

UML: Abstraction as a Criterion for Defining Class
Diagrams and Object Diagrams

Ivan Pogarcic1, Miro Francic1 and Vlatka Davidovic1

1 Business Dept, Study of Information Systems, Polytechnic of Rijeka

Trpimirova 2/V, 51000 Rijeka, Croatia
{pogarcic, mfrancic, vdavid}@veleri.hr

Abstract. UML is undisputedly the most efficient and effective tool of
information systems analysis and design. Abstraction as paradigm, represent the
basis of an object-oriented approach to development of information system and
software solutions. No matter what background team members have (i.e.
information technology or problem domain experts), the capability of
abstraction is of crucial importance, especially at the early phase of the system’s
structure identification. Since class and object diagrams specify system’s
structure, indicating how to identify and relate them, they are an issue for
system analysts and designers. This paper examines the following issue: to what
extent abstraction level influences the need for creating object diagrams in
shaping class diagrams and vice versa to what extent concretization at the level
of an object diagrams influences structural decomposition of class diagrams.

Keywords: abstraction, concretization, class diagram, object diagram, UML

1 Introduction

Development of information system is a complex process consisting of different
activities structured in phases which can be undertaken linearly or iterative. Phases
follow life cycle which roughly can be identified as: system requirements elicitation
(analysis phase), designing the system (design phase) and implementation phase [4].

Number of factors influences the accepted approach to development (linear or
iterative) but one of the most relevant for the specific project is how the results of the
previous phase can be used in the next step. Object modelling and design well support
this issue than traditional structure analysis and design.

Because of complexity of today’s information systems due to complex distributed
hardware, different software, more complex networks and comprehensive data bases,
design and development of such systems are very demanding.

Furthermore, information system developing process comprises different activities
which presume engagement of experts with different knowledge related to problem
domain (business) and information technology. Participation of business users of
information system is of crucial importance, especially in early stages of
development. One of the main issues in developing process is communication among
team members. Modelling is a tool for overcoming this issue. Models are main

 I. Pogarcic, M. Francic and V. Davidovic 146

deliverables in analysis and design phase. Understanding reality in a more simplified
way is aim of modelling. Abstraction, the process of neglecting some aspects of
reality not interesting in the context and stress those relevant to the context, is a wide
accepted method in developing conceptual and logical models.

Modelling is a complex process. Real system and model requires precise
undertaken specification of system elements, their adjustment visualization, adequate
construction and detailed documentation. All these activities are executed with
purpose of ensuring complete and clear overview of system’s structure and its
functioning mode.

If we adopt the following goals of modelling: simplified visualization of real world
(problem domain), adjustable specification of system structure and its behaviour,
possibility of making discrete records necessary for individual phases of system
development, adequate documentation of activities and decisions during development
process, ways to improve design quality, reducing errors and avoid ambiguity,
improving communications, separate different concerns in managing complex
systems development, allowing hierarchical modelling, facilitates impact analysis of
requirements and design changes and supports incremental development[3], UML is
today’s best tool for achieving these goals.

For the purpose of this document, only class diagrams and consequently object
diagrams out of thirteen UML diagrams will be taken into account, especially from
the point of view how abstraction influences the class and object diagrams definition.

2 Relational approach vs. OO (object oriented) approach

Technology improvement supported by theoretical results of information science
researches and better user’s education in information technology, imply changes in
putting information system elements together. Rapid changes in business result in
growing users requirements regarding their number and complexity. The way of
handling data and information has significantly changed, too. Development of
accurate information system tailored to fulfil user’s requirement, demand adequate
methodology, tools and technology. For data storing and manipulating them, three
main possibilities are available today: Relational Data Base Management System
(RDBMS), Object-Relational Data Base Management System (ORDBMS) and
Object-Oriented Data Base Management System (OODBMS).

Additionally, but not sufficiently changed the approach to design and development
of information systems. Methodologies in fields of analysis and design changed.
Basic advantage of OO programming in comparison to procedural is a modularity
implying written program modules do not have to change when new object types are
being added. Features of existing programs are retained and if necessary new are
being added. By leaving procedural programming and turning to object-oriented
programming programmers primarily wanted to make these activities more effective
and efficient.

Consequently, changes should have been implemented both in methodology,
technology and tools that would adequately support this approach.

UML: Abstraction as a Criterion for Defining Class Diagrams and Object Diagrams

147

Since UML is declared as language it has syntax and semantic rules. Set of
symbols comprise its notation. However, UML is implementation free and its aim is
to support object oriented analysis and design.

UML notation encompasses important elements of object-oriented systems
(classes, objects, methods etc). UML possesses a special terminology for individual
model parts excluding ambiguity. If we consider UML model as tool its important
parts are: elements, notation, terminology, views, packages and naturally adequate
model documentation that usually presents obstacle for processes of design and
system development.

Formally UML as tool is comprised out of 13 diagram forms (depending upon
UML version) divided in two groups: behavioural diagrams and structural diagrams.
Another language SysML System Modelling Language (SysML) is a new extension
of UML modelling, but it has the same goals as UML and from the OO point of view
SysML follow UML (implementation of inheritance paradigm) [2]. SysML
represents a subset of UML 2.0 with extensions needed to satisfy the requirements of
the UML for Systems Engineering RFP [2]. It comprises: Activity Diagram and
structural diagrams group where Block Definition Diagram and Internal Block
Diagram are being introduced that in lower abstraction level have Parametric Diagram
subordinated while on higher level Requirement Diagram was added.

 Software development with UML is characterized by: use-case orientation,
focussing on basic element’s features, on their behaviour and dynamics of system, on
domain problem concepts and iterative and incremental ability.

System analysis deliverables, among others are set of use cases. Traditional
structure methods use functional decomposition instead of use cases. Exceptions
required additional activities in system analysis and design. In addition, UML support
unique view through system development process and offer better change
management due to iterative and incremental approach. The same model done in
some development phase can be refined in the next phase without the change in the
basic shape.

3 Why abstraction is important?

 What has actually changed with OO approach in design and programming so far?
Primarily, four paradigms were promoted as basis of this approach.

The first paradigm Abstraction is a mechanism for representing reality by
neglecting some details focussing on some other aspects of interest. The essential,
inherent aspects of an entity are a result of abstraction. In system design, this allows
designers focussing on object state and its behaviour [1]. Abstraction allows to
analysts in developing models to define entities without details. Analogy with
mathematical abstraction is more evident in programming while from the
philosophical point of view it is more evident in analysis and design. Although other
OO paradigms: Encapsulation, Inheritance and Polymorphism are important,
abstraction can be observed as starting and the most important paradigm.

Modelling by UML allows creating model in different abstraction level, from the
low to the high level. But, abstraction as paradigm is not inherent characteristic of all

http://www.uml.org/

 I. Pogarcic, M. Francic and V. Davidovic 148

team members. On the contrary, some team members, primarily business users, can
consider it as disadvantage. Because of the mandatory participation of end users in
system development their ability of abstraction is of a great importance. Business
users usually describe their business through exceptions, so designers should have a
high level of abstraction capability to generalize users' requirements. In fact, the issue
is how to compromise business users' and designers' views. As a result could be the
functionally very rich system, covering majority of users' specific requirements, or
pure system if the designers did not identified properly users needs.

It seems that user ability of abstraction is more important then of other team
members because modelling of the system structure is based on the abstraction of
properties of system elements, while system element behaviour demonstrate
concretization of those properties.

Building up the model using UML through different levels of abstraction is
necessary also in implementation phase using some of the OO programming language
(C++, Java, Pearl etc).

4 Abstraction and Class diagrams

Class is a category or group of entities that have similar features and mode of
operation. Class is a kind of classifier whose features are attributes and operations.
Classes reflect system entities and there are relationships among them. When two
classes are in relationship, each of them has specific role in that relationship.

Class Diagrams describe target system by the objects and classes and their
relationships. They reflect static system structure. It provides a wide variety of
usages; from modelling the domain-specific data structure to detailed design of the
target system. Abstraction in class and class diagram definition provides different
possibilities for designers. As an example are abstract classes enabling more design
possibilities but, their usage depends on abstraction capability of a designer.

Being class diagrams a result of the system analysis based on use cases, the
abstraction is indispensable in that phase, too. Regarding this, each exception could
become particular use case resulting in huge number of use cases. So, abstraction can
decrease number of use cases, while concretization increases it.

Class diagram has different semantics in system analysis and system design. In
system analysis phase higher abstraction is allowed and recommended. In system
design phase classes are more detailed described and new attributes and new methods
are added so abstraction level becomes lower. Sense of measure in applying
abstraction becomes common problem for system user and designer.

Abstraction is important both for class definition, their association (responsibility)
and inheritance. Abstract class can not instant object but is important as for generating
classes that will be inherited. Inheritance and abstraction are of great importance in
modelling. However, inheritance causes specific kind of relationship - hierarchy. This
hierarchy kind has obligatory character just in purpose of overtaking class features of
inherited class while implementation of features gives freedom in adjustment.

In syntax of Java program language, inheritance is emphasized with reserved word
"extend" opposite to interface implementation marked as "implements". Interface

UML: Abstraction as a Criterion for Defining Class Diagrams and Object Diagrams

149

improves abstraction and we can imagine it as a complete abstraction class. Interface
ensures form but not realization and it tells us how implementation classes will look
like.

5 Abstraction and Object diagram

Object is an instance of class in a particular point of time[5]. Object diagrams are
instances of class diagrams. Accordingly, class diagrams can initiate numerous object
diagrams While the class diagrams are design phase deliverables, we do not deal with
classes during the system usage, instead we use objects. The question is, why do we
need object diagrams if they completely instance class diagrams?

Object diagrams are useful for exploring “real world” examples of entities and the
relationships between them. Although class diagrams describe reality quite well,
many people find them too abstract - object diagram are better for explaining complex
relationships between classes. We find object diagrams as a tool for describing real
world at a very low abstraction level. In the case the description of the class become
too complicated due to a high number of attributes and operations, object diagrams
are very useful to understand the reality by "learn by example".

If we look at class diagram it is not obviously how classes cooperate between
themselves because objects are those who carry activities and collaboration in a
particular point of time. An object diagram shows the relationship between the
instantiated classes and the defined classes, and the relation between these objects,
from the logical view of the system. These are very useful to explain smaller portions
of the system, when the system class diagram is very complex, and also sometimes
recursive.

Object diagrams are convenient in analyzing and defining specific problems with
specific classes and it can give answers for specific situations: What if class becomes
more complicated? What if the number of attributes is too high? What if methods
become immense? Object diagram is adjustable for explanation of exceptions caused
by objects with specific features.

Notation in object diagram is simpler and includes only objects and relationship
among them. When specific object is being displayed it is necessary to ensure enough
information for its full transparency. UML object diagrams are effectively notational
subsets of UML communication diagrams, although object diagrams are used to
explore structure whereas communication diagrams explore behaviour. It is common
for object diagrams to evolve into communication diagrams simply by adding
messages to the diagram.

6 Conclusions

 Reality-based modelling and visualization (a picture is worth a thousands words)
is extremely helpful in performing analysis and design. UML is probably the one and
only wide-spread modelling tool / language that meet those purposes. Like other
tools, it also has disadvantages and encounters problems in practice. We are likely to

 I. Pogarcic, M. Francic and V. Davidovic 150

expect that these identified problems should soon be solved. SysML is an example of
this.

 Another problem that should be emphasized is the adoption of defined
paradigms and specific tools and languages by designers, and especially by end users
that will depend exclusively on their own aptitude and capability. Abstraction is a
cognitive process that demands intellectual capabilities of an individual. The problem
is that the quality of the project’s output depends upon team members’ personal skills.
For a successful work on the project with UML, the recent literature suggests, among
other things, the following [7]: focussing on artefacts; implementation of various
abstraction levels in building Analysis model, Design Model and Implementation
Model ; choosing of appropriate detail level; identifying of individual modelling style;
focussing on re-usable system elements.

With this paper we tried to underline the abstraction as a paradigm and the
necessity of giving adequate attention to it that, consequently, refers also to other
OOP/OOM paradigms since they rely upon it. Creating use case and class diagrams is
the most critical part of UML modelling. The application of object diagram is
inevitable in describing exceptions. Researches presented in [7] show that class
diagrams vs. object diagrams usage ratio is 9:3.6, what means more then 2.

References

[1] Blaha, M., Rumbaugh, J Object–Oriented Modeling and Design, with UML
(2nd Edition), Prentice Hall, (2004)

[2] Bock. C., "SysML and UML 2.0 Support for Activity Modeling", Journal of
International Council of Systems Engineering, vol. 9 no.2, pp. 160-186
2006.

[3] Booch, G., Rumbaugh, J., Jacobson, I.:Unified Modelling Language User
Guide, Addison-Wesley, 1998

[4] Leszek, A. Maciaszek: Requirement Analysis and System design – Developing
Information Systems with UML, Addison-Wesley, 2001

[5] Miles, R., Hamilton,K.: Learning UML 2.0 , O'Reilly , Media (June 1, 2006)
[6] OMG Unified Modelling Language Specification - UML 2.1.1. Superstructure

Specification
[7] www.magicdraw.com/training

http://www.magicdraw.com/training

