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1 Introduction

The goal of data integration is to provide a uniform access toa set of heterogeneous
data sources, freeing the user from the knowledge about where the data are, how they
are stored, and how they can be accessed. The problem of designing effective data in-
tegration solutions has been addressed by several researchand development projects in
the last years. One of the outcomes of this research work is a clear conceptual architec-
ture for data integration1. According to this architecture [9], the main components ofa
data integration system are the global schema, the sources,and the mapping. Thus, a
data integration system is seen as a triple〈G,S,M〉, where:

– G is theglobal schema, providing both a conceptual representation of the appli-
cation domain, and a reconciled, integrated, and virtual view of the underlying
sources.

– S is thesource schema, i.e., the schema of the sources where real data are stored.
– M is themappingbetweenG andS, constituted by a set of assertions establish-

ing the connection between the elements of the global schemaand those of the
source schema. Two basic approaches have been proposed in the literature. The
first approach, calledglobal-as-view(or simply GAV), focuses on the elements of
the global schema, and associates to each of them a view (query) over the sources.
On the contrary, in the second approach, calledlocal-as-view(or simply LAV), the
focus is on the sources, in the sense that a view (query) over the global schema is
associated to each of them.

We use the term “data integration management system” to denote a software tool
supporting the conceptual architecture described above. Among the various services to
be provided by a data integration management system, we concentrate on query an-
swering: Queries are posed in terms of the global schema, andare to be answered by
suitably reasoning on the global schema, and exploiting themappings to access data at
the sources.

Data integration is still one of the major challenges in Information Technology.
One of the reasons is that large amounts of heterogeneous data are nowadays available
within an organization, but these data have been often collected and stored by different

1 Here we are concerned with the so-called centralized data integration. Other architectures,
e.g. [4], are outside the scope of this paper.



applications and systems. Therefore, the need of accessingdata by means of flexible
and unified mechanisms is becoming more and more important. On the other hand, cur-
rent commercial data integration tools have several drawbacks. In particular, none of
them realizes the goal of describing the global schema independently from the sources.
In particular, these tools do not allow for specifying integrity constraints in the global
schema, and this implies that the global schema is a sort of data structure for accom-
modating a reconciled view of the source data, rather than a faithful description of the
application domain. It follows that current state-of-the-art data integration tools do not
support the conceptual architecture mentioned above.

In this paper, we present a comprehensive approach to, and a complete management
system for ontology-based data integration. The system, called MASTRO-I, is based on
the following principles:

– The system fully adheres to the conceptual architecture developed by the scientific
community.

– The global schema is specified in terms of an ontology, specifically in terms of
a TBox expressed in a tractable Description Logics, namelyDL-LiteA. So, our
approach conforms to the view that the global schema of a dataintegration system
can be profitably represented by an ontology, so that clientscan rely on a shared
conceptualization when accessing the services provided bythe system.

– The source schema is the schema of a relational database.
– The mapping language allows for expressing GAVsoundmappings between the

sources and the global schema. A GAV sound mapping specifies that the exten-
sion of a source view provides a subset of the tuples satisfying the corresponding
element of the global schema.
Moreover, the mapping language has specific mechanisms for addressing the so-
calledimpedance mismatchproblem. This problem arises from the fact that, while
the data sources store values, the instances of concepts in the ontology (global
schema) are objects, each one denoted by an identifier (e.g.,a constant in logic),
not to be confused with any data item.

MASTRO-I is based on the system QUONTO [1], a reasoner forDL-LiteA, and is
coupled with DB2 Information Integrator, the IBM tool for data federation2.

We point out that our proposal is not the first one advocating the use of ontologies
in data integration (see, for example, [7, 2]). However, to the best of our knowledge,
MASTRO-I is the first data integration management system addressing simultaneously
the following aspects:

– providing a solution to the impedance mismatch problem;
– answering unions of conjunctive queries posed to the globalschema according to a

method which is sound and complete with respect to the semantics of the ontology;
– careful design of the various languages used in the system, resulting in a very effi-

cient technique (LOGSPACE with respect to data complexity)which reduces query
answering to standard SQL query evaluation over the sources.

One might wonder whether the expressive power of the data integration frame-
work underlying MASTRO-I can be improved. We answer this question by showing

2 http://www-128.ibm.com/developerworks/db2/zones/db2ii/



that even very slight extensions of the expressive abilities of MASTRO-I in modeling
the three components of a data integration system lead beyond the LOGSPACE com-
plexity bound.

We end this section by pointing out that MASTRO-I addresses the problem of
data integration, and not the one of schema or ontology integration. In other words,
MASTRO-I is not concerned with the task of building the ontology representing the
global schema starting from the source schema, or from otherontologies. This task,
which is strongly related to other important problems, suchas database schema integra-
tion [3], ontology alignment, matching, merging, or integration, are outside the scope
of MASTRO-I.

2 MASTRO-I : The data integration framework

In this section we instantiate the conceptual architecturefor data integration systems
introduced in Section 1, by describing the form of the globalschema, the source schema,
and the mapping for data integration systems managed by MASTRO-I.

The global schema.Global schemas managed by MASTRO-I are given in terms of
TBoxes expressed inDL-LiteA [5], a DL of theDL-Lite family. Besides the use of con-
cepts and roles, denoting sets of objects and binary relations between objects, respec-
tively, DL-LiteA allows one to use value-domains, a.k.a. concrete domains, denoting
unbounded sets of (data) values, and concept attributes, denoting binary relations be-
tween objects and values3. In particular, the value-domains that we consider here are
those corresponding to unbounded (i.e., value-domains with an unbounded size) RDF
data types, such as integers, real, strings, etc.

To describeDL-LiteA, we first introduce the DLDL-LiteFR, which combines the
main features of two DLs presented in [6], calledDL-LiteF andDL-LiteR, respectively.
We use the following notation:A denotes anatomic concept, B a basic concept, C a
general concept, and⊤C theuniversal concept; E denotes a basic value-domain, i.e.,
the range of an attribute,T1, . . . , Tn denote then pairwise disjoint unbounded RDF data
types used in our logic, andF denotes ageneral value-domain, which can be either an
unbounded RDF data typeTi or theuniversal value-domain⊤D; P denotes anatomic
role, Q a basic role, andR a general role; UC denotes anatomic attribute, andVC a
general attribute. Given an attributeUC , we calldomainof UC , denoted byδ(UC), the
set of objects thatUC relates to values, and we callrangeof UC , denoted byρ(UC), the
set of values related to objects byUC .

We are now ready to defineDL-LiteFR expressions as follows.

– Basic and general concept expressions:

B ::= A | ∃Q | δ(UC) C ::= ⊤C | B | ¬B | ∃Q.C

– Basic and general value-domain expressions:

E ::= ρ(UC) F ::= ⊤D | T1 | · · · | Tn

3 The logic discussed in [5] is actually more expressive thanDL-LiteA, since it includes role
attributes, user-defined domains, as well as inclusion assertions over such domains.



– General attribute expressions:

VC ::= UC | ¬UC

– Basic and general role expressions:

Q ::= P | P− R ::= Q | ¬Q

A DL-LiteFR TBox allows one to represent intensional knowledge by means of
assertions of the following forms:

– Inclusion assertions: B ⊑ C (concept inclusion assertion);Q ⊑ R (role inclusion
assertion);E ⊑ F (value-domain inclusion assertion);UC ⊑ VC (attribute inclu-
sion assertion). A concept inclusion assertion expresses that a (basic) conceptB is
subsumed by a (general) conceptC. Analogously for the other types of inclusion
assertions.

– Functionality assertionson atomic attributes or basic roles:(funct I), whereI
denotes either an atomic attribute or a basic role.

DL-LiteA TBoxes areDL-LiteFR TBoxes with suitable limitations in the combi-
nation ofDL-LiteFR TBox assertions. To describe such limitations we first introduce
some preliminary notions. An atomic attributeUC (resp. a basic roleQ) is called an
identifying property in a TBoxT , if T contains a functionality assertion(funct UC)
(resp.(funct Q) or (funct Q−)). Then, an atomic attribute or a basic role is called
primitive in T , if it does not appear positively in the right-hand side of aninclusion
assertion ofT , and it does not appear in an expression of the form∃Q.C in T .

Then,a DL-LiteA TBox is a DL-LiteFR TBoxT satisfying the condition that every
identifying property inT is primitive inT .

Roughly speaking, in our logic,identifying properties cannot be specialized, i.e.,
they cannot be used positively in the right-hand side of inclusion assertions. As shown
in [5], reasoning over aDL-LiteA knowledge base (constituted by a TBox and an
ABox) is tractable. More precisely, TBox reasoning is in PTIME and query answer-
ing is in LOGSPACE w.r.t. data complexity, i.e., the complexity measured in the size
of the ABox only (whereas query answering forDL-LiteFR is PTIME-hard). Thus,
DL-LiteA presents the same computational behavior of all DLs of theDL-Lite family,
and therefore is particularly suited for integration of large amounts of data.

The source schema.The source schema in MASTRO-I is a flat relational database
schema, representing the schemas of all the data sources. Since MASTRO-I integrates
data sources that are distributed, possibly heterogeneous, and not necessarily in rela-
tional format, the source schema may in fact be obtained by wrapping a set of physical
sources. Indeed, MASTRO-I is coupled with the IBM DB2 Information Integrator, and
relies on both the wrapping facilities provided by this datafederation tool, and on its
ability to answer queries posed to a set of distributed physical sources.

The mapping. The mapping in MASTRO-I establishes the relationship between the
source schema and the global schema, thus specifying how data stored at the sources are
linked to the instances of the concepts and the roles in the global schema. To this aim,
the mapping specification takes suitably into account the impedance mismatch problem,
i.e., the mismatch between the way in which data is (and can be) represented in a data



source, and the way in which the corresponding information is rendered through the
global schema.

The MASTRO-I mapping assertions keep data value constants separate fromobject
identifiers, and construct identifiers as (logic) terms overdata values. More precisely,
object identifiers in MASTRO-I aretermsof the formf(d1, . . . , dn), wheref is a func-
tion symbol of arityn > 0, andd1, . . . , dn are data values stored at the sources. Note
that this idea traces back to the work done in deductive object-oriented databases [8].

We detail below the above ideas. The mapping in MASTRO-I is a set of assertions
of the following the forms:

– Typing mapping assertions: Φ(v) ; Ti(v), whereΦ is a query over the source
schemaS denoting the projection of one relation over one of its attributes,Ti is
one of theDL-LiteA data types, andv is a variable,

– Data-to-ontology mapping assertions: Φ(v) ; P (t,v′), whereΦ is a first-order
logic (FOL) query over the source schemaS, P is an atom in the global schema
G, v,v′ are variables such thatv

′ ⊆ v andt arevariable object terms, i.e., terms
having the formf(v′′), wheref is a function symbol, andv′′ are variables such
thatv′′ ⊆ v.

Typing mapping assertions are used to assign appropriateDL-LiteA types to values
occurring in the tuples at the sources. Basically, these assertions are used for interpreting
the values stored at the sources in terms of the types used in the global schema. Data-to-
ontology, on the other hand, are used to map source relations(and the tuples they store),
to global concepts, roles, and attributes (and the objects and the values that constitute
their instances).

3 MASTRO-I : Semantics

We now illustrate the semantics of a data integration systemmanaged by MASTRO-I.
Let J = 〈G,S,M〉 be a data integration system. The general idea is to start with a

databaseD for the source schemaS, i.e., the extensions of the data sources, and define
the semantics ofJ as the set of intepretations forG that both satisfy the TBox assertions
of G, and satisfy the mapping assertions inM with respect toD.

The above informal definition makes use of different notionsthat we detail below.

– First, the notion of interpretation forG is the usual one in DL. Aninterpretation
I = (∆I , ·I) for G consists of an interpretation domain∆I and aninterpretation
function·I .∆I is the disjoint union of the domain of objects∆I

O, and the domain of
values∆I

V , while the interpretation function·I assigns the standard formal meaning
to all expressions and assertions of the logicDL-LiteA (see [5]). The only aspect
which is not standard here is the need of dealing with objectsdenoted by terms (see
previous section). To this end, we now introduce two disjoint alphabets, calledΓO

andΓV , respectively. Symbols inΓO are called object terms, and are used to denote
objects, while symbols inΓV , called value constants, are used to denote data values.
More precisely,ΓO is built starting fromΓV and a setΛ of function symbols of any
arity (possibly 0), as follows: Iff ∈ Λ, the arity off is n, andd1, . . . , dn ∈ ΓV ,
thenf(d1, . . . , dn) is a term inΓO, calledobject term. In other words, object terms
are either functional terms of arity 0, called object constants, or terms constituted



by a function symbol applied to data value constants. We are ready to state how the
interpretation function·I treatsΓV andΓO: ·I simply assigns a different value in
∆I

V to each symbol inΓV , and a different element of∆I
O to every object term (not

only object constant) inΓO. In other words,DL-LiteA enforces the unique name
assumption on both value constants and object terms.

– To the aim of describing the semantics of mapping assertionswith respect to a
databaseD for the source schemaS, we first assume that all data values stored in
the databaseD belong toΓV

4. Then, ifq is a query over the source schemaS, we
denote byans(q,D) the set of tuples obtained by evaluating the queryq over the
databaseD (if q has not distinguished variables, thenans(q,D) is a boolean). Fi-
nally, we introduce the notion of ground instance of a formula. Letγ be a formula
with free variablesx = (x1, . . . , xn), and lets = (s1, . . . , sn) be a tuple of ele-
ments inΓV ∪ΓO. A ground instanceγ[x/s] of γ is obtained fromγ by substituting
every occurrence ofxi with si.
We are now ready to specify the semantics of mapping assertions. We say that
an interpretationI = (∆I , ·I) satisfiesthe mapping assertionϕ ; ψ with re-
spect toD, if for every ground instanceϕ[x/s] ; ψ[x/s] of ϕ ; ψ, we have
thatans(ϕ[x/s],D) = true impliesψ[x/s]I = true (where, for a ground atom
p(t), with t = (t1, . . . , tn) a tuple of object terms, we have thatp(t)I = true if
(tI

1
, . . . , tIn) ∈ pI). Note that the above definition formalizes the notion of sound

mapping, as it treats each mapping assertion as an implication.
– With the above notion in place, we can simply define the semantics of J with

respect toD as follows:

semD(J ) = { I | I is a model of G, and I satisfies all assertions in M wrt D }

As we said in the introduction, in this paper we are mainly interested in the problem
of answering unions of conjunctive queries (UCQs) posed to the global schema. The
semantics of query answering is given in terms of certain answers to the query, defined
as follows. Given a data integration systemJ = 〈G,S,M〉, and a databaseD for S, the
set ofcertain answersto the queryq(x) overG is the set (denoted byans(q,J ,D)) of
all tuplest of elements ofΓV ∪ΓO such thatI |=FOL q[x/t] for everyI ∈ semD(J )
(notice thatq[x/t] is a boolean UCQ, i.e., a FOL sentence).

4 Query answering

In this section, we sketch our query answering technique (more details can be found
in [10]). Consider a data integration systemJ = 〈G,S,M〉 and a databaseD for S.

We start with the following observation. Suppose we evaluate (overD) the queries
in the left-hand sides of the mapping assertions, and we materialize accordingly the
corresponding assertions in the right-hand sides. This would lead to a set of ground as-
sertions, that can be considered as aDL-Lite ABox, denoted byAM,D. It can be shown
that query answering overJ can be reduced to query answering over theDL-LiteA
knowledge base constituted by the TBoxG and the ABoxAM,D. However, due to the
materializion ofAM,D, the query answering algorithm resulting from this approach

4 We could also introduce suitable conversion functions in order to translate values stored at the
sources into value constants inΓV , but we do not deal with this issue here.



would be polynomial in the size ofD. On the contrary, our idea is to avoid any ABox
materialization, but rather answerQ by reformulating it into a new query that can be
afterwards evaluated directly over the databaseD. This can be achieved by following
three steps, calledrewriting, unfoldingandevaluation.
Query rewriting. Given a UCQQ over a data integration systemJ = 〈G,S,M〉, and
a databaseD for S, the rewriting step computes a UCQQ′ overJ , where the assertions
of G are compiled in. It can be shown [10] thatQ′ is such thatans(Q′, 〈∅,S,M〉,D) =
ans(Q,J ,D), i.e. rewriting allows to get rid ofG. Moreover, the rewriting procedure
does not depend onD, runs in polynomial time in the size ofG, and returns a queryQ′

whose size is at most exponential in the size ofQ.
Unfolding. Given a UCQQ′ over J , this step computes, by using logic program-
ming technology, an SQL queryQ′′ over the source schemaS, that possibly re-
turns object terms. It can be shown [5, 10] thatQ′′ is such thatans(Q′′,D) =
ans(Q′, 〈∅,S,M〉,D), i.e. unfolding allows to get rid ofM. Moreover, the unfold-
ing procedure does not depend onD, runs in polynomial time in the size ofM, and
returns a queryQ′′, whose size is at most exponential in the size ofQ′.
Evaluation. The evaluation step consists in simply delegating the evaluation ofQ′′ to
the data federation tool managing the data sources. Formally, such a tool returns the set
ans(Q′′,D,), i.e. the set of tuples obtained from the evaluation ofQ′′ overD.

From the above discussion, we have the following:

Theorem 1. Let J = 〈G,S,M〉 be a MASTRO-I data integration system, andD a
database forS. Answering a UCQ overJ with respect toD can be reduced to the
evaluation of an SQL query overD, and isLOGSPACE in the size ofD.

Finally, we remark that we are implicitly assuming that the databaseD for S is
consistent with the data integration systemJ , i.e., semD(J ) is non-empty. Notably,
checking consistency can also be reduced to sending appropriate SQL queries to the
sources [5, 10].

5 Extending the data integration framework

In this section we study whether the data integration setting presented above can be
extended while keeping the same complexity of query answering. In particular, we in-
vestigate possible extensions for all the three components〈G,S,M〉 of the system.
Extensions toDL-LiteA. With regard to the logic used to express the global schemaG,
the results in [6] already imply that it is not possible to go beyondDL-LiteA (at least
by means of the usual DL constructs) and at the same time keep the data complexity
of query answering within LOGSPACE. Here we consider the possibility of removing
the unique name assumption (UNA), i.e., the assumption that, in every intepretation of
a data integration systemJ , both two distinct value constants, and two distinct object
terms denote two different domain elements. Unfortunately, this leads query answering
out of LOGSPACE. This result can be proved by a reduction fromGraph Reachability
to instance checking inDL-LiteF [6], i.e., query answering for a boolean query whose
body is a single instantiated atom, over a DL that is a subset of DL-LiteA.

Theorem 2. LetJ = 〈G,S,M〉 be aMASTRO-I data integration system extended by
removing the UNA, andD a database forS. Answering a UCQ overJ with respect to
D is NLOGSPACE-hard in the size ofD.



Different source schemas.Although MASTRO-I is currently able to deal with rela-
tional sources only, it is not hard to see that all the resultspresented in this paper apply
also if we consider data at the sources structured accordingto a different data model
(e.g. XML). Obviously, depending on the specific data model,we have to resort to a
suitable query language for expressing the source queries appearing in the mapping as-
sertions. To adhere to our framework, the only constraint onthis language is that it is
able to extract tuples of values from the sources, a constraint that is trivially satisfied by
virtually all query languages used in practice.
Extensions to the mapping language.As for the language used to express the mapping
M, we investigate the extension of the mapping language to allow for GLAV assertions,
i.e., assertions that relate CQs over the sources to CQs overthe global schema. Such
assertions are therefore an extension of both GAV and LAV mappings. The result we
present is that, even with LAV mappings only, instance checking and query answering
are no more in LOGSPACE wrt data compexity.

Theorem 3. Let J = 〈G,S,M〉 be a MASTRO-I data integration system extended
with LAV mapping assertions, andD a database forS. Answering a UCQ overJ with
respect toD is NLOGSPACE-hard in the size ofD.

The above result can be proved again by a reduction from GraphReachability to in-
stance checking inDL-LiteF .
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