
Data Warehouse Evolution Framework

© Darja Solodovnikova

Department of Computer Science, University of Latvia
darja.solodovnikova@lu.lv

Abstract
In this paper a data warehouse framework that
supports data warehouse evolution is
presented. The framework is able to handle not
only changes in data sources, but also direct
changes in a data warehouse schema. In the
framework the data warehouse versions are
supported in the development environment as
well as in reports in the user environment.

1 Introduction
Data warehouses integrate information from various

distributed and autonomous data sources that can
change in the course of time. Therefore a data
warehouse has to be adaptable to any changes that can
happen in underlying data sources. Besides business
requirements often change at the client level. That can
cause changes to the data warehouse model. All these
changes in data sources or business requirements can
invalidate existing schemata and data extraction,
transformation and loading (ETL) processes of the data
warehouse. This is why these changes need to be
handled properly. In many cases the existing data
warehouse can be adapted to changes.

Simple adaptation of the data warehouse schema can
cause a loss of history when some previously available
data structures are deleted. To solve problems of history
losses, it is necessary to keep data warehouse versions.
Schema versioning means that a change in the data
warehouse schema creates a new schema version that is
assigned a timestamp or other user-defined identifier.

In this paper a data warehouse framework is
discussed. The framework supports data warehouse
schema evolution that can happen for different reasons,
including cases when schemas of data sources are
changed. The supported changes are insertion, deletion
and renaming of a source relation, insertion, deletion,
renaming and change of a type of a source relation
attribute. The proposed framework not only automates
the evolution of a data warehouse schema or creation of
a new version, but also allows to adapt ETL processes
and existing reports on a data warehouse schema.

The rest of this paper is organized as follows. In
Section 2 the motivating example that demonstrates the

necessity to adapt data warehouse is given. In Section 3
the related work is presented. In Section 4 the proposed
data warehouse evolution framework that supports
changes in data sources and propagates them to the data
warehouse is discussed. We conclude with directions
for future work in Section 5.

2 Motivating Example
Data warehouse schema evolves frequently when

business requirements are changed or extended or a
schema is adapted after changes in data sources.

As an example, let us consider a data warehouse that
stores information about students’ activities in a
learning management system (LMS). This data
warehouse contained one fact table with measures: hits
and time, which records the duration of students’
activity. These measures could be analyzed by the used
course, a tool in this course and time, when the activity
occurred. The activity of all students was summarized.

During the operation of the aforementioned data
warehouse the users complained that the information
available in it is insufficient because the existing
scheme did not satisfy the desirable granularity.
Besides, it was decided to store also data about the
activities of lecturers of courses. Therefore, the new
dimensions that describe the particular user and his or
her role in a course were created.

To solve the evolution problems, the administrator
had to create a new data warehouse schema and ETL
processes. It required much time and resources, but
finally the second data warehouse version was created.
But still there was an open question how to automate
the data warehouse adaptation and how users can work
with two data warehouse versions, because traditional
reporting tools and query languages do not support the
concurrent work with many schema versions.

3 Related work
In the literature there are various solutions for the

data warehouse evolution problems, which are the data
warehouse adaptation after the changes in source data
and schemata as well as business requirements. In [1]
the primitive evolution operations that occur over the
data warehouse schema are defined. The necessary
adaptation activities of the data warehouse schema and
instances are formally specified for each operation. This
paper only considers changes raised by alterations of
business requirements.

Proceedings of the Spring Young Researcher's Colloquium On
Database and Information Systems SYRCoDIS, Moscow, Russia,
2007

In [15] the existing techniques for schema evolution
are integrated in the new quality-oriented framework.
The author proposes schema evolution operations (e.g.
attribute insertion or deletion) and describes quality
factors that they affect.

In [10] the evolution operations that change the data
warehouse schema are considered. For each operation,
the formal semantics of the changes for star and
snowflake schemata are given.

The above mentioned papers do not address the
problems of the data warehouse adaptation after
changes in data sources. One of the approaches for
solving these problems is adaptation of the data
warehouse schema and ETL processes. In [11] the
author proposes the solution, which is based on the
transformation of schemata of data sources by
transformation primitives. When the data source schema
changes the information in the transformation
specification is used to adapt the data warehouse
schema and ETL processes.

In [19] the authors consider mapping adaptation
after the changes in data source schemata. Here
mapping specifies how data instances of one schema
correspond to data instances of another. The authors
propose the algorithm that detects mappings affected by
changes in data sources and generates rewritings that
are consistent with the semantics of the mapped
schemata.

In the paper [12] both as view approach for data
integration is proposed. The basis of this approach is
schema transformation primitives, which specify how
the global schema is obtained from local schemata.
From these transformations it is also possible to infer,
how local schemata can be obtained from the global
schema. The evolution of local and global schemata is
also discussed. For schema adaptation, similarly as in
the previously mentioned papers, the information about
transformations is used.

In many papers [3,6,16] a data warehouse is defined
as a set of materialized views over data sources. These
papers study the problems of how to rewrite a view
definition and adapt view extent after changes in source
data and schemata. In [16] the authors study reasons for
schema changes and possible data warehouse adaptation
issues for dynamic sources. The framework of the
evolvable view environment is presented, which adapts
view definition and extent after changes in data sources.

Several authors [7,8,20] propose the data warehouse
schema versioning approach to solve the problems of
schema evolution. In [8] the authors propose to store
augmented schemata together with schema versions.
When schema changes occur, firstly the new schema
version is produced and then, for the previous versions,
augmented schemata are created and populated with
data.

In [7] the metadata model that supports schema
versioning for data warehouses is introduced. Metadata
management solutions in a multiversion data warehouse
are also proposed in [20], where one of the discussed
issues is metadata support for detection of changes in
sources and propagation of them to the designated data

warehouse version. Issues related to queries to a
multiversion data warehouse are considered in [14].

In [17] the definition of a multidimensional schema
that supports schema versioning is given. This
definition is very similar to the one given in [2], the
difference is that the first one supports versioning. The
version evolution operations that result in versioning of
the data warehouse schema are formalized.

Structural and content changes in dimensions of a
data warehouse are discussed in [9]. A
multidimensional model and its’ instances are defined.
Dimension structural and instance update operators are
formally specified and their effect is studied over
materialized views over dimension levels.

In [13] a temporal multidimensional data model is
proposed, which allows to track history of dimension
updates. In the model elements of dimension schemas
and/or instances are assigned the timestamp when they
were the part of a dimension. The query language
TOLAP is also presented that supports queries over the
proposed data model both over data and metadata.

In [4,5] a method to support data and structure
versions of dimensions is proposed. The method allows
tracking history and comparing data, using temporal
modes of presentation that is data mapping into the
particular structure version. The authors define the
conceptual model based on the multiversion fact table.

The above mentioned papers consider only one kind
of evolution problems, for example, changes in a
schema of a data warehouse raised by evolving business
requirements, adaptation of a data warehouse after
changes in data sources or data warehouse versioning
and querying multiversion data warehouse. In our
approach we propose the framework that is able to solve
all these kinds of evolution problems.

4 Data Warehouse Evolution Framework
To support the data warehouse adaptation after

changes in source schemata and versioning, we propose
the data warehouse framework depicted in Figure 1.

4.1 Components of the Framework

The framework is composed of the development
environment and user environment. In the development
environment the data warehouse metadata repository
and other components, which will be described later,
are located and ETL processes and change processing is
conducted. In the user environment reports on one or
several data warehouse versions are defined and
executed.

The basic element of the development environment
is the adaptation component that processes changes in
relations and attributes of source schemata, identifies
the potential changes in a data warehouse and possible
new versions, adapts a data warehouse schema or
creates a new version according to the choice of the
data warehouse administrator, creates the necessary
version metadata and adapts ETL processes. To realize
this functionality, the adaptation component uses data
from the metadata repository.

Fig. 1. Data Warehouse Evolution Framework

The metadata management tool that incorporates the

graphical user interface client tool is used by
administrator or developer to design a data warehouse
schema and specify ETL processes. The metadata
management tool maintains the static part of the
mapping repository of the metadata repository, where
the metadata of the last data warehouse version and
mappings, which define the logics of ETL processes,
are stored. In addition the mapping repository includes
also three another parts. In the adaptation part the
adaptation component stores information about
dependencies of data warehouse elements and source
elements used for a data warehouse adaptation. The
version control mechanism defines rules for necessity
and logics of creation of a new data warehouse version.
The version metadata stores information about data
warehouse versions, which is necessary for definition
and execution of reports, including links between
different versions. The detailed description of the
metadata repository as well as the operation of the
adaptation component with adaptation options for each
change and presentation of the implemented prototype
of the adaptation framework is found in the paper [18].

The metadata repository includes also the data
warehouse change repository, which accumulates the
potential changes of a data warehouse schema and
version creation options. The administrator chooses the
most suitable options that are applied. Special agents
are incorporated into data sources. These agents track
changes in source schemata and accumulate them in the
source change repository.

ETL processes are generated by the metadata
deployment tool that uses the metadata from the static
part of the mapping repository. The data warehouse
loader executes generated ETL scripts. The data

transportation procedure transfers data warehouse data
from the development environment into the user
environment and version metadata into the reporting
metadata repository.

In addition to the data warehouse, in the user
environment there is also the reporting metadata
repository that contains the version metadata, which are
transferred from the mapping repository of the
development environment, and the reporting metadata,
which are created by a data warehouse developer by the
reports definition tool and are used by the reporting tool
for generation of reports. Data warehouse users work
with the reporting tool that allows to define ad-hoc
queries, display reports as tables and graphs and analyze
data using hierarchies.

Using links between data warehouse versions in the
metadata repository, the reporting tool can run queries
on multiple data warehouse schema versions or one
version. In case of many versions, a user can choose
which version will be used to display results of a query.

In the user environment an access mechanism is also
implemented. It is the metadata that defines which
reports can be used by the particular user. These
metadata are used by the reporting tool. The access
mechanism is set by the developer by the reports
definition tool.

4.2 Framework Operation

The proposed framework is able to handle source
changes that can influence a data warehouse as well as
other changes of a data warehouse schema. If the data
warehouse schema is changed by the administrator then
all changes are conducted by the metadata management
tool, which allows to create a new data warehouse
version or alter an old version. The metadata of ETL
processes in the mapping repository are adapted
according to a new data warehouse version.

The source changes are processed before the
execution of ETL processes in the development
environments. Initially the adaptation component
analyzes the changes in the source change repository
and detects changes that affect a data warehouse
schema and ETL processes. The adaptation component
processes these changes using data from the adaptation
part of the mapping repository and the version control
mechanism and, for each change, generates solutions
that create a new data warehouse version or adapt the
data warehouse schema and ETL processes. The
administrator is informed about all changes and their
adaptation and version options. The administrator
chooses the most suitable solutions that must be
implemented according to the business requirements.

If the administrator decides to create a new data
warehouse version, the adaptation component changes
the version metadata in the mapping repository to
reflect the new data warehouse version. If the
administrator chooses to conduct adaptation without
creation of a new version, the adaptation component
does not need to change the version metadata.

The adaptation component adjusts the metadata of
the data source, data warehouse and specification of

ETL processes in the adaptation part of the mapping
repository according to the chosen solutions. The
adaptation component also creates a new data
warehouse version or adapts the existing data
warehouse directly in the database. The adaptation
component generates the metadata deployment script,
which is executed by the metadata deployment tool that
generates the executable ETL process script. The ETL
process is executed by the data warehouse loader.

When a data warehouse schema is changed, the
reporting and version metadata, which describe a data
warehouse, in the reporting metadata repository in the
user environment become inadequate to a changed
schema or new schema version and reports on a data
warehouse can not run any more. Therefore, during the
data transfer from the development environment into
the user environment the data transportation procedure
updates also the reporting and version metadata to
reflect the new data warehouse schema.

5 Conclusions and Future Work
We proposed the data warehouse evolution

framework. This framework was developed by
expanding the data warehouse adaptation framework
[18], which was previously designed and implemented.
The adaptation framework could automatically detect
changes in schemata of data sources and adapt a data
warehouse schema and ETL processes, according to the
administrator’s decision.

Unlike the adaptation framework, the evolution
framework is able to handle not only changes in data
sources, but also direct changes in a data warehouse
schema. The second important difference is the fact that
in the evolution framework the data warehouse versions
are supported in the development environment as well
as in reports in the user environment.

The proposed framework differs from other
solutions of data warehouse evolution problems
presented in the literature by the fact that it supports
many evolution problems at once, not just one problem.

Further it is planned to transform the developed
prototype of the adaptation framework to conform to
the aforementioned evolution framework.

References
[1] M. Blaschka. FIESTA: A Framework for Schema

Evolution in Multidimensional Databases, PhD
thesis, Technische Universitat Munchen, Germany
(2000)

[2] M. Blaschka, C. Sapia, G. Hofling. On Schema
Evolution in Multidimensional Databases. In LNCS,
Vol. 1676, Springer-Verlag (1999) 153–164

[3] Z. Bellahsene. Schema Evolution in Data
Warehouses. In Knowledge and Information
Systems, 4, Springer-Verlag, (2002) 283-304

[4] M. Body, M. Miquel, Y. Bedard, A. Tchounikine.
A Multidimensional and Multiversion Structure for
OLAP Applications. In Proc. of the 5th ACM Intl.
Workshop DOLAP, McLean, Virginia (2002) 1-6

[5] M. Body, M. Miquel, Y. Bedard, A. Tchounikine.
Handling Evolutions in Multidimensional
Structures. In Proc. of the 19th Intl. Conference on
Data Engineering, Bangalore, India (2003)

[6] S. Chen, X. Zhang, E.A. Rundensteiner. A
Compensation-based Approach for Materialized
View Maintenance in Distributed Environments. In
Computer Science Technical Report, Worcester
Polytechnic Institute, Worcester, MA, USA (2004)

[7] J. Eder, C. Koncilia, T. Morzy. The COMET
Metamodel for Temporal Data Warehouses. In
LNCS, Vol. 2348, Springer-Verlag, (2002) 83–99

[8] M. Golfarelli, J. Lechtenbörger, S. Rizzi, G.
Vossen. Schema Versioning in Data Warehouses.
In LNCS, Vol. 3289, (2004) 415–428

[9] C.A. Hurtado, A. O. Mendelzon, A.A. Vaisman.
Maintaining Data Cubes under Dimension Updates.
In Proc. of the 15th Intl. Conference on Data
Engineering, Washington, DC (1999) 346-357

[10] C.E. Kaas, T.B. Pedersen, B.D. Rasmussen.
Schema Evolution for Stars and Snowflakes. In
Proc. of the 6th Intl. Conference ICEIS, Porto,
Portugal (2004) 425-433

[11] A. Marotta. Data Warehouse Design and
Maintenance through Schema Transformations,
Master thesis, Universidad de la República
Uruguay, (2000).

[12] P. McBrien, A. Poulovassilis. Data Integration by
Bi-Directional Schema Transformation Rules. In
Proc. of the 19th Intl. Conference ICDE,
Bangalore, India (2003) 227-238

[13] A.O. Mendelzon, A.A. Vaisman. Temporal Queries
in OLAP. In Proc. of the 26th Intl. Conference
VLDB, Cairo (2000) 242-253

[14] T. Morzy, R. Wrembel. On Querying Versions of
Multiversion Data Warehouse. In Proc. of the 7th
ACM Intl. Workshop DOLAP, Washington, DC,
USA (2004) 92–101

[15] C. Quix. Repository Support for Data Warehouse
Evolution. In Proc. of the Intl. Workshop DMDW,
Heidelberg, Germany (1999)

[16] E.A. Rundensteiner, A. Koeller, X. Zhang.
Maintaining Data Warehouses over Changing
Information Sources. In Communications of the
ACM, Vol. 43, New York, NY, USA (2000) 57-62

[17] M.K. Shahzad, J.A. Nasir, M.A. Pasha. CEV-DW:
Creation and Evolution of Versions in Data
Warehouse. In Asian Journal of Information
Technology, 4(10) (2005) 910-917

[18] D. Solodovnikova, L. Niedrite. Data Warehouse
Adaptation after the Changes in Source Schemata.
In Proc. of the 7th Intl. Baltic Conference on
Databases and Information Systems, Vilnius,
Lithuania (2006) 52-63

[19] A.A. Vaisman, A.O. Mendelzon, W. Ruaro, S.G.
Cymerman. Supporting Dimension Updates in an
OLAP Server. In LNCS, Vol. 2348, Springer-
Verlag (2002) 67-82

[20] R. Wrembel, B. Bebel. Metadata Management in a
Multiversion Data Warehouse. In LNCS, Vol. 3761,
Springer-Verlag (2005) 1347-1364

