
Model Transformation for Service-Oriented Web
Applications Development

Valeria de Castro, Juan Manuel Vara, Esperanza Marcos

Kybele Research Group
Rey Juan Carlos University

Tulipán S/N, 28933, Móstoles, Madrid, Spain
{valeria.decastro,juanmanuel.vara, esperanza.marcos}@urjc.es

Abstract. In recent years, innovation in technologies such as web services,
business process automation, etc., have motivated a new paradigm in the appli-
cation development field to appear, known as Service-Oriented Computing.
This new paradigm, which utilizes services as fundamental elements for devel-
oping applications, has encouraged the evolution of web applications and the
way they are developed. Attending to this evolution we have already presented
a model driven method for service-oriented web applications development. The
method defines new Platform Independent Models (PIMs) and mappings be-
tween them. The PIMs proposed have been grouped in a UML profile based on
the behavioral modeling elements of UML 2.0. In this work, we focus on the
mapping between those PIMs and we define the model to model transforma-
tions needed for service-oriented web applications development. We first spec-
ify the transformation rules with natural language to later formalize them with
graph transformation rules.

Keywords. Service-Oriented Web Applications, MDA, UML, Model Trans-
formations, Graph Transformation Rules.

1 Introduction

A new paradigm in the field of application development, known as Service-Oriented
Computing (SOC) [12] has encouraged the evolution of web applications and the way
they are developed. Thus, while first web applications were created as a way to make
available information to users, and they were built basically by linking static and
dynamic pages; currently, most of the web applications are understood as networks of
applications owned and managed by many business partners providing several ser-
vices satisfying the needs of consumers that pay for them. Services usually range
from quite simple ones, like buying a book or renting a car to the ones which involve
complex processes such as obtaining sales ratings or participating in a public auction.
For that reason, in the Web Engineering field, there is a need for methodologies for
development based on current technologies such as web services, business process
execution, etc.

Although the design and implementation of web services can be apparently easy,
the implementation of business processes using web services is not so effortless.
Languages for the implementation of business processes have many limitations when
they are used in the early stages of the development process [19]. This occurs mainly
because the transformation from high-level business models generally carried out by
business analysts; to a composition language that implements those business proc-
esses with web services is not a trivial issue.

Model Driven Architecture (MDA) [11] provides a conceptual structure where the
diagrams used by business managers and analysts, as well as the various diagrams
used by software developers can be fit. Moreover MDA allows organizing them in
such a way that the requirements specified in one diagram can be traced through the
more detailed diagrams derived from the former. Hence, MDA is a useful tool to
anyone interested in aligning business processes with IT systems [8].

This paper deals with the MDA approach for the development of service-oriented
web applications1. In a previous work we proposed a model-driven method which
starts from a high level business model and allows obtaining a service composition
model that makes easy the mapping to a specific web service technology [5]. To ob-
tain this service composition model, which is represented through a UML activity
model, the method defines: a Computational Independent Model (CIM) for business
modeling, called value model [7]; four Platform Independent Models (PIMs) for the
behavioral modeling of service-oriented web application; and mappings rules be-
tween them.

In this work we present the metamodels of the PIMs defined by the method, which
includes new elements for service-oriented web applications modeling that extend the
behavioral modeling elements of UML 2.0 [10]; and we focus on the mapping rules
between these PIMs, which allows obtaining a service composition model that makes
easy the mapping to a specific web service technology, starting form a high level
UML use cases model in which the services required by the web consumers are rep-
resented.

Given that the method is based on a continuous development process in which, ac-
cording to the MDA principles [9], the models act as the prime actors, mappings
between models play a very important role. Each step of this process consists basi-
cally in the generation of an output model starting from one or more input models on
which the mapping rules are applied. In this work, we follow a graph transformation
approach to effectively realize the mappings between the PIMs proposed by the
method. The term Graph Transformation is used to refer to a special kind of rule-
based transformations that are typically represented diagrammatically [14]. So, given
that the mappings were defined in a rule-based manner, it seems appropriate to use a
graph transformation approach to later formalize them. A similar approach for object-
relational database development was presented in a previous work [18].

The rest of the paper is structured as follows: section 2 presents the UML profile
that includes the new elements for service-oriented web applications modeling at PIM
level; section 3 describes the model to model transformations between the proposed

1 This research is partially granted by the GOLD projects financed by the Ministry of Science

and Technology of Spain (Ref. TIN2005-00010).

PIMs; finally, section 4 concludes the paper by underlying the main contributions and
the future works.

2 UML profile for service-oriented web applications modeling

As mentioned before, the method proposed for service-oriented web applications
development defines four new PIMs for modeling the behavioral aspect of web appli-
cations: the Business Services model, the Extended Use Cases model, the Services
Delivery Process model and the Services Composition model. Each one is defined
through a metamodel that extends the UML metamodel [10]. Figure 1 shows the
dependences of the new models proposed (shadowed in the figure) with respect to the
UML packages for behavioral modeling. As shown in the figure, the models proposed
in our method are represented through UML behavioral diagrams: while the business
services model and the extended use cases model are represented through use cases
diagrams, the services delivery process model and services composition model are
represented through activity diagrams.

Classes

Common
Behaviors

ActivitiesUse Cases

<<metamodel>>
Business Services

<<metamodel>>
Extended Use

Cases

<<metamodel>>
Services

Delivery Process

<<metamodel>>
Services

Composition
Part of UML packages that

support behavioral modeling

Fig. 1. Dependencies of new models regarding the UML packages for behavioral modeling

These new PIMs defined by the method include new modeling elements which
have been grouped in a UML profile called MIDAS/BM (MIDAS Behavior Model-
ing). According to UML 2.0, a UML profile is a package that contains modeling
elements that have been customized for a specific purpose or domain, using extension
mechanisms, such as stereotypes, tagged definitions and constraints [10]. Our profile
is defined over the behavioral modeling elements of UML 2.0 and it describes new
elements for modeling the behavioral aspect of service-oriented web applications.
Figure 2 shows the profile, including the newly proposed stereotypes that are applied
over the existing metaclasses of the UML metamodel. The new stereotypes defined
are described in Appendix A at the end of this document.

Next, we are going to present the metamodel of the new PIMs in which these ele-
ments are represented, to later describe the mapping rules between them. For the sake
of space, we explain the metamodels by describing only the new elements defined,

the associations between them and the specification of the respective restrictions over
these metamodels defined using the OCL standard. A complete example of how these
models should be used can be found in [5].

Fig. 2. The MIDAS/BM profile

Business Services Metamodel. The business service model is an extension to the
UML use cases model in which only the actors and the business services that the
system will provide them are represented. We define a business service as a complex
functionality offered by the system, which satisfies a specific need of the consumer.
The consumers of the system are represented in this model as actors. The business
services are represented in this model as use cases stereotyped with <<BusService>>
(see stereotype BusinessService in Appendix A).

Figure 3 shows the business services metamodel in which the new modeling ele-
ment is shadowed. In the business services model each business service is associated
to the actor needing the business service.

Classifier
(form Kernel)

Classifier

UseCase Actor

BehavioredClassifier
(form BasicBehaviors)

0..1
*+ownedUseCase

{subsets ownedMember}

*

*
+subject

+useCase

<<metamodel>>
Business Services

BusinessService

 context Business Services inv Model_Contents:
 self.classes -> forAll(c |c.oclIsKindOf(UseCase)
 and c.stereotype.name
 -> includes("BusinessService")))

Fig. 3. Business services metamodel

Extended Use Cases Metamodel. This metamodel also extends the elements of the
UML package for use cases modeling. In the extended use cases model we propose to
represent the basic or composite use services. We define a use service as a functional-
ity required by the system to carry out a business service. Thus, it represents a portion
of the functionality of a business service. A basic use service is a basic unit of behav-
ior of the web application, for instance ‘registering as a costumer’. A composite use
service is an aggregation of either basic or composite use services. The composite and
basic use services are represented in this model as a special kind of UseCase stereo-
typed with <<CS>> and <<BS>> (see stereotypes CompositeUseService and Ba-
sicUseService in Appendix A).

Figure 4 shows the extended use cases metamodel in which the new modeling ele-
ments are shadowed. Note that UseService is an abstract class therefore it is not rep-
resented in the extended use cases model.

Classifier
(form Kernel)

Classifier

UseCase

Actor

BehavioredClassifier
(form BasicBehaviors)

0..1
*+ownedUseCase

{subsets ownedMember}

*

*+subject

+useCase

Extend Include

DirectedRelationship
(from Kernel)

Constraint
(form Kernel)

0..1
0..1

1

* *

1 1

* *

1

RedefinableElement
(from Kernel)

ExtensionPoint

1

1..*{ordered}
+extensionLocation

1*

+extension
{subsets source}

+extend
{subsets ownedMember}

+includingCase
{subsets source}

+include
{subsets ownedMember}

+extendedCase
{subsets target}

+addition
{subsets
target}

+condition
{subsets ownedMember}

+extensionPoint

{subsets feature,
subsets
ownedMember}

+useCase

BusinessService
(from BusinessService)

UseService

1..*

<<metamodel>>
Extended Use Cases

Composite
UseService

Basic
UseService

1..*

context Extended Use Cases inv Model_Contents:
 self.classes->forAll(c |
 (c.oclIsKindOf(Use Case) and
 c.stereotype.name -> includes("CompositeUseService")) or
 (c.oclIsKindOf(Use Case) and
 c.stereotype.name -> includes("BasicUseService")) or
 (c.oclIsKindOf(Dependency) and
 c.stereotype.name -> includes("include")) or
 (c.oclIsKindOf(Dependency) and
 c.stereotype.name -> includes("extend")))

Fig. 4. Extended use cases metamodel

Services Delivery Process Metamodel. This metamodel extends the elements of the
UML activity package. In the service delivery process model we propose to represent
the activities that must be carried out for delivering a business service. The activities
of this model are called service activities. The service activities are obtained trans-
forming the basic use services identified in the previous model into activities of a

process. So, the services activities represent a behavior that is part of the execution
flow of a business service. A service activity is represented as an ActivityNode
stereotyped with <<SAc>> (see stereotype ServiceActivity in Appendix A).

The ServiceActivity element is shadowed in Figure 5 which shows the services de-
livery process metamodel.

ActivityNode

Activity
(form BasicBehaviors)

0..1 *
+Node

{subsets ownedElement}

Activity

RedefinableElement
(from Kernel)

ServiceActivity

+activity
{subsets owner}

+redefinedElement
{redefinesredefinedElement}*

ActivityEdge

*+redefinedElement
{redefinesredefinedElement}

ControlFlow ObjectFlow

*

1

1

*
+outgoing

+incoming

+target

+source

ControlNode

InitialNode FinalNode ForkNode

<<metamodel>>
Services Delivery Process

ActivityFinalNode

JoinNode

context Services Delivery Process inv Model_Contents:
 self.classes->forAll(c |
 (c.oclIsKindOf(ActivityNode) and
 c.stereotype.name -> includes("ServiceActivity")))

Fig. 5. Service delivery process metamodel

Services Composition Metamodel. This metamodel also extends the elements of the
UML activity package. In this model we represent the execution flow of a business
service too, but in a more detailed way by including the concepts: activity operation
and business collaborator.

We define an activity operation as an action that is supported by the service activ-
ity. It is represented in this model as a special kind of ExecutableNodes stereotyped
with <<AOp>> (see ActivityOperation in Appendix A). Additionally, the service
composition model proposes to identify those activity operations that can be imple-
mented as Web services, using a special kind of ExecutableNode stereotyped with
<<WS>> (see stereotype WebService in Appendix A).

A business collaborator is defined as an organizational unit that carries out some
activity operation which is involved in the services offered by the web application
(i.e.: as a Web service). The business collaborators are represented in this model as
ActivityPartitions, which can be indicated as a swim-lane in the activity diagram. The
ActivityOperations and WebServices are distributed in ActivityPartitions according
to the business collaborator that carries out the operation. A business collaborator can

be external to the system, in which case the ActivityPartition is labelled with the
keyword «external».

Figure 6 shows the service composition metamodel, in which the new modeling
elements are shadowed.

ActivityOperation

1..*

WebService

ServiceActivity
(from ServiceDeliveryProcess)

-IsDimension : Boolean
-IsExternal : Boolean

ActivityPartition0..1

*

*

*

*

*

<<metamodel>>
Services Composition

ActivityNode

Activity
(form BasicBehaviors)

0..1

*

+Node
{subsets ownedElement}

Activity RedefinableElement
(from Kernel)

+activity
{subsets owner}

+redefinedElement
{redefinesredefinedElement}

*

ActivityEdge

*+redefinedElement
{redefinesredefinedElement}

ControlFlow ObjectFlow

*

1

1

*
+outgoing

+incoming

+target

+source

ControlNode

InitialNode FinalNode ForkNode

ActivityFinalNode

JoinNode

ObjectNodeExecutableNode

context Services Composition inv Contents_Model:
self.classes->forAll(c |
 (c.oclIsKindOf(ExecutableNode) and
 c.stereotype.name -> includes("ActivityOperation")) or
 (c.oclIsKindOf(ExecutableNode) and
 c.stereotype.name -> includes("WebService")))

Fig. 6. Service composition metamodel

3 Model Transformation for service-oriented web applications
development

As mentioned before, the proposed method for service-oriented web applications
development is based on the definition of models at different abstraction levels, the
basis of the model-driven development paradigm [2], [13]. In the previous section we
have defined the metamodels (consequently the models) that must be considered in
our method, thus, according to MDA principles, the only issue that must be faced in
order to complete the proposal is the definition of the mapping between these models.
This process stands for model transformation [11], [14].

3.1 Mapping Rules

Figure 7 shows the modeling process proposed for service-oriented web applications
development that includes the models defined in the previous subsections. As stated
earlier, in this work we focus on the mapping rules between PIMs, remarked in Fig-
ure 7. At PIM level, the process starts by building the business services model and
includes two intermediate models to finally obtain the services composition model.

Value Model

Business Services Model

Extended Use Cases Model

Services Composition Model

CIM: Business Modeling

PIM: Behavioral Modeling
Business Services

Business Collaborator

Composite and Basic Use Services

Basic Use Services and their relationships

Service Process

Services Delivery Process Model

Fig. 7. Modeling process for service-oriented web applications development

In relation to the way mappings should be defined in [11] it is stated that “the map-
ping description may be in natural language, an algorithm in an action language, or a
model in a mapping language”. In this case, and as a first approach, we have decided
to describe the transformation rules between models in natural language for later
expressing them as graph transformation rules. These transformations rules are col-
lected in Table 1. According to [11], as some of the mapping rules of the transforma-
tion process require design decisions, it is not possible to automate them completely.
As a result, we have made the distinction between the mapping rules that can be
Completely (C) or Partially (P) automated.

Table1. Mapping rules between PIMs in the method for service-oriented web applications
development

From To Mapping Rules Grade of
Autom.

1. Every Service found in the business service model will
be split into one or more CompositeUseService (CS)
and/or BasicUseServices (BS).

P Business
Services
Model

Extended
Use
Cases
Model 2. Every CS generated will be split into one or more BS. P

3. For every BS corresponding to a same BusinessService,
there will be a ServiceActivity (SAct) in the service deliv-
ery process model that describe this BusinessService.

C
Extended
Use
Cases
Model

Service
Delivery
Process
Model

4. Every extend association identified in the extended use
cases model will be represented in the service delivery
process model by a ForkNode. The SAct corresponding
to the source BS of the extend association must be previ-

C

ous to the SAct corresponding to the target BS of the
extend association.

4.1 If the extend association has only one source BS,
the fork will present the SAct as an alternative to an-
other flow with no SAct. Later, both flows will meet.

C

4.2 If the extend association has several sources BS,
the fork will present the different SAct as mutual al-
ternatives to another flow with no SAct. Later, all
these flows will meet.

C

5. Whenever a include association is found in the ex-
tended use cases model, the SAct corresponding to the
source BS of the include association must be subsequent
to the SAct corresponding to the target BS of the include
association.

C

5.1 If the include association has several targets, the
designer must decide the appropriate sequence for the
different SAct corresponding to the target BS (that
will be obviously previous to the SAct corresponding
to the source BS).

P

6. Every SAct found in the service delivery process model
will be split into one or more ActivityOperation (ActOp). P

7. The control flow between ActOps is the same as the
flow between their relative SActs. C

Services
Delivery
Process
Model

Service
Composi-
tion
Model

7.1 In the case of a SAct containing two or more Ac-
tOps, the designer has to choose the particular control
flow between the ActOps.

P

3.2 Graph Transformation

To observe the MDA principles, the model to model transformation of our method
for service composition modeling development must be automated, at least in some
extent. To achieve this objective we have decided to use a graph transformation ap-
proach [1], [4], [16]. Using a graph transformation approach results in two main ad-
vantages: on the one hand, graph grammars are based on a solid mathematical theory
and therefore they present a number of attractive theoretical properties that allows
formalizing model transformations; on the other hand, the use of graph grammars for
mappings definition could be shown as a direct step towards to implementation since
projects like Attributed Graph Grammar System (AGG)[15], VIATRA[3] or
ATOM3[6] will provide us with the facilities to automate model to model transforma-
tions defined as graph transformations. Moreover, as previously mentioned, the term
Graph Transformation is used to refer to a particular category of rule-based transfor-
mations that are typically represented diagrammatically. So, given that we have al-
ready formally defined the mappings in a set of rules, it seems appropriate to translate
these rules to graph transformations rules. Finally, from a pure mathematical point of
view, we can think on UML-like models as graphs. A graph has nodes and arcs, while
an UML model have classes and associations between those classes; this way the fact
that models are well represented as graphs is particularly appealing to shorten the

distance between modelers and model transformation developers, a big problem
around model transformation. Rule-based transformations with a visual notation may
close the semantic gap between the user’s perspective of the UML and the implemen-
tation of transformations.

To express model transformations by graph grammars, a set of graph rules must
be defined. These rules follow the structure LHS:= RHS (Left Hand Side:= Right
Hand Side). Both, the LHS and the RHS are graphs: the LHS is the graph to match
while the RHS is the replacement graph. If a match is found on the source model,
then it is replaced by the RHS in the target model. In this work we have used the
approach already applied in previous works like [18] to define the graph rules that
collects the transformation rules proposed in Table 1.

According to these guidelines, we have defined the graph rules for the model
transformations needed in our proposal for service-oriented web applications devel-
opment that were susceptible of being expressed by graph grammars.

From now on we present these graph rules next to the respective definition rules in
natural language. Figure 8 describes the mapping rules corresponding to transforma-
tions from the business services model to the extended use cases model. Figure 9 to
12 describe the mapping rules corresponding to transformations from the extended
use cases model to the service delivery process model. Finally, Figure 13 describes
the mapping rules corresponding to transformations from the service delivery process
model to the service composition model. For the sake of space we have had to reduce
the size of these pictures, in some cases they could result difficult to read. In order to
improve their clarity, they can be acceded in http://kybele.es/models/MTsowa.htm.

LHS
- Business Services Model -

RHS
- eXtended Use Cases Model -

:=

???:BSm::Actor

name: String= ???

1
???:BSm::Actor

name: String= ???

1

???: BSm::BusinessService

name: String= ???

2
???: BSm::BusinessService

name: String= ???

2

match (2).name.???:XUCm::CS

name:String=match(2).name.???

2’
match (2).name.???:XUCm::CS

name:String=match(2).name.???

2’

match (2).name.???:XUCm::BS

name:String=match(2).name.???

2’
match (2).name.???:XUCm::BS

name:String=match(2).name.???

2’

1..*

1..*

2. Every CS generated will be split into one or more BSs.

1. Every Service found in the business service model will be split into one or more Composite and/or BasicUseServices (CS and BS).

2. Every CS generated will be split into one or more BSs.

1. Every Service found in the business service model will be split into one or more Composite and/or BasicUseServices (CS and BS).

match (1).name:XUCm::Actor

name:String=match(1).name

1’
match (1).name:XUCm::Actor

name:String=match(1).name

1’

1..*

useCase su
bj

ec
t

Fig. 8. BusinessServices and Actors in the business services model mapped to CompositeUse-
Services, BasicUseServices and actors in the extended use cases model

???: XUCm::BS

name: String= ???

1
???: XUCm::BS

name: String= ???

1

???: XUSm::BS

name: String= ???

3
???: XUSm::BS

name: String= ???

3

XUSm::Extend
2

XUSm::Extend
2

extension

extended Case

LHS
- eXtended Use Cases Model -

:=

source

target

RHS
- Services Delivery Process Model -

outgoing

incoming

match(2).name: SDPm::SAct
1’

match(2).name: SDPm::SAct
1’

match(1).name: SDPm::SAct
3’

match(1).name: SDPm::SAct
3’

SPDm::ControlFlow
4

SPDm::ControlFlow
4

1

1
SDPm::ForkNode 5SDPm::ForkNode 5

SPDm::ControlFlow
8

SPDm::ControlFlow
8

SPDm::ControlFlow
6

SPDm::ControlFlow
6

source
incomingtarget

outgoing

target
outgoing

source
incoming

4.1 If the extend association has only one source BS, the fork will present the SAct as an alternative to another flow with no SAct. Later,
both flows will meet.

4. Every extend association identified in the extended use cases model will be represented in the service delivery process model by a For-
kNode. The SAct corresponding to the source BS () of the extend association must be previous to the SAct corresponding to the target BS
of the extend association ().

4.1 If the extend association has only one source BS, the fork will present the SAct as an alternative to another flow with no SAct. Later,
both flows will meet.

4. Every extend association identified in the extended use cases model will be represented in the service delivery process model by a For-
kNode. The SAct corresponding to the source BS () of the extend association must be previous to the SAct corresponding to the target BS
of the extend association ().

SDPm::JoinNode 7SDPm::JoinNode 7
SPDm::ControlFlow

9
SPDm::ControlFlow

9

source
incoming

target
outgoing

Fig. 9. Extend associations in the extended use cases model mapped to the service delivery
process model.

???: XUCm::BS

name: String= ???

1
???: XUCm::BS

name: String= ???

1

???: XUSm::BS

name: String= ???

3
???: XUSm::BS

name: String= ???

3

XUSm::Extend
2

XUSm::Extend
2

extension

extended Case

LHS
- eXtended Use Cases Model -

:=

source

target

RHS
- Services Delivery Process Model -

outgoing

incoming

match(2).name: SDPm::SAct
1’

match(2).name: SDPm::SAct
1’

match(3).name: SDPm::SAct
3’

match(3).name: SDPm::SAct
3’

SPDm::ControlFlow
6

SPDm::ControlFlow
6

1

1
SDPm::ForkNode 7SDPm::ForkNode 7

SPDm::ControlFlow
12

SPDm::ControlFlow
12

SPDm::ControlFlow
8

SPDm::ControlFlow
8

source
incomingtarget

outgoing

target
outgoing

source
incoming

???: XUSm::BS

name: String= ???

5
???: XUSm::BS

name: String= ???

5

XUSm::Extend
4

XUSm::Extend
4

extension

1

1

extended Case

match(5).name: SDPm::SAct
5’

match(5).name: SDPm::SAct
5’

SPDm::ControlFlow
10

SPDm::ControlFlow
10

source

incoming

target
outgoing

source
incoming

4.2 If the extend association has several sources BS, the fork will present the different SAct as mutual alternatives to another flow with no SAct. Later, all these flows will meet.

4. Every extend association identified in the extended use cases model will be represented in the service delivery process model by a ForkNode. The SAct corresponding to the source BS () of the extend association
must be previous to the SAct corresponding to the target BS of the extend association (y).

4.2 If the extend association has several sources BS, the fork will present the different SAct as mutual alternatives to another flow with no SAct. Later, all these flows will meet.

4. Every extend association identified in the extended use cases model will be represented in the service delivery process model by a ForkNode. The SAct corresponding to the source BS () of the extend association
must be previous to the SAct corresponding to the target BS of the extend association (y).

SPDm::JoinNode
9

SPDm::JoinNode
9

source
incoming

SPDm::ControlFlow
13

SPDm::ControlFlow
13

SPDm::ControlFlow
11

SPDm::ControlFlow
11

target

outgoing

target
outgoing

Fig. 10. Extend associations (with several sources BasicUseServices) in the extended use cases
model mapped to the services delivery process model.

???: XUCm::BS

name: String= ???

1
???: XUCm::BS

name: String= ???

1

???: XUSm::BS

name: String= ???

3
???: XUSm::BS

name: String= ???

3

XUSm::Include
2

XUSm::Include
2

addition

including Case

LHS
- eXtended Use Cases Model -

:=

source

target

RHS
- Services Delivery Process Model -

5. Whenever a include association is found in the extended use cases model, the
ServiceActivity (SAct) corresponding to the source BS of the include association must
be subsequent to the SAct corresponding to the target BS of the include association.

5. Whenever a include association is found in the extended use cases model, the
ServiceActivity (SAct) corresponding to the source BS of the include association must
be subsequent to the SAct corresponding to the target BS of the include association.

outgoing

incoming

match(2).name: SDPm::SAct
3’

match(2).name: SDPm::SAct
3’

match(1).name: SDPm::SAct
1’

match(1).name: SDPm::SAct
1’

SPDm::ControlFlow
4

SPDm::ControlFlow
4

Fig. 11. Include associations in the extended use cases model mapped to the services delivery
process model

???: XUCm::BS

name: String= ???

1
???: XUCm::BS

name: String= ???

1
???: XUCm::BS

name: String= ???

3
???: XUCm::BS

name: String= ???

3
XUCm:: Include

2
XUCm:: Include

2
addition

including Case

LHS
- eXtended Use Cases Model -

:=

source

target

XUCm:: Include
3

XUCm:: Include
3 ???: XUCm::BS

name: String= ???

4
???: XUCm::BS

name: String= ???

4

target

source

addition

source

target

target

source

XOR

5.1 If the include association has several targets, the designer must decide the appropriate sequence for the different SAct corresponding to the target BS (that will be obviously previous to the
SAct corresponding to the source BS).
5.1 If the include association has several targets, the designer must decide the appropriate sequence for the different SAct corresponding to the target BS (that will be obviously previous to the
SAct corresponding to the source BS).

including Case

RHS
- Services Delivery Process Model -

RHS
- Services Delivery Process Model -

match(2).name: SDPm::SAct
3’

match(2).name: SDPm::SAct
3’

SPDm::ControlFlow
5

SPDm::ControlFlow
5

match(1).name: SDPm::SAct
4’

match(1).name: SDPm::SAct
4’

match(2).name: SDPm::SAct
4’

match(2).name: SDPm::SAct
4’

SPDm::ControlFlow
5

SPDm::ControlFlow
5

match(1).name: SDPm::SAct
3’

match(1).name: SDPm::SAct
3’

SPDm::ControlFlow
6

SPDm::ControlFlow
6

match(1).name: SDPm::SAct
1’

match(1).name: SDPm::SAct
1’

match(1).name: SDPm::SAct
1’

match(1).name: SDPm::SAct
1’

SPDm::ControlFlow
6

SPDm::ControlFlow
6

Fig. 12. Include associations (with several target BasicUseServices) in the extended use cases
model mapped to the services delivery process model.

SCm::ControlFlow
3’

SCm::ControlFlow
3’

LHS
- Services Delivery Process Model -

:=

source

target

RHS
- Services Composition Model -

outgoing

incoming

1

1

???: SDPm::Sact

name: String= ???

1
???: SDPm::Sact

name: String= ???

1

SDPm::ControlFlow
3

SDPm::ControlFlow
3

1

???: SDPm::Sact

name: String= ???

2
???: SDPm::Sact

name: String= ???

2

source

target

outgoing

incoming

1

1

1

match(1).name: SCM:: SAct

1’

match(1).name: SCM:: SAct

1’

match(1).name: SCM:: SAct

2’

match(1).name: SCM:: SAct

2’

match(1).name.???: SCm::ActOp

name: String= match(1).name.???

1’

SCm::ControlFlow
4

match(1).name.???: SCm::ActOp

name: String= match(1).name.???

1’

source

target

outgoing

incoming

1

0..1

0..1

0..1

match(1).name.???: SCm::ActOp

name: String= match(1).name.???

1’
match(1).name.???: SCm::ActOp

name: String= match(1).name.???

1’

SCm::ControlFlow
4

SCm::ControlFlow
4

match(1).name.???: SCm::ActOp

name: String= match(1).name.???

1’
match(1).name.???: SCm::ActOp

name: String= match(1).name.???

1’

source

target

outgoing

incoming

1

0..1

0..1

0..1

match(2).name.???: SCm::ActOp

name: String= match(2).name.???

2’

SCm::ControlFlow
5

match(2).name.???: SCm::ActOp

name: String= match(2).name.???

2’

source

target

outgoing

incoming

1

0..1

0..1

0..1

match(2).name.???: SCm::ActOp

name: String= match(2).name.???

2’
match(2).name.???: SCm::ActOp

name: String= match(2).name.???

2’

SCm::ControlFlow
5

SCm::ControlFlow
5

match(2).name.???: SCm::ActOp

name: String= match(2).name.???

2’
match(2).name.???: SCm::ActOp

name: String= match(2).name.???

2’

source

target

outgoing

incoming

1

0..1

0..1

0..1

7.1 In the case of a SAct containing two or more ActOps, the designer has to choose the particular control flow between the ActOps.

7. The control flow between ActOps is the same as the flow between their relative SActs.

6. Every SAct found in the service delivery process model will be split into one or more ActivityOperation (ActOp).

7.1 In the case of a SAct containing two or more ActOps, the designer has to choose the particular control flow between the ActOps.

7. The control flow between ActOps is the same as the flow between their relative SActs.

6. Every SAct found in the service delivery process model will be split into one or more ActivityOperation (ActOp).

Fig. 13. ServiceActivities in the services delivery process model mapped to the services com-
position model.

4 Conclusions and Future Works

In this work we have presented the model to model transformations needed to com-
plete an MDA approach for service-oriented web applications development. This
way, we have firstly described the metamodels for the PIMs considered by the
method. They provide with new elements for service-oriented web applications mod-
eling and extend the behavioral modeling elements of UML 2.0. Next we have de-
fined the mapping rules between these PIMs following a graph transformation ap-
proach. As a first approach to model transformations from the proposal for service-
oriented web application development, we have firstly defined the transformation
rules in a declarative manner for later formalize them with graph rules in order to
automate them using some of the existing facilities to automate graph transforma-
tions. The mapping rules defined in this work allows obtaining a service composition
model that can be easily translate to a specific web service technology, starting form a
high level use cases model in which the services required by the web consumers were
represented.

This work serves as a clear example of the value of model transformations in Soft-
ware development: the model to model transformations presented in this work com-
plete the definition of our process for service-oriented web applications development,
a contrasted and published method that founds in model transformations the piece
that remained to become a completely feasible methodology.

At the present time we are working in the integration of the method described in
this work in a CASE tool which is now under development in our research group and

which its early functionalities have already been presented in previous works [17].
Besides, the open issue of making automatic the graph transformations by using exist-
ing technologies like ATOM3 is been tackled.

References

1. Baresi, L., Heckel, R.: Tutorial Introduction to Graph Transformation: A Software Engi-
neering Perspective. In Corradini, A., Ehrig, H., Kreowski, H., Rozenberg, G. (eds.): Pro-
ceedings of the First international Conference on Graph Transformation. Lecture Notes in
Computer Science, Vol. 2505. Springer-Verlag, (2002) 402-429.

2. Bézivin, J.: In search of a Basic Principle for Model Driven Engineering, Novatica/Upgrade
Vol. 5, N° 2 (2004) 21-24.

3. G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza and D. Varro, VIATRA — Visual
Automated Transformations for Formal Verification and Validation of UML Models, in:
Proc. of 17th IEEE International Conference on Automated Software Engineering (ASE'02),
IEEE Computer Society, Los Alamitos, CA, USA, 2002, pp. 267-285.

4. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: Bettin, J.,
Emde Boas, G., Agrawal, A., Willink, E., Bezivin, J. (eds): Second Workshop on Genera-
tive Techniques in the context of Model Driven Architecture (2003).

5. De Castro, V., Marcos, E., López-Sanz M.: A Model Driven Method for Service Composi-
tion Modeling: A Case Study. Int. Journal of Web Engineering and Technology. 2006 - Vol.
2, No.4 pp. 335 - 353.

6. J. De Lara, H. Vangheluwe and M. Alfonseca, Meta-Modelling and Graph Grammars for
Multi-Paradigm Modelling in AToM3, Software and Systems Modelling, Vol 3(3),
Springer-Verlag. August 2004, pp.: 194-209.

7. Gordijn, J., Akkermans, J.M.: Value based requirements engineering: exploring innovative
e-commerce idea. Requirements Engineering Journal Vol. 8, Nº 2 (2003) 114 -134.

8. Harmon, P.: The OMG's Model Driven Architecture and BPM. Newsletter of Business
Process Trends (May 2004). Accessible in: http://www.bptrends.com/publications.cfm.

9. Kleppe, A., Warmer, J., Bast, W.: MDA Explained, the Model Driven Architecture: Practice
and Promise. Addison Wesley (2003).

10. OMG. UML Superstructure 2.0. OMG Adopted Specification ptc/03-08-02 (2002). Acces-
sible in: http://www.uml.org/.

11. OMG. MDA Guide V1.0.1. Miller, J., Mukerji, J. (eds.) Document Nº omg/2003-06-01
(2001). Accessible in: http://www.omg.org/cgi-bin/doc?omg/03-06-01.

12. Papazoglou, M.P., Georgakopoulos, D.: Serviced-Oriented Computing. Communications of
ACM Vol. 46, Nº 10 (2003) 25-28.

13. Selic, B.: The pragmatics of Model-Driven development. IEEE Software Vol. 20, Nº 5
(2003) 19-25.

14. Sendall, S., Kozaczynski, W.: Model Transformation–the Heart and Soul of Model-Driven
Software Development, IEEE Software archive Vol. 20, Nº 5 (2003) 42-45.

15. Taentzer, G.: AGG: A Tool environment for Algebraic Graph Transformation. In: Nagl, M.,
Schürr, A., Münch, M. (eds.): Applications of Graph Transformations with Industrial Rele-
vance. Lecture Notes in Computer Science, Vol. 1779. Springer-Verlag, (2000) 481-488.

16. Tratt, L.: Model transformations and tool integration. Software and Systems Modeling, Vol.
4, Nº 2 (2005), 112-122.

17. Vara, J.M., De Castro, V. Marcos, E.: WSDL automatic generation from UML models in a
MDA framework. International Journal of Web Services Practices Vol. 1 (2005) 1-12.

18. Vara, J. M., Vela, B., Cavero, J. M., y Marcos, E. Model Transformation for Obtect-
Relational Database development. ACM Symposium on Applied Computing 2007 (SAC
2007). Seul (Korea), March, 2007

19. Verner, L.: BPM: The Promise and the Challenge. Queue of ACM Vol. 2, Nº 4 (2004) 82-
91.

Appendix A: Stereotypes of MIDAS/BM profile

This appendix includes all the stereotypes defined in the MIDAS/BM profile. It de-
fines the new modeling elements which extend the existing metaclasses of the UML
metamodel. For each modeling element we describe UML metaclass extended, se-
mantics and notation.

Business Services Model
“BusinessService”
Extend UML metaclass “useCase”
Semantics Represent a complex functionality, offered by the system, which satisfies a

specific need of a consumer.
Notation <<BusService>>
Extended Use Cases Model
“CompositeUseService”
Extend UML metaclass “useCase”
Semantics Represent a functionality that is required to carry out a business service, which

is composed of other basic or composite use services.
Notation <<CS>>
“BasicUseService”
Extend UML metaclass “useCase”
Semantics Represent a functionality that is required to carry out a business service
Notation <<BS>>
Services Delivery Process Model
“ServiceActivity”
Extend UML metaclass “ActivityNode”
Semantics Represent a behavior that is part of the execution flow of a business service.
Notation <<SAc>>
Services Composition Model
“ActivityOperation”
Extend UML metaclass “ExecutableNode”
Semantics Represent an action that is supported by a service activity.
Notation <<AOp>>
“WebService”
Extend UML metaclass “ExecutableNode”
Semantics Represent an action that is supported by a service activity which can be im-

plemented by means of a web service.
Notation <<WS>>

