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Abstract. This work presents the creation of a common shape model
of the proximal femur and the use of this common shape model for the
automatic segmentation of healthy femora. The method to build up a
common shape model is described and the approach of automatic seg-
mentation of CT datasets will be explained. Further the resulting shape
model and the use of the model in the segmentation pipeline in order to
automatically segment 15 datasets is discussed.

1 Introduction

The presented work is part of a broader project to develop and investigate meth-
ods for automated segmentation of the healthy femur in CT-data as well as in
x-ray images as a prerequisite for automated positioning of regions of interest
for detailed bone analysis.

Even though there has been done some work on segmenting the pelvis and
the femur for surgical planning and simulation [e.g. 1, 2, 3], there is few work
to find about statistical modelling of the proximal femur and the further use of
such a model within a level set based segmentation pipeline.

Therefore, as a first step we aimed to build up a statistical three-dimensional
shape model of the proximal femur to serve for automated segmentation of 3D
CT-data. This paper will describe the generated shape model and present first
results in using this model for automated level set hased segmentation of CT-
data.

2 State of review

For the creation of 3D statistical shape models different approaches have been
introduced: Tn [4] Rueckert et al. describe the usage of deformation fields to rep-
resent shape. Moreover, a number of other approaches to incorporate prior shape
knowledge into the segmentation process have been developed [5-10]. Geomet-
ric deformable models, also known as geodesic snakes or level set snakes have
been developed by Osher and Sethian [11] and have been introduced in the field
of image analysis by Caselles and Malladi [13,12]. Tn [10] Leventon extended
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Fig. 1. Left shape model (dark) and shape variation with -1.5 Std. in 1. principal
component (light). Middle: shape model. Right: shape model (dark) and shape variation
with 1.5 Std. in 1. principal component (light)

Caselles’s geodesic active contours by incorporating prior shape information into
the segmentation process. The segmenting-surface evolves according to the image
gradient and a maximum a-posteriori (MAP) estimate of the shape and pose pa-
rameters of the statistical shape model generated by using principal component
analysis.

3 Contributions/Benefits

Using an automatic hierarchic registration approach to initialize the segmenta-
tion process and the shape model to guide the segmentation process with level
sets gives us the possibility to fully automatically segment the proximal part of
the femur in CT-scans.

An important contribution is the possibility to automate the process of seg-
mentation and to make the results reproducible. The automatic approach guar-
antees that all images are segmented the same way with reproducible results.
This means an improvement in the segmentation process and the segmentation
quality, since reproduction is not possible in the manual and semi automatic
approach because the result here always is influenced by the segmenting expert.

A further benefit of the automatic segmentation approach is, that it is far
less time consuming than the semi-automatic approaches such as region growing
in combination with essential manual correction.

4 Methods

The first aim of this work was the creation of a common shape model of the
proximal femur. In order to create such a shape model, 13 data sets had to be
segmented semi-automatically or manually. Out of these segmented images a
common shape model could be calculated:

1. rigid alignment of the distance maps of the segmented images onto an atlas
image

2. non-rigid alignment of distance maps of labels to atlas label image using
demons algorithm [14]

3. Perform PCA on deformation fields, calculated in step 2
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Fig. 2. Left: an example for a CT dataset of a proximal Femur with poor quality (slice
thickness: 5mm). Right: The result of the automated segmentation of this dataset.

Different instances of shape can be generated by applying the deformation fields
resulting from the PCA calculation on the atlas label. Using this shape model
in combination with level set segmentation, CT images of the proximal femur
were automatically segmented. As an instrument of segmentation the updated
and improved version of the segmentation pipeline which was introduced in [15,
16] in order to automatically segment MRI images of the endocardium could be
used here. The procedure is as follows:
1. Rigid alignment of the individual image to an atlas image
2. Non rigid alignment of the image to be segmented and the atlas image using
demons algorithm
3. Warping atlas label set with deformation field from non rigid registration
4. Rigid alignment of warped label and atlas label to get initial shape parame-
ters
5. Perform PCA decomposition of the resulting deformation field (point 3) to
get initial shape parameters
6. Level set segmentation using MAP approach and statistical shape model

Using a shape model relying on 13 manually or semi-automatically segmented
datasets, 15 datasets were automatically segmented. Out of these 15 datasets five
already had been used to build the shape model. Further the 15 datasets were
of different slice-thickness (between 0.625 mm and 5 mm).

Tn order to evaluate the results of the segmentation, the Similarity Index
and the Mean Distance of the resulting segmentation images of the automatic
segmentation and the manually slightly corrected final results were calculated.

5 Results

Using the approach described in the method section, a valid common shape
model could be created (Fig 1). The first principal component specifies the vari-
ation in size. The second and the third principal components specify the variation
in the trochanter major and the trochanter minor. The other main components
indicate other small variations. Within the first six principal components of the
PCA 92% of the shape variations are covered.

The described approach of automatic segmentation has been successfully
applied and provided good results for all cases (see Table 1). The evaluation of
the segmentation, compared the automatically segmented result and the final,
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Table 1. detailed list of the segmentation results with Similarity Index and Mean
Distance for all segmented datasets

datasetNo included /new Sl-Thickness (mm) SI ~ MD

17 new 5 0.903 1.04
22 new 0.625 0.879 1.61
23 new 2.5 0.872 1.64
25 new 1.25 0.8751.71
27 new 1.25 0.967 0.38
29 new 5 0.975 0.35
30 new 2.5 0.958 0.41
31 included 2.5 0.931 0.59
32 included 2.5 0.915 0.98
34 included 1.25 0.931 0.79
35 new 1.25 0.896 1.5

41 included 1.25 0.911 0.81
42 included 1.25 0.912 1.34
43 new 2.5 0.964 0.52
48 new 2.5 0.962 0.45

manually corrected result, showed that the similarity index averages at 0.9251
with a sigma of 0.043 for the ten totally new datasets.

For the five datasets (31, 31, 34, 41, 42) which were already included into the
used shape model the average result of the similarity index was 0.92 with a sigma
of 0.01. For the datasets not included the mean distance averages at 0.961 voxel
(sigma = 0.59) while the average for the five already included old datasets is 0.902
voxel (sigma = 0.28). This means only a slight difference between the already
included and the new datasets. The detailed results can be viewed in Table 1. An
interesting result of the antomatic segmentation is that the automatic approach
produces satisfying results for datasets with all different slice-thicknesses and the
segmentation of datasets of high quality does not show better results compared
to datasets with poor quality. The left part of Fig. 2 shows such a CT image of
poor quality. On the right side of Fig. 2 the result of the automatic segmentation
of this image can be seen.

6 Discussion

This preliminary study has shown that the femora can be automatically seg-
mented using the segmentation pipeline developed at IBIA. After the successful
creation of a valid common-shape-model this model could effectively be imple-
mented in the segmentation pipeline as initial shape for the level set segmenta-
tion. The results of the segmentation of new datasets showed satisfying results
using the pipeline and the integrated common shape model.

The main advantage of automatic segmentation can be seen in the time used
to segment a dataset. Due to the possibility of automating the segmentation
process, in contrast to semi-automatic approaches as region growing, only little
interaction of the user is needed. A fast semi-automatic segmentation approach
using thresholds is not useful in this case because of the unclear range of grey
values for the bones in CT images.
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Nevertheless, the results of the evaluation show that further improvement is

needed to enhance the accuracy and especially the speed of the segmentation
method. In a first step, we expect that the integration of more segmented datasets
into the model will further improve the specificity and generality of the model
and the quality of the automatic segmentation. Furthermore, the use of grey-
value images for a faster segmentation of the Femora in CT images is planed.
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