Modal vs. Propositional Reasoning for Model Checking
with Description Logic

Shoham Ben-David Richard Trefler Grant Weddell

David R. Cheriton School of Computer Science
University of Waterloo

1 Introduction

Model checking ([7, 13], c.f.[6]) is a technique for verifying finite-state concurrent sys-
tems that has proven effective in the verification of industrial hardware and software
programs. In model checking, a modé#l, given as a set of state variablésand their
next-state relations, is verified against a temporal logic formula this work we con-
sider only safety formulas of the for®dG(b), with b being a Boolean expression over
the state variables of the model, meaning thiatan invariant of?/.

The main challenge in model checking is known asdtate space explosigerob-
lem, where the number of states in the model grows exponentially in the number of
program variables. To cope with this problem, model checking is dgmbolically by
representing the system under verification as sets of states and transitions, and by us-
ing Boolean functions to manipulate those sets. Two main symbolic methods are used
to perform model checking. The first, implementedSkIV [10], is based on Binary
Decision Diagrams (BDDs) [5]. The second is known as Bounded Model Checking
(BMC) [4]. Using this method, the model under verification and its specification are
unfolded to depthk (for a given boundk), and translated into a propositional CNF
formula. This results in an encoding of the model checking problem that is essentially
k times the size of the textual description &f. A SAT solver is then applied to the
formula to find a satisfying assignment. Such an assignment, if found, demonstrates an
error in the model.

We investigate the possibility of using a Description Logic reasoner for bounded
model checking. Recent work [3] showed how to embed BMC problems as concept
consistency problems in the DL dialediCZ. The encoding as a terminology resulted
in a naturalsymbolicrepresentation of the sets of states and transitions that is signifi-
cantly smaller than the one obtained by translating a model into a CNF formula. This
translation works as follows.

Let M be a model defined by a sétof Boolean state variables and their next-state
transitionsR. We represent each variable € V' as a concepV;, and the transition
relation as a single rolR. We then introduce concept inclusions of the type

G EVRG

stating that if the current state satisfies the condition representé& tiyen all the
next-states that can be reached in one stelR imyist satisfy the conditio@, . Note that
interpretations for this set of concept inclusions correspond to sub-modgls of

Let the conceps, represent the set of initial states df, and letS; be a new
concept. If the concept inclusidhy C JR™.S; holds in the interpretation, then the set
S, is a subset of all the states that can be reached 8gimy going one step forward

using the relatioiR. Similarly, we denote b, a subset of the states that can be reached
afteri steps, and introduce the inclusions

S, CIR.S,_4

for 0 < i < k. Letp = AG(b) be the specification to be verified, and Bbe the
concept representiny (composed of a Boolean combination of the concéfitsep-
resenting the state variables). Model checking is then carried out by asking the query:
“does there exist an interpretation for the above set of concept inclusions such that
=B M'S; is not empty for som&;?”. A positive answer from the DL reasoner indicates

an error inM.

Experimental results comparing this method to SAT-based model checking showed
that SAT solving outperformed DL reasoning, especially as the baundreased [3],
despite the significantly smaller DL encoding of the model checking problemimes
the size ofM in the SAT case vsk plus the size of\f in the DL case.

In this paper we report on an experiment aimed at determining whether it is the
modalreasoning (that involved taking backward steps through theRpthat caused
the problem, or the propositional reasoning that is more efficient in the SAT solvers.
For this we produced a series of translations of the model into a terminology. Instead
of one set of concepts corresponding to the variables of the given model, we introduce
[copies to represent states of increasing distance from the initial state. The number of
modaltraversals througRis then reduced by a factor 6fvhile increasing the size of
the DL encoding by a factor @f We expected the reduced modality translations would
outperform the original. It was surprising to us that the results suggested the opposite.

The rest of the paper is organized as follows. In the next section we give definitions
and present bounded model checking using DL [3]. Section 3 is the main section of the
paper where the new translation is presented. An evaluation and discussion follow in
Section 4.

2 Background and Definitions

Definition 1 (Description Logic ALCZ) LetNC andNR be sets of atomic concepts
{41, Ay, ...} and atomic role§ Ry, R, ...} respectively. The set abncept<C of the
description logicALCZ is the smallest set includingC that satisfies the following.
— If C1,Cy € Cthen so are-Cy and(Cq M Cy
— IfC e CandR € Rthenso areiR.C anddR~.C

Additional concepts are defined as syntactic sugaring of those above:

— T =AU —-Afor someA

- VR.C =—-3R.-C

- CiUCy = ﬁ(ﬁCl [l ﬁCQ)
A General Concept Inclusion Axioiman expression of the ford; C C5. A TBox7
consists of a finite set of inclusion dependencies.

The semanticof expressions is defined with respect to a structire (A%, -7),
where AZ is a non-empty set, and is a function mapping every concept to a subset
of AT and every role to a subset af? x AT such that the following conditions are
satisfied.

~ (20T = AT\ C7

- (NGt =ctnct

-~ JRC ={z e At |y e AT st.(z,y) € RT Ay € CT}

—-3dR-.C={yc AT |Irc ATst.(z,y) € RF Az € CT}
A structuresatisfies an inclusion dependenCy C C, if C¥ C C%. Theconsistency
problem for ALCT asks if7 =, C holds? that is, if there exist€ such thatC? is
non-empty and such that? C C7 holds for eachC; C Cy in 7.

2.1 Symbolic Model Checking

Definition 2 (Kripke Structure) LetV be a set of Boolean variables.Kxipke struc-
ture M overV is a four tupleM = (S, I, R, L) where

1. Sis afinite set of states.

2. I C Sis the set of initial states.

3. R C S x Sis atransition relation that must be total, that is, for every state S
there is a state’ € S such thatR(s, s).

4. L : S — 2" is afunction that labels each state with the set of variables true in that
state.

We view each state as a truth assignment to the variablésWe view a set of states as
a Boolean function ove¥’, characterizing the set. For example, The set of initial states
1 is considered as a Boolean function oVerThus, if a states belongs tol, we write
s = I. Similarly, if v; € L(s) we writes |= v;, and ifv; ¢ L(s) we writes = —wv;. We
say thatw = sg, s1, ..., sk IS a path inM if Vi, 0 <1i < k, (si, si+1) € Randsg = I.

In practice, the full Kripke structure of a system is not explicitly given. Rather, a
model is given as a set of Boolean variablés= {vy, ..., v, }, their initial values and
their next-state assignments. The definition we give below is an abstraction of the input
language oSEMV[10].

Definition 3 (Model Description) LetV = {vy, ..., v, } be a set of Boolean variables.
Atuple MD = (Iyp,[{c1,¢}),..s {cn,ch)]) IS @ Model Descriptionover V' where
Iyp, ¢, ¢, are Boolean expressions ovEr

The semantics of a model description is a Kripke structufgp, = (S, Iy, R, L),
whereS =2V, L(s) = s, Iy = {s|s E Iup},andR = {(s,8') : V1 <i<n, s = ¢
impliess’ = —w; ands = ¢ A —¢; impliess’ = v;}.

Intuitively, a pair{c;, ¢;) defines the next-state assignment of variabla terms of
the current values dfvy, ..., v, }. That s,

0 if C;
next@;) =4 1 if ¢, A —¢;
{0,1} otherwise
where the assignmef0, 1} indicates that for every possible next-state value of vari-

ablesvy, ...v;—1,v;41, ..., v, there must exist a next-state with= 1, and a next-state

1 We write “=4;” to distinguish the use of the double turnstyle symbol by both description logic
and model checking communities.

Safety Formulas The formulas we consider asafetyformulas, given asAG(b) in
CTL[7],or G(b) in LTL [12]. Such formulas state that the Boolean expressibalds

on all reachable states of the model under verification. We note that a large and useful
subset of CTL and LTL can be translated int6:(b) type formulas [2].

Bounded Model Checking Given a Kripke structurd! = (S, I, R, L), a formulayp,
and a bound:, Bounded Model Checking (BMC) tries to refuté = ¢ by proving the
existence of a witness to the negationbf lengthk or less. Forp = AG(b), we say
that M* (£ ¢ if and only if there exists a patl = s, ..., s; in M such thaj < k and
Sj ': —b.
2.2 Bounded Model Checking Using Description Logic Reasoning
We briefly describe how bounded model checking can be achieved using description
logic reasoning. For a detailed explanation and proof of correctness, refer to [3].
LetMD = (I,[{c1,¢}), ..., {cn, c,)]) be a model description for the modely,p =
(S,I,R, L), overV = {vy,...,v, }. Letk be the bound and let = AG(b) be a safety
formula. We generate a terminoloGy; ,, linear in the size of\/D, and a concept’,,

such thatZf,, =4 C,, if and only if M¥,, £ .

For each variable; € V we introduce one primitive concept, whereV; denotes
v; = 1 and—V; denotes); = 0. We introduce one primitive rolR corresponding to the
transition relation of the model. We define the conc&pto represent, by replacing
eachw; in I with the concepV;, and the connectives, v, — with M, LI, =. The concepts
C;, C, correspond to the Boolean conditiofisc; in the same way. We then introduce
three types of concept inclusions:

1. (inclusions describing the mogdfor each paifc;, ;) add the pair of inclusions

G C VR~V
(-GN C) C VRV,

2. (inclusions describing sets of reachable states, of distarfoem the initial se}
For a boundk, addk primitive conceptsS, ..., Sg, and forl < i < k, add thek
inclusions

S, C dR™.S;_;.

3. (inclusion to describe the specificatjobet ¢ = AG(b) be the specification to be
verified. The Boolean formulais translated to a conceptin the usual way; in par-
ticular, each variable; is mapped to the concepf, and the Boolean connectives
V, A, — into their corresponding concept constructarsi, —.

We define the conceflt, = -BM(SyLIS; LI...LUS). If C,, is consistent with respect
to the terminologyZ;, then—b must hold in some state with distance less than

from the initial state. Verification is therefore reduced to the quéfy;, =4 C,.
Theorem 4 (from [3]). M¥,, = ¢ if and only if 7., =4 C,.

Let |7, | represent the number of concept inclusiong fjy,, and letn be the number
of state variables in the mod&f,,,. The following proposition is discussed in [3].

Proposition 5. (size of translation)7t)| =2 -n + k + 1.

3 On Controlling Propositional vs. Modal Reasoning

The above translation of a BMC problem into a terminology, den@tgg, uses one
set of primitive concepts corresponding to the state variables; andceptsS,, ..., S,
whereS; represents the set of states of distahfrem the initial state. Thus, reaching
a state that i$ steps from an initial state will require a DL reasoner to buildraohain
consisting ofi nodes. On the suspicion that reducing the length of this chain might
improve performance, we generalize the above terminological embedding of model de-
scriptions with an ability to supply an additional paramétso that the resulting ter-
minology, denoted’l\% would entail a reduction of the length of the chain by a factor
of [. We present the details of this more elaborate embedding in the remainder of this
section. For simplicity, we assume that the original boksldevisable by.

The initial setS, does not change, and correspondd tas before. Ifk/l > 1,
we introduce a roldR. For each variable; € {vy,...,v,}, we introducel primitive
concepts?, ..., V.1, and for each paitc;, ¢;), we introduce2 « I concept inclusions
of the following form.

C C -V
(- nc) C Vi
c—2 |: Vit
(-c2ng?) C v
C ' C VR-W
(-C~'ncith) © YRV

If /1 = 1 there is no need for the rolR and the last pair of concept inclusions would
therefore be omitted. We introduce the conceqtsS,., ..., Si, and the followingk /I
concept inclusions.

S C dR.S
S E JR.G

||_| P

Sk dR™.S,_,

For a specificationp = AG(b), let B/ be the correspondent Boolean expression over
the concept¥” for all 0 < j < I. We then define the concept

C:?D“l_l = (_|BO LU _|Bl_1) M (SO L Sl L SZ*l ... Sk)

Proposition 6. (Size of encodinqm’}ﬂ =2-n-l+k/l+1.

The following proposition relates the terminolo@y; , to the reduced modality termi-
nology7, A%

Proposition 7. 7,7, = C, if and only if70 = co.

Proof (sketch)(=>) Suppose there exists an interpretatios (AZ,-T) for 7, 4 C,.
SinceC, is not empty in this interpretation, there must exist such thatSjZ is not

empty. Lets; € S]I-. Since the concept inclusid®; C 3JR™.S;_; holds in the interpre-
tation, andS? is not empty, we deduce th&f , is not empty, and thato; ; € ST_,,
such that(o;_1,0;) € RE. By similar considerations, there must exist a sequence of
elementsr, ...,0; € AZ, such that fo < i < j, (0;,0,41) € RE, andog € SE. We
build an interpretatiorf; = (AZ,-Zt) for 7./}, AT will consist of j/I + 1 elements,

Yo, - V41, Where eachy; corresponds té consequent elements from’ . The map-
ping -2t will be defined according te. Thus,vV1 <i < n,V0 < j <[, € V{ if and

only if o; € V;. In a similar mannery; will be mapped according te, ..., 02.;—1 and

Yk, according tooy g, ..., o;. It remains to show that the concept incIusionsTg%

hold under the interpretatidfy, and that the interpretation ﬁ.ﬂ;'l is not empty. These

follow easily from the definitions, given that all concept inclusiong i, hold under
7.
The opposite direction proceeds in a similar way. d

Example Consider the model description
Exmp= (I, [(v1 A v2,v3), (-2, v1 A —01), (-01,01)])

overV = {vy, va, v3} With I = —w; Avg A—ws. Figure 1 draws the states and transitions
of the Kripke structureM/gxmp described byexmp, where the label of each state is
the value of the vectofv, v2, v3). Let the formula to be verified bg = AG(—wvy vV

B} v (Vinvy) £ VR-W

V)N C v B RN
W C v WO Urw

_|V(1) C _|é Vl E VR7Vg

VO E Vl SQ E IR S()

o= 3 S, C 3IR.S,

Fig. 1. Kripke Structure and Terminology for “Exmp”

—w3). Note thatMExmp [~ ¢, as can be seen in Figure 1, since the state, 1), that

contradictspy, can be reached in two steps from the initial state. We choose the bound
to bek = 4, and the reduction factor 2.
We build the terminologﬂ'éffmpfor Exmp. We introduce one primitive rolR and

two sets of primitive concept®?, V9, V4§ andV}, Vi, Vi. The initial state, represented
by the concep8y, depends only on the sef: Sy C (=9 V) 1 —-\4). The rest of

Té>/<2mp is composed of the transition relation of the model, as given in Figure 1. For
the specificationp = AG(—v2 V —w3) we haveB? = V3 LI -V andB! = -V} LU -Vi.
The concepC); " is then defined a€); ' = (=B’ LI -B') M (Sy U S, LI Sy).

Verification is carried out by asking the queﬂ'E4)/(2rnp Fa Ct

4 Evaluation

We conducted an experiment on a model derived from the NuSMV example “dmel-16",
taken from [11], to test our hypothesis that reducing the number of nodes created dur-
ing model building would improve performance when using a DL system for bounded
model checking. The original model from [11] was composed of 16 symmetric “cells”,
each consisting of 17 propositional variables. We reduced the model to have only 2
cells, in order to get a reasonable run-time. The formula verified expresses a safely
condition that is satisfied in the model. We used the DL reasBa€if++ [9], and as
expected according to our translation, all runs returned an “unsatisfiable” result. Table 4
reports on the length of time required to determine this for reduction factors of 1 (no
reduction), 2 and 4. We believe the times are clear evidence that what really happens is
contrary to our hypothesis.

Table 1. Modal vs. Propositional Reasoning

VariablesBound)|Reduction Factaifime (m)
34 8 1 140
34 8 2 197
34 8 4 686

4.1 Discussion

Highly successful SAT solvers such as Minisat [8] use model building algorithms that
operate by progressively refining an understanding of a “possible world”. DL systems
such ag-aCT++ also use model building algorithms, but, to relate their behavior to typ-
ical SAT solvers, must deal with the added complication of modal reasoning in which a
potentially large number of possible worlds are involved. For applications such as fixed
depth model checking, DL systems therefore enable a tradeoff between the complexity
of particular worlds and the number of worlds.

We were quite surprised that moving towards fewer but more complicated worlds
would have the negative impact on performance that it did in our experiment, which
prompted a lot of reflection on why this happens. We conclude with some suggestions
on directions of future research on how DL technology might be adapted in order to
improve its performance on applications like model checking.

Part of this reflection was to conduct a small literature survey on how modern SAT
solvers and DL reasoners are implemented [1, 8]. It became quickly apparent that, e.g.,

Minisat relies heavily on using arrays to encode knowledge about a particular world,
and that DL technology is more likely to encode similar knowledge in separate records,
and to navigate among the records via pointers. It is common folklore that, when fea-
sible, replacing pointer navigation with array indexing will improve the performance
of algorithms, which suggests one possible avenue for improving the performance of
propositional reasoning in DL systems.

A non-trivial problem for DL systems relateslitocking In particular, such systems
must frequently compare different possible worlds to ensure that model building will
terminate. This prompted a more carefully consideration of the structure of the terminol-
ogy encoding a model description. We noticed that it might be straightforward to recog-
nize that the “schema” underlying all occurrences of th&“.C” concept constructor
was acyclic, which suggests a possible extension to, e.g., preprocessm@Tt+ in
which such acyclic (sub)schema are recognized, and consequently that blocking activity
during model building is disabled for possible worlds “within” acyclic schema. Indeed,
any terminology generated by our reductions will always satisfy a global acyclicity
property that would allow disabling any processing relating to blocking.

Acknowledgements

We thank Dmitry Tsarkov for his support in the installatiorFalCT++, and Peter Tarle
and Nortel for many valuable discussions on this work and for financial support. The
authors are also supported in part by grants from NSERC of Canada.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schrididddescription
Logic Handbook Cambridge University Press, 2003.

2. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In
Proc.10** International Conference on Computer Aided Verification (CAV,/28)CS 1427,
pages 184-194. Springer-Verlag, 1998.

3. S. Ben-David, R. Trefler, and G. Weddell. Bounded model checking with description
logic reasoning. IMAutomated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX) pages 60-72, July 2007.

4. A. Biere, A. Cimatti, E. Clarke, and Yunshan Zhu. Symbolic model checking without bdds.
In TACAS’99 1999.

5. Randy Bryant. Graph-based algorithms for boolean function manipulatiorin IBEE
Transactions on Computergolume c-35 no. 8.

6. E. M. Clarke, O. Grumberg, and D. Pelédodel CheckingThe MIT Press, 2000.

7. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. IRroc. Workshop on Logics of PrograpidNCS 131, pages
52-71. Springer-Verlag, 1981.

8. Niklas Een and Niklas Sorensson. An Extensible SAT-solvefheory and Applications of
Satisfiability Testingpages 502-518. Springer Berlin/Heidelberg, LNCS 2919, 2004.

9. I. Horrocks. The FaCT system. pages 307-312, 1998.

10. K. McMillan. Symbolic model checking, 1993.

11. NuSMV examples collection. http://nusmv.irst.itc.it/examples/examples.html.

12. Amir Pnueli. The temporal logic of programs. 18th IEEE Symposium on Foundation of
Computer Science

13. J. Quielle and J. Sifakis. Specification and verification of concurrent systems in ce&tar. In
International Symposium on Programmjri$82.

