to that of the classical ALC, while
extending the corresponding semantics with uncertainty. In order to flexibly
represent various forms of uncertainty, we assume that certainty values form
a complete lattice L = 〈V,�〉, where V is the certainty domain, and � is the
partial order defined on V. We also use b to denote the least element in V,
t for the greatest element in V, ⊕ for the join operator in L, ⊗ for its meet
operator, and ∼ for the negation operator.
The semantics of the description language is based on the notion of an inter-
pretation, where an interpretation I is defined as a pair (∆I , ·I), where ∆I

is the domain and ·I is an interpretation function. For example, if individual
John ∈ ∆I , then ObeseI(John) gives the certainty that John belongs to
concept Obese. The syntax and the semantics of the description language
supported in our framework are summarized in Table 1. Note that fc and
fd in the table denote conjunction and disjunction functions. They are used
to specify how one should interpret a given description language. For exam-
ple, in the fuzzy approach, we would have the min function as fc and max

function as fd, whereas in a probabilistic approach, we might have algebraic
product (prod(α, β) = αβ) as fc, and the independent function (ind(α, β)
= α + β −αβ) as fd.



Name Syntax Semantics (a ∈ ∆I)

Atomic Concept A AI(a) = CFC , with CFC : ∆I → V

Atomic Role R RI(a, b) = CFR, with CFR : ∆I × ∆I → V

Top Concept ⊤ ⊤I(a) = t

Bottom Concept ⊥ ⊥I(a) = b

Concept Negation ¬C (¬C)I(a) =∼CI(a)

Concept Conjunction C ⊓ D (C ⊓ D)I(a) = fc(C
I(a), DI(a))

Concept Disjunction C ⊔ D (C ⊔ D)I(a) = fd(CI(a), DI(a))

Role Exists Restriction ∃R.C (∃R.C)I(a) = ⊕b∈∆I{fc(R
I(a, b), CI(b))}

Role Value Restriction ∀R.C (∀R.C)I(a) = ⊗b∈∆I{fd(∼RI(a, b), CI(b))}

Table 1. Syntax/Semantics of the Description Language Supported

2. Knowledge Bases with Uncertainty: As usual, the knowledge base (Σ) con-
sists of both the TBox and the ABox. However, unlike the classical case,
each axiom and assertion is associated with a certainty value, as well as
the conjunction/disjunction functions used to interpret the concept descrip-
tions. More specifically, the TBox includes a set of terminological axioms that
could be concept subsumptions 〈C ⊑ D,α〉〈fc, fd〉 and/or concept definitions
〈C ≡ D,α〉〈fc, fd〉, where C and D are concept descriptions, α ∈ V is the cer-
tainty that the axiom holds, and fc and fd are the conjunction and disjunc-
tion functions. As an example, the certainty of the axiom 〈Rich ⊑ ((∃owns.

ExpensiveCar ⊔ ∃owns.Airplane) ⊓ Golfer), [0.8, 1]〉〈min,max〉 is at least
0.8, with all the concept conjunctions interpreted using min, and all the
concept disjunctions interpreted using max. Note that, although our frame-
work supports simple probabilities such as independent or mutually exclusive
events, we are investigating ways to model knowledge base with more general
probability theory such as conditional independence, since reasoning with it
requires extra information about the events and facts in the world (Σ).

The ABox in our framework consists of a set of concept assertions of the
form 〈a : C,α〉〈fc, fd〉 or role assertions 〈(a, b) : R,α〉〈−,−〉, where a, b are
individuals, C is a concept, R is a role, α ∈ V, fc is the conjunction function,
fd is the disjunction function, and − denotes that the corresponding function
is not applicable. For instance, the assertion “Mary is tall and thin with a de-
gree between 0.6 and 0.8” can be expressed as 〈Mary : Tall ⊓ Thin, [0.6, 0.8]〉
〈min,−〉. Here, min is used as the conjunction function, and the disjunction
function is not necessary since there is no concept disjunction here.

3. Reasoning with Uncertainty: The inference problems supported by our frame-
work include the satisfiability problem and the entailment problem, where
the former checks if an admissible knowledge base is satisfiable and the later
determines the degree with which an assertion is true given the knowledge
base. Similar to the classical DL reasoning, pre-processing steps are first ap-
plied to abstract the TBox. Then, completion rules are applied to simplify
the ABox, and blocking is introduced to ensure termination [4]. However,
unlike the classical case, each rule application generates a set of derived as-
sertions and a set of constraints in the form of linear/nonlinear inequations



which encode the semantics of the assertion. For example, given the assertion
〈Mary : Tall ⊓ Thin, [0.6, 0.8]〉〈min,−〉, the conjunction rule can be applied,
which yields 〈Mary : Tall, xMary:Tall〉〈−,−〉 and 〈Mary : Thin, xMary:Thin〉
〈−,−〉, and the constraint (min(xMary:Tall, xMary:Thin) = [0.6, 0.8]), where
xMary:Tall (resp., xMary:Thin) is the variable representing the certainty that
Mary is Tall (resp., Thin). The completion rules we introduced in [4] are
applied in arbitrary order until either the extended ABox contains a clash
or no further rule could be applied. If a clash is encountered (such as an
assertion has two conflicting certainty values), the knowledge base is unsat-
isfiable. Otherwise, a constraint solver is called to solve/optimize the system
of inequations to check satisfiability of the knowledge base or the degree with
which an assertion is true. Details and the proof for the correctness of the
reasoning procedure can be found in [4].

2.2 Existing Tools for DL with Uncertainty

To the best of our knowledge, the only DL/uncertainty reasoner that is pub-
licly available is fuzzyDL [2], which inspired our preliminary prototype. As the
name suggests, fuzzyDL supports only fuzzy knowledge (i.e., it cannot handle
other uncertainty formalisms such as probabilities). Although fuzzyDL supports
two types of fuzzy knowledge – those with Zadeh semantics and those with
Lukasiewicz logic, it uses two sets of completion rules instead of using a generic
set of inference rules to deal with different semantics. Nevertheless, fuzzyDL has
some interesting features. For example, it supports concept modifiers and a more
expressive fragment of DL SHIF .

3 Optimization Techniques Employed in GURDL

GURDL is the prototype of our generic framework for DL with uncertainty.
A number of optimization techniques have been incorporated in GURDL. Due
to the limited space, we discuss only some of them here. The idea is to investi-
gate whether some existing optimization techniques used in classical DL systems
could be applied to the uncertainty case (including lexical normalization, con-
cept simplification, partition based on connectivity as Individual Groups, and
caching), while exploring new optimization technique that is specific to deal with
uncertainty (partition based on connectivity as Assertion Groups).

3.1 Lexical Normalization

Lexical normalization is a common optimization technique used in classical DL
systems, where concepts are transformed into a canonical form. For example,
concepts like (C ⊓ (B ⊓ A)), (B ⊓ (C ⊓ A)), and ((B ⊓ A) ⊓ C) can all be trans-
formed into the canonical form (A ⊓ (B ⊓ C)). In GURDL, lexical normaliza-
tion is realized by sorting the sub-concepts in the concept description. The ma-
jor advantage of lexical normalization is that it allows obvious clashes be de-
tected early. For example, given the assertions 〈Mary : Tall ⊓ Thin, [0.8, 1]〉 and



〈Mary : Thin ⊓ Tall, [0, 0.4]〉, the second assertion becomes 〈Mary : Tall ⊓ Thin,

[0, 0.4]〉 after the normalization. This allows us to easily notice the inconsistency
between the two assertions, which would be hard to detect otherwise. Another
advantage of lexical normalization is that it facilitates concept simplification.

3.2 Concept Simplification

Concept simplification is another optimization technique that is commonly em-
ployed in classical DL systems, done by removing redundant sub-concepts in a
given concept. In GURDL, the following simplifications are applied:

⊤ ⊓ C  C ⊤ ⊔ · · · ⊤ ∀R.⊤ ⊤
⊥ ⊓ · · · ⊥ ⊥ ⊔ C  C ∃R.⊥ ⊥

The above simplifications are valid due to the boundary-condition properties
of the combination functions [5]. Note that simplification must be applied with
care when uncertainty is introduced. For example, it is a common practice in
classical DL systems to remove duplicated sub-concepts in a concept conjunction
or disjunction, such as simplifying (A ⊓ A) to A. However, such simplification is
not valid once uncertainty is introduced. For example, assume that the interpre-
tation of concept A is 0.4. If the conjunction function is min, then (A ⊓ A) is A

since min(0.4, 0.4) = 0.4. However, if the conjunction function is the algebraic
product (×), then (A ⊓ A) is not the same as A, since ×(0.4, 0.4) = 0.16 6= 0.4.
Therefore, such simplification is invalid, hence cannot be applied.

The major advantage of the simplification method is that it could potentially
reduce the number of sub-concepts in a concept description, hence reducing the
number of completion rule applications. In some extreme case, a complicated
concept description can be simplified to only ⊤ or ⊥, hence eliminating the need
to apply the completion rule.

3.3 Partition Based on Connectivity

In GURDL, the ABox is partitioned into Individual Groups (IGs) and Assertions
Groups (AGs) based on the notion of connectivity.

Individual Groups (IGs) Similar to the classical DL systems, the individuals
in the ABox are divided into one or more partitions called Individual Groups.
Each group consists of individuals that are “related” to each other through role
assertions. By partitioning the ABox this way, inferences can be performed inde-
pendently for each IG. Once no more completion rule can be applied to a given
IG, we could pass the derived assertions and their corresponding constraints to
the constraint solver to build the model, and we can be sure that the model built
will not be changed even if we perform inference on other IGs in the ABox. This
allows the consistency of the ABox be checked incrementally and hence reduces
the reasoning complexity when the knowledge base includes many individuals
which could be partitioned as described. This also allows us to check the con-
sistency of the ABox related to one particular individual without checking the
consistency of the complete ABox.



Assertion Groups (AGs) As mentioned in Section 2.1, the reasoning pro-
cedure for our uncertainty framework differs from the classical one because, in
addition to derive assertions, a set of constraints in the form of linear/nonlinear
inequations is also generated, which is later on feed into the constraint solver to
check for its consistency. Since the number of constraints generated is usually
large, it is important to optimize the constraint solving process.

In GURDL, each IG is partitioned into one or more independent subsets
called Assertion Groups. In general, two assertions A1 and A2 are in the same
AG if A1 is directly or indirectly inferred from A2 (through the application of
completion rules), or A1 and A2 differ only in terms of their certainty values
and/or conjunction and disjunction functions. The interesting property about
this partition is that, when we union all the constraints (resp., variables associ-
ated with the constraints) in the AGs that belong to a particular IG, we obtain
all the constraints (resp., variables associated with the constraints) in that IG.
On the other hand, if we take the intersection, we obtain an empty set. This
implies that constraints in each AG can be solved independently, while assuring
that the model built will not be changed when we solve constraints in other AGs.

This has several advantages. First, the consistency of the IG can be checked
incrementally. At any given time, the constraints in one single AG are fed into
the constraint solver. If any AG is found to be inconsistent, this implies that the
whole IG is inconsistent. A related advantage is that, in case an IG is inconsistent,
the reasoner will be able to more precisely identify the assertions that cause the
inconsistency. Another advantage is that we are now able to determine the degree
to which a particular assertion (say, X) is true by simply solving the constraints
in the AG that X belongs. Finally, since the number of constraints (and the
variables used in the constraints) in one single AG is, in general, no more than
those of the whole IG, the speed of solving a few small constraint sets would
be faster than solving one large constraint set. The performance evaluation of
AG-partitioning is studied in Section 4.

3.4 Caching

To save the reasoner from doing redundant/repeated work, each assertion and
constraint is stored only once. A flag is set to indicate whether completion rules
have been applied to a given assertion (resp., IG). In addition, after the con-
straints in an AG are solved, the result is cached for later use.

4 Performance Evaluation

In this section, we study the performance of GURDL. All the experiments were
conducted under Windows XP on a Pentium 2.40 GHz computer with 3.25 GB
of RAM. Due to the limited space, we present only highlights of our results here.

Table 2 lists a few test cases, the number of concept assertions (C) in each
test case, the number of role assertions (R), the number of axioms with necessary
condition (N), the number of axioms with concept definitions (D), the functions



Test Case C R N D F V IG AG W H L I S O Total

1. Classical 15 2 5 0 min/max {0, 1} 3 84 25 6 0.014 0.10 2.19 0.22 2.52
2. Min-Max 15 2 5 0 min/max [0, 1] 3 84 25 6 0.015 0.10 2.47 0.19 2.78
3. Mixed 15 2 5 0 mixed [0, 1] 3 159 44 6 0.016 0.17 12.92 0.32 13.43
4. Min-Max/Def. 15 2 0 5 min/max [0, 1] 3 13 58 6 0.016 0.54 21.36 0.29 22.20
5. University 1 0 47 6 min/max {0, 1} 1 231 45 5 0.020 1.25 17.15 0.75 19.17

Table 2. Performance of test cases (in seconds)

used to interpret the concept description (F), the certainty domain (V), the
number of IGs (IG), the number of AGs (AG), the width of the ABox (W), the
height of the ABox (H), the time to load the knowledge base (L), the time to
apply the inference rules (I), the time to solve constraints (S), other time (mostly
I/O) (O), and the total time for ABox consistency checking (L + I + S + O).
All the time measures are in seconds.

As shown in the table, the time spent on solving constraints (S) dominates
the overall reasoning time (Total) for all the test cases. Note also that test
cases 1 and 2 differ by the certainty domain, but this has limited effect on the
performance. Test cases 2 and 3 differ by the functions used to interpret the
description language (F). We can see that it takes longer to solve constraints
that include a mix of nonlinear functions (prod, ind) and simple ones (min,
max). Test cases 4 illustrates that it takes longer when we have axioms with
concept definitions (D) instead of those with necessary conditions (N). Test case
5 shows the case where an IG is partitioned into many AGs.

Note that our prototype runs slower than the classical reasoners for stan-
dard knowledge bases, where we use {0, 1} for the certainty domain, and min

and max for conjunction and disjunction functions (one or two seconds vs. many
seconds). This was expected, partly because standard reasoners implement many
more optimization techniques, some of which we could not use in our context.
Also, unlike in our context, they do not need to rely on constraint solvers as
part of their reasoning process. Note also that we have not compared the per-
formance with fuzzyDL here, because fuzzyDL uses a different constraint solver
than GURDL, and the effect of such factor is not negligible.

Table 3 compares the total time for solving constraints when we partition the
ABox into AGs, IGs, or no partition at all (ALL). Note that when we partition
the ABox into AGs, the performance is the best. Note also that for the test
case University, when the ABox is not partitioned into AGs, the constraint set is
simply too large for the constraint solver to handle (we get stack overflow error).
This shows the importance of keeping the constraint set as small as possible by
partitioning the ABox.

5 Conclusion and Future Work

In this paper, we have explored various existing and new optimizing techniques
for the reasoning procedure of our generic framework for DL with uncertainty, for
which we have incorporated in our prototype. Due to the space limit, we present



Test Case AG IG ALL Gain1 Gain2 Gain3

1. Classical 2.52 3.42 4.84 26.31% 29.37% 47.95%
2. Min-Max 2.78 4.15 6.17 32.99% 32.68% 54.88%
3. Mixed 13.43 25.54 28.99 47.43% 11.90% 53.69%
4. Min-Max/Def. 22.20 37.24 100.58 40.37% 62.98% 77.93%
5. University 19.17 N/A N/A N/A N/A N/A

Table 3. Performance evaluation for partition based on connectivity (in seconds)
(Gain1: AG vs. IG, Gain2: IG vs. ALL, Gain3: AG vs. ALL)

the partial performance evaluation result, which shows that the optimization
techniques we employed are effective. As future research, we plan to extend the
generic framework to a more expressive portion of DL. We also plan to opti-
mize the reasoning procedure further. For example, since constraint-solving is
the phase that takes the longest time, in case we have multiple AGs, we could
solve them concurrently by running multiple threads on different computers. An-
other optimization would be to reduce the number of constraints or the number
of variables in the constraints generated during the reasoning procedure. These
methods are expected to greatly enhance the performance.
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