
Modal vs. Propositional Reasoning for Model Checking
with Description Logic

Shoham Ben-David Richard Trefler Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

1 Introduction

Model checking ([7, 13], c.f.[6]) is a technique for verifying finite-state concurrent sys-
tems that has proven effective in the verification of industrial hardware and software
programs. In model checking, a modelM , given as a set of state variablesV and their
next-state relations, is verified against a temporal logic formulaϕ. In this work we con-
sider only safety formulas of the formAG(b), with b being a Boolean expression over
the state variables of the model, meaning thatb is an invariant ofM .

The main challenge in model checking is known as thestate space explosionprob-
lem, where the number of states in the model grows exponentially in the number of
program variables. To cope with this problem, model checking is donesymbolically, by
representing the system under verification as sets of states and transitions, and by us-
ing Boolean functions to manipulate those sets. Two main symbolic methods are used
to perform model checking. The first, implemented inSMV [10], is based on Binary
Decision Diagrams (BDDs) [5]. The second is known as Bounded Model Checking
(BMC) [4]. Using this method, the model under verification and its specification are
unfolded to depthk (for a given boundk), and translated into a propositional CNF
formula. This results in an encoding of the model checking problem that is essentially
k times the size of the textual description ofM . A SAT solver is then applied to the
formula to find a satisfying assignment. Such an assignment, if found, demonstrates an
error in the model.

We investigate the possibility of using a Description Logic reasoner for bounded
model checking. Recent work [3] showed how to embed BMC problems as concept
consistency problems in the DL dialectALCI. The encoding as a terminology resulted
in a naturalsymbolicrepresentation of the sets of states and transitions that is signifi-
cantly smaller than the one obtained by translating a model into a CNF formula. This
translation works as follows.

Let M be a model defined by a setV of Boolean state variables and their next-state
transitionsR. We represent each variablevi ∈ V as a conceptVi, and the transition
relation as a single roleR. We then introduce concept inclusions of the type

C0 v ∀R.C1

stating that if the current state satisfies the condition represented byC0 then all the
next-states that can be reached in one step byRmust satisfy the conditionC1. Note that
interpretations for this set of concept inclusions correspond to sub-models ofM .

Let the conceptS0 represent the set of initial states ofM , and letS1 be a new
concept. If the concept inclusionS1 v ∃R−.S0 holds in the interpretation, then the set
S1 is a subset of all the states that can be reached fromS0 by going one step forward

using the relationR. Similarly, we denote bySi a subset of the states that can be reached
afteri steps, and introduce the inclusions

Si v ∃R−.Si−1

for 0 < i ≤ k. Let ϕ = AG(b) be the specification to be verified, and letB be the
concept representingb (composed of a Boolean combination of the conceptsVi rep-
resenting the state variables). Model checking is then carried out by asking the query:
“does there exist an interpretation for the above set of concept inclusions such that
¬Bu Si is not empty for someSi?”. A positive answer from the DL reasoner indicates
an error inM .

Experimental results comparing this method to SAT-based model checking showed
that SAT solving outperformed DL reasoning, especially as the boundk increased [3],
despite the significantly smaller DL encoding of the model checking problem —k times
the size ofM in the SAT case vs.k plus the size ofM in the DL case.

In this paper we report on an experiment aimed at determining whether it is the
modalreasoning (that involved taking backward steps through the roleR) that caused
the problem, or the propositional reasoning that is more efficient in the SAT solvers.
For this we produced a series of translations of the model into a terminology. Instead
of one set of concepts corresponding to the variables of the given model, we introduce
l copies to represent states of increasing distance from the initial state. The number of
modaltraversals throughR is then reduced by a factor ofl while increasing the size of
the DL encoding by a factor ofl. We expected the reduced modality translations would
outperform the original. It was surprising to us that the results suggested the opposite.

The rest of the paper is organized as follows. In the next section we give definitions
and present bounded model checking using DL [3]. Section 3 is the main section of the
paper where the new translation is presented. An evaluation and discussion follow in
Section 4.

2 Background and Definitions

Definition 1 (Description LogicALCI) LetNC andNR be sets of atomic concepts
{A1, A2, . . .} and atomic roles{R1, R2, . . .} respectively. The set ofconceptsC of the
description logicALCI is the smallest set includingNC that satisfies the following.

– If C1, C2 ∈ C then so are¬C1 andC1 u C2

– If C ∈ C andR ∈ R then so are∃R.C and∃R−.C

Additional concepts are defined as syntactic sugaring of those above:
– > = A t ¬A for someA
– ∀R.C = ¬∃R.¬C
– C1 t C2 = ¬(¬C1 u ¬C2)

A General Concept Inclusion Axiomis an expression of the formC1 v C2. A TBoxT
consists of a finite set of inclusion dependencies.

The semanticsof expressions is defined with respect to a structureI = (∆I , ·I),
where∆I is a non-empty set, and·I is a function mapping every concept to a subset
of ∆I and every role to a subset of∆I × ∆I such that the following conditions are
satisfied.

– (¬C)I = ∆I \ CI

– (C1 u C2)I = CI
1 u CI

2

– ∃R.C = {x ∈ ∆I | ∃y ∈ ∆I s.t.(x, y) ∈ RI ∧ y ∈ CI}
– ∃R−.C = {y ∈ ∆I | ∃x ∈ ∆I s.t.(x, y) ∈ RI ∧ x ∈ CI}

A structuresatisfies an inclusion dependencyC1 v C2 if CI
1 ⊆ CI

2 . Theconsistency

problem forALCI asks ifT |=dl C holds;1 that is, if there existsI such thatCI is
non-empty and such thatCI

1 ⊆ CI
2 holds for eachC1 v C2 in T .

2.1 Symbolic Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables. AKripke struc-
tureM overV is a four tupleM = (S, I,R, L) where

1. S is a finite set of states.
2. I ⊆ S is the set of initial states.
3. R ⊆ S × S is a transition relation that must be total, that is, for every states ∈ S

there is a states′ ∈ S such thatR(s, s′).
4. L : S → 2V is a function that labels each state with the set of variables true in that

state.

We view each states as a truth assignment to the variablesV . We view a set of states as
a Boolean function overV , characterizing the set. For example, The set of initial states
I is considered as a Boolean function overV . Thus, if a states belongs toI, we write
s |= I. Similarly, if vi ∈ L(s) we writes |= vi, and ifvi 6∈ L(s) we writes |= ¬vi. We
say thatw = s0, s1, ..., sk is a path inM if ∀i, 0 ≤ i < k, (si, si+1) ∈ R ands0 |= I.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a
model is given as a set of Boolean variablesV = {v1, ..., vn}, their initial values and
their next-state assignments. The definition we give below is an abstraction of the input
language ofSMV [10].

Definition 3 (Model Description) LetV = {v1, ..., vn} be a set of Boolean variables.
A tuple MD = (IMD , [〈c1, c

′
1〉, ..., 〈cn, c′n〉]) is a Model Descriptionover V where

IMD, ci, c
′
i are Boolean expressions overV .

The semantics of a model description is a Kripke structureMMD = (S, IM , R, L),
whereS = 2V , L(s) = s, IM = {s|s |= IMD}, andR = {(s, s′) : ∀1 ≤ i ≤ n, s |= ci

impliess′ |= ¬vi ands |= c′i ∧ ¬ci impliess′ |= vi}.
Intuitively, a pair〈ci, c

′
i〉 defines the next-state assignment of variablevi in terms of

the current values of{v1, ..., vn}. That is,

next(vi) =

0 if ci

1 if c′i ∧ ¬ci

{0, 1} otherwise

where the assignment{0, 1} indicates that for every possible next-state value of vari-
ablesv1, ...vi−1, vi+1, ..., vn there must exist a next-state withvi = 1, and a next-state
with vi = 0.
1 We write “|=dl” to distinguish the use of the double turnstyle symbol by both description logic

and model checking communities.

Safety Formulas The formulas we consider aresafetyformulas, given asAG(b) in
CTL [7], or G(b) in LTL [12]. Such formulas state that the Boolean expressionb holds
on all reachable states of the model under verification. We note that a large and useful
subset of CTL and LTL can be translated intoAG(b) type formulas [2].

Bounded Model Checking Given a Kripke structureM = (S, I,R, L), a formulaϕ,
and a boundk, Bounded Model Checking (BMC) tries to refuteM |= ϕ by proving the
existence of a witness to the negation ofϕ of lengthk or less. Forϕ = AG(b), we say
thatMk 6|= ϕ if and only if there exists a pathw = s0, ..., sj in M such thatj ≤ k and
sj |= ¬b.

2.2 Bounded Model Checking Using Description Logic Reasoning
We briefly describe how bounded model checking can be achieved using description
logic reasoning. For a detailed explanation and proof of correctness, refer to [3].

LetMD = (I, [〈c1, c
′
1〉, ..., 〈cn, c′n〉]) be a model description for the modelMMD =

(S, I,R, L), overV = {v1, ..., vn}. Let k be the bound and letϕ = AG(b) be a safety
formula. We generate a terminologyT k

MD , linear in the size ofMD , and a conceptCϕ

such thatT k
MD |=dl Cϕ if and only if Mk

MD 6|= ϕ.
For each variablevi ∈ V we introduce one primitive conceptVi, whereVi denotes

vi = 1 and¬Vi denotesvi = 0. We introduce one primitive roleRcorresponding to the
transition relation of the model. We define the conceptS0 to representI, by replacing
eachvi in I with the conceptVi, and the connectives∧,∨,¬ with u,t,¬. The concepts
Ci, C′

i correspond to the Boolean conditionsci, c
′
i in the same way. We then introduce

three types of concept inclusions:

1. (inclusions describing the model) For each pair〈ci, c
′
i〉 add the pair of inclusions

Ci v ∀R.¬Vi

(¬Ci u C′
i) v ∀R.Vi.

2. (inclusions describing sets of reachable states, of distancei from the initial set)
For a boundk, addk primitive concepts,S1, ..., Sk, and for1 ≤ i ≤ k, add thek
inclusions

Si v ∃R−.Si−1.

3. (inclusion to describe the specification) Let ϕ = AG(b) be the specification to be
verified. The Boolean formulab is translated to a conceptB in the usual way; in par-
ticular, each variablevi is mapped to the conceptVi, and the Boolean connectives
∨,∧,¬ into their corresponding concept constructorst,u,¬.
We define the conceptCϕ ≡ ¬Bu(S0tS1t...tSk). If Cϕ is consistent with respect
to the terminologyT k

MD then¬b must hold in some state with distance less thank

from the initial state. Verification is therefore reduced to the query:T k
MD |=dl Cϕ.

Theorem 4 (from [3]). Mk
MD 6|= ϕ if and only ifT k

MD |=dl Cϕ.

Let |T k
MD | represent the number of concept inclusions inT k

MD , and letn be the number
of state variables in the modelMMD . The following proposition is discussed in [3].

Proposition 5. (size of translation)|T k
MD | = 2 · n + k + 1.

3 On Controlling Propositional vs. Modal Reasoning

The above translation of a BMC problem into a terminology, denotedT k
MD , uses one

set of primitive concepts corresponding to the state variables, andk conceptsS1, ..., Sk,
whereSi represents the set of states of distancei from the initial state. Thus, reaching
a state that isi steps from an initial state will require a DL reasoner to build anR-chain
consisting ofi nodes. On the suspicion that reducing the length of this chain might
improve performance, we generalize the above terminological embedding of model de-
scriptions with an ability to supply an additional parameterl so that the resulting ter-
minology, denotedT k/l

MD would entail a reduction of the length of the chain by a factor
of l. We present the details of this more elaborate embedding in the remainder of this
section. For simplicity, we assume that the original boundk is devisable byl.

The initial setS0 does not change, and corresponds toI as before. Ifk/l > 1,
we introduce a roleR. For each variablevi ∈ {v1, ..., vn}, we introducel primitive
conceptsV0

i , ..., Vl−1
i , and for each pair〈ci, c

′
i〉, we introduce2 ∗ l concept inclusions

of the following form.
C0

i v ¬V1
i

(¬C0
i u C′0

i) v V1
i

...
Cl−2

i v ¬Vl−1
i

(¬Cl−2
i u C′l−2

i) v Vl−1
i

Cl−1
i v ∀R.¬V0

i

(¬Cl−1
i u C′l−1

i) v ∀R.V0
i

If k/l = 1 there is no need for the roleR, and the last pair of concept inclusions would
therefore be omitted. We introduce the conceptsSl, S2∗l, ..., Sk, and the followingk/l
concept inclusions.

Sl v ∃R−.S0

S2∗l v ∃R−.Sl

...
Sk v ∃R−.Sk−l

For a specificationϕ = AG(b), let Bj be the correspondent Boolean expression over
the conceptsVj

i for all 0 ≤ j < l. We then define the concept

C0..l−1
ϕ ≡ (¬B0 t ... t ¬Bl−1) u (S0 t Sl t S2∗l t ... t Sk).

Proposition 6. (Size of encoding)|T k/l
MD | = 2 · n · l + k/l + 1.

The following proposition relates the terminologyT k
MD to the reduced modality termi-

nologyT k/l
MD .

Proposition 7. T k
MD |=dl Cϕ if and only ifT k/l

MD |=dl C0..l
ϕ .

Proof (sketch).(=⇒) Suppose there exists an interpretationI = (∆I , ·I) for T k
MD |=dl Cϕ.

SinceCϕ is not empty in this interpretation, there must exist aj such thatSI
j is not

empty. Letσj ∈ SI
j . Since the concept inclusionSj v ∃R−.Sj−1 holds in the interpre-

tation, andSI
j is not empty, we deduce thatSI

j−1 is not empty, and that∃σj−1 ∈ SI
j−1,

such that(σj−1, σj) ∈ RI . By similar considerations, there must exist a sequence of
elementsσ0, ..., σj ∈ ∆I , such that for0 ≤ i < j, (σi, σi+1) ∈ RI , andσ0 ∈ SI

0 . We

build an interpretationIl = (∆Il , ·Il) for T k/l
MD . ∆Il will consist ofj/l + 1 elements,

γ0, ..., γj/l, where eachγi corresponds tol consequent elements from∆I . The map-

ping ·Il will be defined according to·I . Thus,∀1 ≤ i ≤ n, ∀0 ≤ j < l, γ0 ∈ Vj
i if and

only if σj ∈ Vi. In a similar manner,γ1 will be mapped according toσl, ..., σ2·l−1 and

γk/l according toσk−l, ..., σj . It remains to show that the concept inclusions ofT k/l
MD

hold under the interpretationIl, and that the interpretation ofC0..l
ϕ is not empty. These

follow easily from the definitions, given that all concept inclusions ofT k
MD hold under

I.
The opposite direction proceeds in a similar way. ut

Example Consider the model description

Exmp= (I, [〈v1 ∧ v2, v3〉, 〈¬v2, v1 ∧ ¬v1〉, 〈¬v1, v1〉])

overV = {v1, v2, v3}with I = ¬v1∧v2∧¬v3. Figure 1 draws the states and transitions
of the Kripke structureMExmp described byExmp, where the label of each state is
the value of the vector(v1, v2, v3). Let the formula to be verified beϕ = AG(¬v2 ∨

S0 v (¬V1 u V2 u ¬V3)
(V1

0 u V0
2) v ¬V1

1

(¬(V0
1 u V0

2) u V0
3) v V1

1

¬V0
2 v ¬V1

2

¬V0
1 v ¬V1

3

V0
1 v V1

3

(V1
1 u V1

2) v ∀R.¬V0
1

(¬(V1
1 u V1

2) u V1
3) v ∀R.V0

1

¬V1
2 v ∀R.¬V0

2

¬V1
1 v ∀R.¬V0

3

V1
1 v ∀R.V0

3

S2 v ∃R−.S0

S4 v ∃R−.S2

Fig. 1.Kripke Structure and Terminology for “Exmp”

¬v3). Note thatMExmp 6|= ϕ, as can be seen in Figure 1, since the state(0, 1, 1), that

contradictsϕ, can be reached in two steps from the initial state. We choose the bound
to bek = 4, and the reduction factor 2.

We build the terminologyT 4/2

Exmp for Exmp. We introduce one primitive roleRand

two sets of primitive concepts:V0
1, V0

2, V0
3 andV1

1, V1
2, V1

3. The initial state, represented
by the conceptS0, depends only on the setV0

i : S0 v (¬V0
1 u V0

2 u ¬V0
3). The rest of

T 4/2

Exmp is composed of the transition relation of the model, as given in Figure 1. For

the specificationϕ = AG(¬v2 ∨¬v3) we haveB0 ≡ ¬V0
2 t¬V0

3 andB1 ≡ ¬V1
2 t¬V1

3.
The conceptC0..1

ϕ is then defined asC0..1
ϕ ≡ (¬B0 t ¬B1) u (S0 t S2 t S4).

Verification is carried out by asking the query:T 4/2

Exmp |=dl C0..1
ϕ .

4 Evaluation
We conducted an experiment on a model derived from the NuSMV example “dme1-16”,
taken from [11], to test our hypothesis that reducing the number of nodes created dur-
ing model building would improve performance when using a DL system for bounded
model checking. The original model from [11] was composed of 16 symmetric “cells”,
each consisting of 17 propositional variables. We reduced the model to have only 2
cells, in order to get a reasonable run-time. The formula verified expresses a safely
condition that is satisfied in the model. We used the DL reasonerFaCT++ [9], and as
expected according to our translation, all runs returned an “unsatisfiable” result. Table 4
reports on the length of time required to determine this for reduction factors of 1 (no
reduction), 2 and 4. We believe the times are clear evidence that what really happens is
contrary to our hypothesis.

Table 1.Modal vs. Propositional Reasoning

VariablesBound (k) Reduction FactorTime (m)
34 8 1 140

34 8 2 197

34 8 4 686

4.1 Discussion

Highly successful SAT solvers such as Minisat [8] use model building algorithms that
operate by progressively refining an understanding of a “possible world”. DL systems
such asFaCT++ also use model building algorithms, but, to relate their behavior to typ-
ical SAT solvers, must deal with the added complication of modal reasoning in which a
potentially large number of possible worlds are involved. For applications such as fixed
depth model checking, DL systems therefore enable a tradeoff between the complexity
of particular worlds and the number of worlds.

We were quite surprised that moving towards fewer but more complicated worlds
would have the negative impact on performance that it did in our experiment, which
prompted a lot of reflection on why this happens. We conclude with some suggestions
on directions of future research on how DL technology might be adapted in order to
improve its performance on applications like model checking.

Part of this reflection was to conduct a small literature survey on how modern SAT
solvers and DL reasoners are implemented [1, 8]. It became quickly apparent that, e.g.,

Minisat relies heavily on using arrays to encode knowledge about a particular world,
and that DL technology is more likely to encode similar knowledge in separate records,
and to navigate among the records via pointers. It is common folklore that, when fea-
sible, replacing pointer navigation with array indexing will improve the performance
of algorithms, which suggests one possible avenue for improving the performance of
propositional reasoning in DL systems.

A non-trivial problem for DL systems relates toblocking. In particular, such systems
must frequently compare different possible worlds to ensure that model building will
terminate. This prompted a more carefully consideration of the structure of the terminol-
ogy encoding a model description. We noticed that it might be straightforward to recog-
nize that the “schema” underlying all occurrences of the “∃R−.C” concept constructor
was acyclic, which suggests a possible extension to, e.g., preprocessing inFaCT++ in
which such acyclic (sub)schema are recognized, and consequently that blocking activity
during model building is disabled for possible worlds “within” acyclic schema. Indeed,
any terminology generated by our reductions will always satisfy a global acyclicity
property that would allow disabling any processing relating to blocking.

Acknowledgements
We thank Dmitry Tsarkov for his support in the installation ofFaCT++, and Peter Tarle
and Nortel for many valuable discussions on this work and for financial support. The
authors are also supported in part by grants from NSERC of Canada.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider.The Description
Logic Handbook. Cambridge University Press, 2003.

2. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In
Proc.10th International Conference on Computer Aided Verification (CAV’98), LNCS 1427,
pages 184–194. Springer-Verlag, 1998.

3. S. Ben-David, R. Trefler, and G. Weddell. Bounded model checking with description
logic reasoning. InAutomated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX), pages 60–72, July 2007.

4. A. Biere, A. Cimatti, E. Clarke, and Yunshan Zhu. Symbolic model checking without bdds.
In TACAS’99, 1999.

5. Randy Bryant. Graph-based algorithms for boolean function manipulation. InIn IEEE
Transactions on Computers, volume c-35 no. 8.

6. E. M. Clarke, O. Grumberg, and D. Peled.Model Checking. The MIT Press, 2000.
7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using

branching time temporal logic. InProc. Workshop on Logics of Programs, LNCS 131, pages
52–71. Springer-Verlag, 1981.

8. Niklas Een and Niklas Sorensson. An Extensible SAT-solver. InTheory and Applications of
Satisfiability Testing, pages 502–518. Springer Berlin/Heidelberg, LNCS 2919, 2004.

9. I. Horrocks. The FaCT system. pages 307–312, 1998.
10. K. McMillan. Symbolic model checking, 1993.
11. NuSMV examples collection. http://nusmv.irst.itc.it/examples/examples.html.
12. Amir Pnueli. The temporal logic of programs. In18th IEEE Symposium on Foundation of

Computer Science.
13. J. Quielle and J. Sifakis. Specification and verification of concurrent systems in cesar. In5th

International Symposium on Programming, 1982.

