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Abstract. We present a practice-oriented, i.e. fast and robust, estima-
tor for strong signal-dependent noise in medical low-dose X-ray images.
Structure estimation by median filtering has shown to be superior to
linear binomial filtering. Falsifications due to remaining structure in the
estimated noise image are significantly reduced by iterative outlier re-
moval.

1 Introduction

Medical X-ray image sequences as applied, e.g., in angiography exhibit severe
signal-dependent noise. This is founded on low X-ray doses used for radiation
protection reasons. Noise reduction as well as contrast enhancement methods can
be significantly improved by consideration of the signal-dependent noise level.
However, in noise estimation several intricacies arise.

First of all, the application requires real-time processing while sophisticated
noise estimators exhibit high computing time (complexity). Also, there is the
problem of structure diversity. Noise estimation implies signal estimation (object
structures). However, clinical sequences contain large regions of low contrast
and smooth transitions (e.g. organs) as well as fine structures of high contrast
(e.g. catheters, vascular trees). Finally, existing noise models are not universally
applicable for all observed X-ray images.

Existing noise models are based on the Poisson distribution as noise in low-
dose X-ray images is dominated by statistical variability of the X-ray quanta
and, thus, by additive Poisson-distributed quanta noise. However, all too often
such distribution cannot be observed in medical sequences.

Flat-panel detectors might consist of multiple detector arrays exhibiting sig-
nificantly differing properties (e.g. sensitivity) and, hence, require corrective pre-
processing. Moreover, device-specific logarithmic mappings of digital X-ray im-
ages with the purpose to establish linear dependency of gray-values from the
thickness of imaged objects are applied. These mappings invert the monotony of
signal-dependent noise curves. Even worse, mapping parameters not matching
the detector or camera type can totally degrade the noise curve. As concluding
example, preprocessing by Wiener filtering leads to a sharp bend in noise curves
that cannot be described by the known models.
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2 State-of-the-Art

State-of-the-art noise models for low-dose X-ray images are based on the assump-
tion of the data being dominated by additive Poisson-distributed quanta noise.
In Poisson-distributed data, mean g (i.e. the expected uncorrupted signal inten-
sity s(z,y)) equals variance 6. Thus, noise standard deviation o = /g increases
with the square root of the expected signal strength. Most often, and leading to
a differing model, the exponential attenuation of X-rays passing through mat-
ter is compensated by logarithmic mapping. Hereby, linear dependency of image
intensity and traversed object thickness is established. At the same time, loga-
rithmic mapping fundamentally changes the noise characteristic. The resulting
noise standard deviation is monotonically decreasing over large signal ranges and
can be modeled by an exponential function. However, both models are device-
specific and preprocessing might yield observed noise characteristics that are not
adequately described by these models.

There are a multitude of noise estimation methods [1]. Many of these are not
suited for real-time X-ray image processing, because of the huge amount, of data,
the complexity of the method, or because they are not suited for signal-dependent
noise. Examples are methods based on wavelet transformation or Maximum Like-
lihood estimation [2, 3]. Noise estimators for real-time applications are mostly
based on signal estimation by low-pass filtering. The high-pass portion, i.e. the
data filtered out, is interpreted as noise and analyzed to yield the noise estima-
tion [1, 4]. Naturally, the resulting noise estimation can be considerably falsified
by structure, as edges contain significant high-frequency components.

3 Methods

In the context of real-time noise estimation, three major questions arise: What
are the noise properties? Which filter is suited to approximate the signal? Finally,
how can the influence of signal on the estimated noise image be further reduced?

3.1 Noise Model

The physical process underlying noise in low-dose X-ray images is Poisson-
distributed quanta noise. For a — in practice fulfilled — ”sufficiently large” number
of quanta contributing per pixel (about 20), the discrete distribution can be ap-
proximated by the continuous normal (Gaussian) distribution with same mean
and variance. Our measurements of X-rayed brass wedges using varying pre-
processing steps verified that the observed signal-dependent noise can be de-
scribed fairly well by additive zero-mean normal-distributed noise 5 with signal-
dependent standard deviation o, (s), i.e.

g(z,y) = s(z,y) +n(s(z,y)) (1)

pdf(n;#) = \/ﬂ~10,7(s) P (_; <‘7771ZS)> ) @)

with signal s and the observed gray-valued image g.
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Table 1. Noise estimation in homogeneous images using 3 x 3 standard filters

Filter as. /o O /o0 €ne %]
Median 0.4078 0.9720 2.85
Binomial  0.3750 0.8004 19.96

3.2 Signal Estimation Filter

With estimated signal s, the estimated noise component at location (z,y) is
given by n.{x,y) = g(x,y) —se(x,y). For real-time signal estimation in very noisy
images, 3 x 3 median and (linear) binomial filters h are taken into account [1]. Tn
homogeneous signals s(z,y) = sq corrupted by noise o, linear filtering s, = hxg

yields an estimated noise image 1, with standard deviation 0727& according to:

o = | M- @6 A+ (1 hoo)? | -b 3)

The performance of median filtering has been analyzed by experiments.

For both, median and binomial filtering, Table 1 shows the noise levels in
se and 7. as well ag the relative error €,, = |0, — g¢|/d0 of the resulting noise
estimation. Regarding s.. noise reduction performance of the median filter is
only slightly below the binomial filter. However, most remarkably, noise in 7,
reflects og by far better than in case of the binomial filter. Furthermore, median
filtering is superior in structure preservation and, thus, in limiting the influence
of signal structure on 7.

3.3 Intra-Frame Noise Estimation
The proposed method is organized in five steps:

1. Signal estimation s.(x,y) by 3 x 3 median filtering and creation of the cor-
responding noise image 1. (x,y) = g(z,y) — se(z,y)

2. Subdivision of the dynamic range of the signal in intervals S; of equal size
3. Estimation of noise o, (i) in the intervals S(7) as standard deviation of all
noise values 7. (x, y) whose corresponding signal values s.(z,y) are in S;

4. Iterative outlier removal
5. Interpolation with consideration of the statistical basis

The quality of the initial noise estimation in S(7)
oy —1/2
oy, (i) = E {(Nl- - E{Ni})z} with (4)

N = {nten) | sen) € 5.} 5)

is improved by iterative outlier removal: In the calculation of the noise standard
deviation oy, (¢) for an interval S(7), absolute noise values above three times the
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standard deviation are with high probability caused by high-frequency compo-
nents originating from structure and not from noise. Thus, these outliers are
removed from N;(t) iteratively and the standard deviation is updated from the
remaining values in N;(t + 1):

Ni(t+1) = { ne<x,y>\ ne(@,5) € Nolt) A [no(a,9)] < 300 (0 } ©)

The noise estimations oy, (i) for intervals S; are mapped to a signal-dependent
estimation oy, (s) by interpolation of o, (i) of those intervals, where a ”sufli-
ciently high”number (> 100) of pixel values have contributed to the standard
deviation. Clinical X-ray images most often contain smooth transitions. Hence,
normally most intervals are considered in the interpolation for the number of
intervals (e.g. 128) and image data used by our groups.

3.4 Incremental Inter-Frame Noise Estimation

For applications with very restrictive real-time requirements, the computing time
for noise estimation can be controlled adaptively by incremental inter-frame noise
estimation. Founded on the expression ¢?(X) = E(X?) — E(X)?, the basic idea
is to incrementally improve the estimation by additional consideration of some
pixels of each new frame in a sequence. Number and location of the pixels is
arbitrary, however, locations should differ from image to image in such way that
all image coordinates have the same contribution in the long run. Incremental
adding can be applied as long as the imaging parameters are constant and, hence,
frames exhibit equivalent noise characteristics.

4 Results

Signal-dependent noise in low-dose X-ray images is described well by additive
zero-mean (zaussian noise with signal-dependent standard deviation. The maxi-
mum absolute difference of normal and Poisson distributions of equal mean and
variance is solely 0.010 units (normed to signal values: 0.10%) for 10 quanta per
pixel and 0.005 units (0.02%) for 20 quanta per pixel. The measured noise curves
oy, (8) are quasi-continuous, but not necessarily monotonic.

The precision of the noise estimation has been evaluated using uniform, ar-
tificial, and clinical test images corrupted by noise with known characteristic.
The clinical image showing a vascular tree has been acquired with comparatively
high dose and, thus, contains low noise. This was further reduced by nonlinear
diffusion filtering prior to evaluation.

On all test data, signal estimation by median filtering clearly outperformed
estimation based on binomial filtering. Tn the absence of image structure, the
relative error of the estimated noise was about 2.85% for median and 19.96%
for binomial filtering (Tab. 1). The presence of artificial structure falsified the
noise estimation and yielded relative errors of 52.18% (median) and 81.69% (bi-
nomial). Tn the presented method, these errors were significantly reduced, in
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Fig. 1. Estimated noise histograms for binomial filtering of clinical image. IDEAL CASE:
1-D histograms for constant s. are Gaussian-distributed. T.ErFT: All pixels contribute.
Structure produces errors with predominantly negative/positive sign for small/large s.
(MSE: 8.96). RIGHT: Only 37.16% of pixels with lowest entries (< 1% max. value) in
edge image (Prewitt) contribute. Strong disturbances due to structure remain (MSE:
7.54). PROPOSED METHOD: The disturbances are largely removed (MSE: 3.34). (For
better visibility the data is normed to 1 for each s. and the display clipped to 0.05.)
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particular by structure iteration, to about 0.05% (median) and 17.38% (bino-
mial), respectively. For the clinical image, relative estimation errors were about
2.67% and 18.91%, respectively. State-of-the-art gradient-based methods [1] did
not yield comparable reduction of the influence of structure for the clinical test
image (see Figure 1 and mean squared errors of normed data therein).

5 Discussion

The presented method is utmost robust in several aspects. Most prominent are its
universality and suppression of object structures. The method adapts to the noise
characteristics and is suited for exposures and fluoroscopic sequences, likewise.
Moreover, typical falsifications in state-of-the-art noise estimators due to high-
frequency components of structure are significantly reduced by iterative outlier
removal. Finally, it has shown that signal estimation using median filtering yields
good results for images corrupted by severe noise (e.g. fluoroscopic images).
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