
Temporal Preprocessor:
Towards Temporal Applications Development

© Boris Kostenko

Moscow State University
bkostenko@acm.org

Ph.D. advisor: Sergey D. Kuznetsov

Abstract
Effective querying and managing of temporal
databases represent an unanswered challenge
to the modern research community. In this
paper, we introduce a temporal preprocessor
that can be used to aid in creation of temporal
applications and for testing various methods
and approaches in temporal databases
implementations. We outline our proposal,
current results and directions for further
research and development.

1 Introduction
Most database applications that are widely used in our
everyday life manage time-related data. We can name
nearly any of reservation, schedule, planning,
monitoring and managing applications as an example.
Databases that store time-varying data are called
temporal databases.

During our research in the area of temporal
databases, we decided to create a temporal extension
that would meet the following requirements. First, it
must provide an effective solution for developing
temporal applications implemented over commercial
database management systems (DBMS) with minimum
additional effort from a developer. Second, this solution
must be flexible, so we can easily modify, test and
compare different approaches and methods of temporal
queries implementation with each other.

Temporal databases have been the focus of much
research work and many solutions have been proposed
so far. Most temporal database system prototypes were
based on layered approach, when a special layer or
stratum between temporal user application and ordinary
database management system was established. Such
layer converts temporal queries received from a user
into statements in SQL (or any other) query language
and passes them to the DBMS. After that, the
corresponding result from the database is translated

back into the temporal one and returned to the user. We
also selected layered approach, but we tried to integrate
our layer into a source code of application and/or
database system. Thanks to such integration, one can be
sure that a resulting application is working as effective
as if a developer coded it himself. This integration can
be done by using temporal preprocessor or compiler on
an application source code. We decided to start with the
PHP programming language, because it has clear syntax
and semantics and is powerful enough to manipulate
with arrays. Moreover, it has dynamic declarations, thus
we can create functions and execute them in runtime.

2 Related works
During the last two decades, many researches were
conducted in the temporal databases area of research.
Some of them dealt with design of temporal databases.
Others propose methods of effective indexing,
implementation of join statements and so on. One of the
first temporal query language TQuel and its partial
implementation for the Ingres DBMS was introduced in
[2]. Later many papers introduce temporal query
languages that usually extend SQL query language [3,
6]. However, there were always two approaches to
temporal database management system implementation:
either build it from scratch or create a temporal
middleware. In [7, 8] the second (layered) approach
concepts are discussed in detail. In [1] author gives
direct solutions how to express temporal queries in a
SQL language. However, these “SQL” solutions are not
always good because of many nested selects, joins,
unions and dynamic tables manipulations.

Unlike [2, 3, 6] we do not start with temporal query
language definition, but we provide query functions for
most useful temporal requests, so a developer just needs
to provide a temporal clause in addition to ordinary
SQL query. On the other hand, we have additional
opportunities for particular queries optimizations.
Another distinguishing feature of the proposal is the
tremendous flexibility both for developer who can alter
predefined algorithm any time and for researcher who
can easily add new methods and check them instantly.

A public available working temporal DBMS –
TimeDB [4, 5] is implemented on top of IBM

Proceedings of the Spring Young Researcher’s
Colloquium On Database and Information Systems
SYRCoDIS, Moscow, Russia, 2007

Cloudscape 10 or Oracle 10g as a layer between user
application and underlying DBMS. Thus, it needs
additional resources to keep it alive in compare with
compilation time solution, proposed in this paper.

We do not want to oppose our proposal to the
temporal DBMS as our solution complement to them in
the areas where developers need to create their own
temporal applications over relational DBMS because
there exists no adequate product on a market or a
temporal DBMS cannot be used for any reason.
Moreover our preprocessor can be used with temporal
DBMS to help to reduce errors in a source code (and in
runtime if desired) and allow developers to formulate
query statements clearly in a way they prefer.

3 Architecture and implementation issues
The proposed extension has 3-modules architecture (see
Figure 1). Temporal queries are processed in the
following sequence: query > parser >> parsed query >
optimizer >> script (plan) > code generator >> source
code. Parser receives a query from a user and converts it
to the internal representation format (parsed query).
Next optimizer analyzes parsed query and selects
processing method according to the database tables
definitions. Optimizer generates a script (plan) that
describes how to get temporal query result from the
current DBMS. After that, the code generator takes the
script and produces a source code. The returned source
code is the code that performs the specified temporal
query on top of an existing relational database. This
source code is stored as a function and developer just
needs to replace an initial query execution with the call
of this function. We use placeholders in temporal
queries so each function call can be parametrized
according to the current program state.

Figure 1. Preprocessor architecture

In the introduced architecture, each module

performs single step regardless of other modules and
steps. Thus, we can easily extend, modify or replace
any module until we follow input/output format
conventions. Fox example, we can extend code
generator, and get a temporal processor for another
programming language, including DBMS languages.

Changes to optimizer lead us to different methods of
temporal queries handling as well.

Here we need to note that considerable part of logic
is encoded in “Rules” for optimizer and “Templates”
for code generator. Because we selected PHP as our
first target language and it is possible to dynamically
create a function from its source code and call it after
that then we can perform all needed temporal tasks in
runtime. Thus, we can create a ready to use temporal
database extension for PHP. A developer just needs to
include a library file, provide temporal processor with
table definitions that include field names and their types
(with temporal ones), and call required temporal queries
with temporal processor runtime proxy.

As noted above, many researches of temporal
database extensions started with introduction of a query
language extension and then demonstrated how
different temporal requests could be expressed with this
query language. Unlike them, we chose another
approach. We assume that a developer knows what
information he wants to retrieve from a database.
Actually, he does not even need a database query result.
The main aim of database data retrieval is to populate
some structures or arrays in a program with certain data.
Moreover, it is often more natural for a developer to
formulate his data requirements in natural language than
to translate them into a query language and then
retranslate query execution results back. We also
suggest that optimizations that are more specific are
better than common ones. Therefore, we introduce not
query language but query functions.

To understand better differences between them
consider the next two “queries”: query(“select * from
employees where company_id = 17”)’, and
‘query_with_company_id(“select * from employees”,
17)’. The results of these two calls will be identical
(function names are self-explanatory), but in general
with the second approach we will get more stable and
errorless solution. Moreover we can use next query
‘query_employees_table_with_company_id(17)’ that is
even more specific. In most cases later variants are
better to use, because they are more obvious to
developer, there are more ways of optimizations and
there is less chance of a wrong usage. So a developer
can create such parameterized query functions for often
used queries. In any case one can always use the most
general query function to express his query.

In case of temporal databases, we use several
predefined query functions to formulate statements that
use time and time relations. Thus, we selected most
useful and high-usage queries to create convenient
functions for them. Almost all “single state” requests
can be performed with query_on_time() function, which
limits query to a specified point of time. In order to use
relations and aggregate functions on timeline we need
to add functions like query_following_events() and
query_timeline_aggregates(). To successfully execute
queries with projections and database modifications we
needed a set of functions for time intervals set
operations. These functions provide us with an ability to
fold time intervals and merge them to archive

DBMS

Parser Code generator

Query Parsed query Script (plan)

Source code

Optimizer

Database
metadata

Rules Templates

normalized state of valid-time interval in database if
needed.

There are two components in querying with
functions: one can use only simple query function but
formulate all queries fully, or formulate query only once
and create a query function for it and after that call this
function with actual parameters. But in case of temporal
queries we know how to process temporal columns,
that’s why we provide some predefined query functions,
get less information about particular queries from a
developer, and provide some optimizations.

The proposed temporal preprocessor is responsible
for implicit query functions generation based on user
queries. So a developer can provide more specific
“Rules” and “Templates” and achieve better
performance, or just use standard ones.

4 Results achieved and future work
The research and implementation are not finished yet,
thus we cannot provide performance graphs, and
comparison charts between different methods.
However, current results show that we have already
achieved simplicity of use and flexibility for further
research and experiments. We also noted that temporal
applications development process is speed up, because
less time required formulating correct queries and
testing them.

Parser facilities are limited now and we plan to
extend them in order to parse rather complex temporal
queries. Another goal is implementation of code
generators for more programming languages so we will
have the ability to compare performance issues of
various methods. We also need to add reliable
performance counters and find adequate formula to
estimate and to compare effectiveness of different
approaches.

Further research of how to retrieve information
grouped by timeline fields and how to aggregate them
better is desired as well.

5 Conclusion
In this paper, we introduced a solution for effective and
easy development of temporal applications on top of
existing relational DBMSs. The proposed solution also
provided us with an opportunity to test and compare
different models and approaches in temporal databases
implementation. The achieved results gave us new ideas
and showed possibilities of success in further research
and development.

References
[1] Richard T. Snodgrass. Developing Time-Oriented

Database Applications in SQL. Morgan Kaufmann
Publishers, Inc., San Francisco, July, 1999,
504+xxiii pages.

[2] Richard T. Snodgrass. The Temporal Query
Language TQuel. ACM Transactions on Database
Systems 12(2), June 1987, pp. 247–298.

[3] R.T. Snodgrass, M.H. Boehlen, C.S. Jensen, and A.
Steiner. Adding Valid Time to SQL/Temporal.
Change proposal, ANSI X3H2-96-501r2, ISO/IEC
JTC 1/SC 21/WG 3 DBL-MAD-146r2, November
1996.

[4] TimeDB - A Bitemporal Relational DBMS. Web
site, May 2005.
http://timeconsult.com/Software/Software.html

[5] TimeDB - A Bitemporal Relational DBMS.
TimeDB release version 2.2. (Zip-archive, Java and
JDBC), May 2005.
http://timeconsult.com/Software/TimeDB 2.2.zip

[6] David Toman. Point-Based Temporal Extension of
Temporal SQL. In Proceedings of the 5th
International Conference on Deductive and Object-
Oriented Databases, pages 103-121, 1997.

[7] Kristian Torp, Christian S. Jensen, and Michael
Böhlen. Layered Temporal DBMS: Concepts and
Techniques. In Database Systems for Advanced
Applications '97, Proceedings of the Fifth
International Conference on Database Systems for
Advanced Applications (DASFAA), pages 371-380,
1997.

[8] K. Torp, C. S. Jensen, and R. T. Snodgrass.
Stratum Approaches to Temporal DBMS
Implementation. In Proceedings of IDEAS, Cardiff,
Wales, pages 4-13, 1998.

