
A constructive semantics for ALC

Loris Bozzato1, Mauro Ferrari1, Camillo Fiorentini2, Guido Fiorino3

1 DICOM, Univ. degli Studi dell’Insubria, Via Mazzini 5, 21100, Varese, Italy
2 DSI, Univ. degli Studi di Milano, Via Comelico, 39, 20135 Milano, Italy

3 DIMEQUANT, Univ. degli Studi di Milano-Bicocca
P.zza dell’Ateneo Nuovo 1, 20126 Milano, Italy

Abstract. One of the main concerns of constructive semantics is to
provide a computational interpretation for the proofs of a given logic. In
this paper we introduce a constructive semantics for the basic description
logic ALC in the spirit of the BHK interpretation. We prove that such
a semantics provides an interpretation of ALC formulas consistent with
the classical one and we show how, according to such a semantics, proofs
of a suitable natural deduction calculus for ALC support a proofs-as-
programs paradigm.

1 Introduction

In recent works, see e.g. [3, 5, 6], starting from different motivations, various
constructive interpretations of description logics have been proposed. However,
as far as we know, no computational interpretation for proofs has been given
in this context. The aim of this paper is to propose a constructive semantics
for ALC formulas, we call information-terms semantics, that allows us to give
a computational interpretation of the proofs of a natural deduction calculus for
ALC. In particular, we will be able to read proofs of ALC-“goals” as programs
to compute goal answers.

The information-terms semantics is related to the BHK constructive expla-
nation of logical connectives (see [7, 11] for a deeper discussion) and has already
been applied in several frameworks [4, 8]. An information term is a mathematical
object that explicitly explains the truth of a formula in a given classical model.
For instance, if we prove that an individual c belongs to the concept ∃R.C, the
information term provides the witness d such that (c, d) ∈ R and d ∈ C. Differ-
ently from other approaches, such as [3, 5], information-terms semantics relies on
the classical reading of logical connectives; as a consequence, we can read ALC
formulas in the usual way.

In this paper we introduce the information-terms semantics and we compare
it with the classical one. Then, we introduce a natural deduction calculus NDc

for ALC and we show that it is sound with respect to information-terms se-
mantics. As a by-product of the Soundness Theorem, we get a computational
interpretation of proofs. We show, by means of an example, that this interpre-
tation supports the proofs-as-programs paradigm.

2 ALC language and semantics

We begin introducing the language L for ALC [1, 10], based on the following
denumerable sets: the set NR of role names, the set NC of concept names, the set
NI of individual names. A concept H is a formula of the kind:

H ::= C | ¬H | H uH | H tH | ∃R.H | ∀R.H

where C ∈ NC and R ∈ NR. Let Var be a denumerable set of individual vari-
ables, our calculus works on formulas K of L defined according to the following
grammar:

K ::= ⊥ | (s, t) : R | (s, t) : ¬R | t : H | ∀H

where s, t ∈ NI ∪ Var, R ∈ NR and H is a concept. We remark that variables,
that usually are not used in description logic formalization, are useful to put in
evidence the “parameters” of natural deduction proofs. An atomic formula of L
is a formula of the kind ⊥, (s, t) : R, t : C, with C a concept name; a negated
formula is a formula of the kind (s, t) : ¬R or t : ¬H. A formula is closed if it
does not contain variables. We write ¬((s, t) : R), ¬((s, t) : ¬R), ¬(t : H) as
abbreviations for (s, t) : ¬R, (s, t) : R, t : ¬H respectively; A v B stands for
∀(¬A tB).

A model (interpretation) M for L is a pair (DM, .M), where DM is a non-
empty set (the domain of M) and .M is a valuation map such that: for every
c ∈ NI, cM ∈ DM; for every C ∈ NC, CM ⊆ DM; for every R ∈ NR, RM ⊆
DM ×DM. A non atomic concept H is interpreted by a subset HM of DM:

(¬A)M = DM \AM (A uB)M = AM ∩BM (A tB)M = AM ∪BM

(∃R.AM) = { d ∈ DM | there is d′ ∈ DM s.t. (d, d′) ∈ RM and d′ ∈ AM}
(∀R.A)M = { d ∈ DM | for all d′ ∈ DM, (d, d′) ∈ RM implies d′ ∈ AM}

An assignment on a model M is a map θ : Var → DM. If t ∈ NI ∪ Var, tM,θ

is the element of D denoting t in M w.r.t. θ, namely: tM,θ = θ(t) if t ∈ Var;
tM,θ = tM if t ∈ NI. A formula K is valid in M w.r.t. θ, and we write M, θ |= K,
if K 6= ⊥ and one of the following conditions holds:

M, θ |= (s, t) : R iff (sM,θ, tM,θ) ∈ RM M, θ |= t : H iff tM,θ ∈ HM

M, θ |= (s, t) : ¬R iff (sM,θ, tM,θ) 6∈ RM M, θ |= ∀H iff HM = DM

We write M |= K iff M, θ |= K for every assignment θ. Note that M |= ∀H iff
M |= x : H, with x any variable. If Γ is a set of formulas, M |= Γ means that
M |= K for every K ∈ Γ . We say that K is a logical consequence of Γ , and we
write Γ |= K, iff, for every M and every θ, M, θ |= Γ implies M, θ |= K.

Now, we introduce information terms, that will be the base structure of our
constructive semantics. Let N be a finite subset of NI. By LN we denote the set
of formulas K of L such that all the individual names occurring in K belong
to N . Given a closed formula K of LN , we define the set of information terms

itN (K) by induction on K as follows.

itN (K) = {tt}, if K is an atomic or negated formula

itN (c : A uB) = { (α, β) | α ∈ itN (c : A) and β ∈ itN (c : B) }
itN (c : A1 tA2) = { (k, α) | k ∈ {1, 2} and α ∈ itN (c : Ak) }
itN (c : ∃R.A) = { (d, α) | d ∈ N and α ∈ itN (d : A) }
itN (c : ∀R.A) = itN (∀A) = {φ : N →

⋃
d∈N itN (d : A) | φ(d) ∈ itN (d : A) }

Let M be a model for L, K a closed formula of LN and η ∈ itN (K). We define
the realizability relation M� 〈η〉K by induction on the structure of K.

M� 〈tt〉K iff M |= K, where K is an atomic or negated formula

M� 〈(α, β)〉 c : A uB iff M� 〈α〉 c : A and M� 〈β〉 c : B

M� 〈(k, α)〉 c : A1 tA2 iff M� 〈α〉 c : Ak

M� 〈(d, α)〉 c : ∃R.A iff M |= (c, d) : R and M� 〈α〉 d : A

M� 〈φ〉 c : ∀R.A iff M |= c : ∀R.A and, for every d ∈ N ,
M |= (c, d) : R implies M� 〈φ(d)〉 d : A

M� 〈φ〉 ∀A iff M |= ∀A and, for every d ∈ N ,M� 〈φ(d)〉 d : A

If Γ is a set of closed formulas {K1, . . . ,Kn} of LN , itN (Γ) denotes the set of n-
tuples η = (η1, . . . , ηn) such that, for every 1 ≤ j ≤ n, ηj ∈ itN (Kj); M� 〈η〉Γ
iff, for every 1 ≤ j ≤ n, M� 〈ηj〉Kj .

We remark thatM�〈η〉K impliesM |= K, hence the constructive semantics
is compatible with the usual classical one. The converse in general does not hold
and stronger conditions are required:

Proposition 1. Let K be a closed formula of L and let M be a finite model for
L. If M |= K, there exists a finite subset N of NI and η ∈ itN (K) such that
M� 〈η〉K.

We point out that in our setting negation has a classical meaning, thus negated
formulas are not constructively explained by an information term. However, how
we will discuss in future works, information terms semantics can be extended to
treat various kinds of constructive negation as those discussed in [6].

In the following example, we show how an information term provides all the
information needed to “constructively” explain the meaning of a formula.

Example 1. Let us consider the knowledge base, inspired to the classical example
of [2], consisting of the Tbox T

(Ax1) : ∀(¬FOOD t ∃goesWith.COLOR) ≡ FOOD v ∃goesWith.COLOR
(Ax2) : ∀(¬COLOR t ∃isColorOf.WINE) ≡ COLOR v ∃isColorOf.WINE

and the Abox A
barolo:WINE red:COLOR (red,barolo):isColorOf

chardonnay:WINE white:COLOR (white,chardonnay):isColorOf

fish:FOOD (fish,white):goesWith

meat:FOOD (meat,red):goesWith

Let WNI be the set of individual names occurring in A. An element of itWNI(Ax1) is a
function φmapping each c ∈ WNI to an element δ ∈ itWNI(c : ¬FOODt∃goesWith.COLOR),
where either δ = (1, tt) (intuitively, c is not a food) or δ = (2, (d, tt)) (intuitively, d
is a wine color which goes with food c). For instance, let us consider the following
γ1 ∈ itWNI(Ax1), where we enclose between square brackets the pairs (c, φ(c)):

[(barolo,(1,tt)), (chardonnay,(1,tt)), (red,(1,tt)), (white,(1,tt))

(fish,(2,(white,tt))), (meat,(2,(red,tt)))]

Let MW be a model of A ∪ T . One can easily check that MW � 〈γ1〉Ax1. Similarly, if
γ2 ∈ itWNI(Ax2) is the information term

[(barolo,(1,tt)), (chardonnay,(1,tt)),(red,(2,(barolo,tt))),

(white,(2,(chardonnay,tt))), (fish,(1,tt)), (meat,(1,tt))]

then MW � 〈γ2〉Ax2 as well. We conclude MW � 〈(γ1, γ2)〉 T .

3 The natural calculus NDc

In this section we introduce a calculus NDc for ALC similar to the usual natural
deduction calculi for classical and intuitionistic logic (see, e.g., [9]). The rules of
NDc are given in Figure 1. We remark that we have introduction and elimination
rules for all the logical constants; some rules (namely, tE, ∃E and ∀I) allow to
discharge some of the assumptions (we put them between square brackets). The
rules ∃E, ∀I and ∀UI need a side condition on the rule parameter to guarantee
correctness. We notice that the rule ⊥E is intuitionistic, we will briefly discuss in
the conclusions the relation with the calculus using the classical rule of reductio
ad absurdum.

By π : Γ ` K, with Γ a set of formulas, we denote a proof of K with
undischarged formulas Γ . We say that π : Γ ` K is over LN if all the formulas
occurring in the proof belong to LN .

First of all, one can easily check that NDc preserves the validity of formulas.
Indeed, let π : Γ ` K be a proof of NDc; then:

(P1). For every model M and assignment θ, M, θ |= Γ implies M, θ |= K.

As a consequence, π : Γ ` K implies Γ |= K. Let N be a finite subset of NI. An
N -substitution σ is a map σ : Var → N . We extend σ to L as usual: if c ∈ NI,
σc = c; for a formula K, σK denotes the closed formula of LN obtained by
replacing every variable x occurring in K with σ(x); if Γ is a set of formulas,
σΓ is the set of σK such that K ∈ Γ . If c ∈ NI, σ[c/p] is the N -substitution σ′

such that σ′(p) = c and σ′(x) = σ(x) for x 6= p.
We associate with every proof π : Γ ` K of NDc over LN and every N -

substitution σ a function

Φπ
σ,N : itN (σΓ) → itN (σK)

that will provide the computational interpretation of π. To this aim Φπ
σ,N will be

defined, by induction on the depth of π, in order to fulfill the following property:

Γ1··· π1

K

Γ2··· π2

¬K
⊥I

⊥

Γ··· π′

⊥
⊥E

K

Γ1··· π1

t : A

Γ2··· π2

t : B
uI

t : A uB

Γ··· π′

t : A1 uA2

uEk k ∈ {1, 2}
t : Ak

Γ··· π′

t : Ak

tIk

t : A1 tA2

k ∈ {1, 2}

Γ1··· π1

t : A tB

Γ2, [t : A]
··· π2

K

Γ3, [t : B]
··· π3

K
tE

K

Γ1··· π1

(t, u) : R

Γ2··· π2

u : A
∃I

t : ∃R.A

Γ1··· π1

t : ∃R.A

Γ2, [(t, p) : R, p : A]
··· π2

K
∃E

K

where p ∈ Var, p does
not occur in Γ2 ∪ {K}
and p 6= t

Γ, [(t, p) : R]
··· π′

p : A
∀I

t : ∀R.A

where p ∈ Var, p does
not occur in Γ and p 6= t

Γ1··· π1

s : ∀R.A

Γ2··· π2

(s, t) : R
∀E

t : A

Γ··· π′

p : A
∀U I

∀A

where p ∈ Var and p does
not occur in Γ

Γ··· π′

∀A
∀U E

t : A

Fig. 1. The rules of the calculus NDc

(P2). For every modelM and γ ∈ itN (σΓ),M�〈γ〉σΓ impliesM�〈Φπ
σ,N (γ)〉σK.

If π only consists of the introduction of an assumption K, then Φπ
σ,N is the

identity function on itN (σK). Otherwise, π is obtained by applying a rule r of
Figure 1 to some subproofs:

(1) r = ⊥I. Then, Φπ
σ,N (γ1, γ2) = tt.

(2) r = ⊥E. Then, Φπ
σ,N : itN (σΓ) → itN (σK) and Φπ

σ,N (γ) = η+, where η+

is any element of itN (K) (for the definiteness of Φπ
σ,N , one has to assume

that, for every K ∈ LN , an element η+ ∈ itN (K) is defined).
(3) r = uI. Then, Φπ

σ,N : itN (σΓ1)× itN (σΓ2) → itN (σt : A uB) and

Φπ
σ,N (γ1, γ2) = (Φπ1

σ,N (γ1), Φπ2
σ,N (γ2))

(4) r = uEk (k ∈ {1, 2}). Then, Φπ
σ,N : itN (σΓ) → itN (σt : Ak) and

Φπ
σ,N (γ) = Prok(Φπ′

σ,N (γ))

where Prok is the k-projection function.
(5) r = tIk (k ∈ {1, 2}). Then, Φπ

σ,N : itN (σΓ) → itN (σt : A1 tA2) and

Φπ
σ,N (γ) = (k, Φπ′

σ,N (γ))

(6) r = tE. Then, Φπ
σ,N : itN (σΓ1)× itN (σΓ2)× itN (σΓ3) → itN (σK) and

Φπ
σ,N (γ1, γ2, γ3) =

{
Φπ2

σ,N (γ2, α) if Φπ1
σ,N (γ1) = (1, α)

Φπ3
σ,N (γ3, β) if Φπ1

σ,N (γ1) = (2, β)

(7) r = ∃I. Then, Φπ
σ,N : itN (σΓ1)× itN (σΓ2) → itN (σt : ∃R.A) and

Φπ
σ,N (γ1, γ2) = (σu, Φπ2

σ,N (γ2))

(8) r = ∃E. Then, Φπ
σ,N : itN (σΓ1)× itN (σΓ2) → itN (σK) and

Φπ
σ,N (γ1, γ2) = Φπ2

σ[c/p],N (γ2, tt, α)

where (c, α) = Φπ1
σ,N (γ1)1.

(9) r = ∀I. Then, Φπ
σ,N : itN (σΓ) → itN (σt : ∀R.A) and2

[
Φπ

σ,N (γ)
]
(c) = Φπ′

σ[c/p],N (γ, tt) for every c ∈ N

(10) r = ∀E. Then, Φπ
σ,N : itN (σΓ1)× itN (σΓ2) → itN (σt : A) and

Φπ
σ,N (γ1, γ2) =

[
Φπ1

σ,N (γ1)
]
(σt)

(11) r = ∀UI. Analogous to the case r = ∀I.
(12) r = ∀UE. Analogous to the case r = ∀E.

One can easily check that Φπ
σ,N is a well-defined function and that (P2) holds.

Let Φπ
N = Φπ

σ,N , where σ is any N -substitution. By (P1) and (P2), we get:

Theorem 1 (Soundness). Let N be a finite subset of NI and let π : Γ ` K be
a proof of NDc over LN such that the formulas in Γ ∪ {K} are closed. Then:

(i) Γ |= K.
(ii) For every model M and γ ∈ itN (Γ), M� 〈γ〉Γ implies M� 〈Φπ

N (γ)〉K.

To conclude this section we give an example of the information one can
extract from a proof using Theorem 1.
1 We remark that, by the side condition on p, (σ[c/p])Γ2 = σΓ2 and (σ[c/p])K = σK.
2 By the side condition on p, (σ[c/p])Γ = σΓ and (σ[c/p])t : ∀R.A = σt : ∀R.A.

Example 2. Let us consider the knowledge base of Example 1. We can build a proof

π : T ` ∀(¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE))

in NDc, namely a proof of FOOD v ∃goesWith.(COLORu∃isColorOf.WINE) from T . The
proof π is

Ax1

∀UE

y : ¬FOOD t ∃goesWith.COLOR

[y : ¬FOOD]
tI

K

Ax2 [y : ∃goesWith.COLOR]
··· π1

K
tE

K ≡ y : ¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)
∀UI

∀(¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE))
where π1 is the proof

y : ∃goesWith.COLOR

[(y, z) : goesWith]

Ax2 [z : COLOR]
··· π2

z : COLOR u ∃isColorOf.WINE
∃I

y : ∃goesWith.(COLOR u ∃isColorOf.WINE)
∃E

y : ∃goesWith.(COLOR u ∃isColorOf.WINE)
tI

y : ¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)
and π2 is the proof

Ax2

∀UE

z : ¬COLOR t ∃isColorOf.Wine

z : COLOR [z : ¬COLOR]
⊥I

⊥
⊥E

H

z : COLOR [z : ∃isColorOf.WINE]
uI

H
tE

H ≡ z : COLOR u ∃isColorOf.WINE
Note that individual names do not occur in π. Let MW, γ1 and γ2 be defined as in
Example 1. SinceMW�〈(γ1, γ2)〉 T , by Theorem 1 we get that Φπ

WNI(γ1, γ2) is a function
ψ such that, for every c ∈ WNI:

MW � 〈ψ(c)〉 c : ¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)

If ψ(c) = (1, tt), then cMW 6∈ FOOD
MW (c is not a food). Otherwise, ψ(c) has the form

(2, (d, (tt, (e, tt)))), meaning that (cMW , dMW) ∈ goesWith
MW (food c goes with color

d) and (dMW , eMW) ∈ isColorOf
MW (wine e has color d), hence we have found a wine

e to pair with c. In our example we get

ψ(meat) = (2, (red, (tt, (barolo, tt))))
ψ(fish) = (2, (white, (tt, (chardonnay, tt))))

and ψ(c) = (1, tt) for all the other c ∈ WNI.
Note that, since in our setting negation has not a constructive meaning, the choice

of axioms is crucial to extract information. As an example, if we replace Ax1 with the
classically equivalent formula ∀(¬(FOODu¬∃goesWith.COLOR)), we cannot build a proof
of the formula ∀(¬FOOD t ∃goesWith.(COLOR u ∃isColorOf.WINE)).

To conclude this section we remark that, along the lines of the previous example,
Theorem 1 allows us to interpret a proof of a “goal” as a program to solve it.
We defer to a future work a deeper discussion on the notion of “solvable goal”.

4 Conclusions

First of all, we compare information-terms semantics with the classical one. Let
ALC denote the set of formulas K such that M |= K, and let ALCc be the set
of formulas K such that there exists a proof π : ` K in NDc. By Theorem 1,
ALCc ⊆ ALC. However, one can easily prove that the classically valid formula
x : D t ¬D is not provable in NDc; hence, ALCc 6= ALC. We remark that in
general a constructive explanation of x : D t ¬D cannot be given. If we replace
the rule ⊥E of NDc with the classical rule of reductio ad absurdum, the set
of provable formulas of the resulting calculus coincides with ALC; obviously,
the computational interpretation of proofs provided by Theorem 1 cannot be
extended to such a rule. Finally, we remark that our constructive semantics and
NDc can be exploited to handle intuitionistic implication and stronger negation
(as discussed in [6]). As for future works, we are developing an extension of NDc

sound and complete with respect to the information-terms semantics for ALC.
Moreover, we plan to extend our framework to treat other description logics.

References

1. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

2. R. J. Brachman, D. L. Mcguinness, P. F. Patel-Schneider, L. A. Resnick, and
A. Borgida. Living with CLASSIC: When and how to use a KL-ONE-like language,
1991.

3. V. de Paiva. Constructive description logics: what, why and how. Technical report,
Xerox Parc, 2005.

4. M. Ferrari, C. Fiorentini, and M. Ornaghi. Extracting exact time bounds from
logical proofs. In A. Pettorossi, editor, LOPSTR 2001, volume 2372 of LNCS,
pages 245–265. Springer-Verlag, 2002.

5. M. Hofmann. Proof-theoretic approach to description-logic. In LICS, pages 229–
237. IEEE Computer Society, 2005.

6. K. Kaneiwa. Negations in description logic - contraries, contradictories, and sub-
contraries. In ICCS’05, pages 66–79. Kassel University Press, 2005.

7. P. Miglioli, U. Moscato, M. Ornaghi, and G. Usberti. A constructivism based on
classical truth. Notre Dame Journal of Formal Logic, 30(1):67–90, 1989.

8. M. Ornaghi, M.Benini, M. Ferrari, C. Fiorentini, and A.Momigliano. A Construc-
tive Modeling Language for Object Oriented Information Systems. In CLASE’05,
volume 153 of ENTCS, pages 55–75, 2006.

9. D. Prawitz. Natural Deduction. Almquist and Winksell, 1965.
10. M. Schmidt-Schauß and G. Smolka. Attributive concept descriptions with comple-

ments. Artificial Intelligence, 48(1):1–26, 1991.
11. A. S. Troelstra. From constructivism to computer science. TCS, 211(1-2):233–252,

1999.

