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Abstract. This paper presents an image segmentation algorithm based
on the level sets deformable model framework, guided with patient spe-
cific information as well as e priori knowledge gained from the training
set. The driving application is segmentation of 3D calvarial tumors from
Computed Tomography images, which is a challenging task considering
the fact that they reside both in calcified and soft tissue, have ill-defined
borders, and occupy wide range of image intensities. Level set algorithms
are widely used for complex segmentation problems since they show good
robustness in presence of inhomogeneities and noise. However, for seg-
mentation of object with fuzzy borders, standardly used surface evolu-
tion forces based on the gradients often fail to reach the convergence.
We present an algorithm that combines image specific information and
a priori knowledge on image intensities of objects under investigation.
The knowledge modeling framework is presented, followed by the seg-
mentation algorithm, and the validation of the results.

1 Introduction

The CRANIO project for computer and robot assisted craniotomy [1] tackles the
problem of efficient and effective removal of calvarial tumors, including operation
planning and surgery. Within this framework a need for automatic and semi-
automatic delineation of calvarial tumors emerged.

Calvarial tumors can be found anywhere from the meninges to the area un-
der the skin of the head. The variety of origin and location of calvarial tumors
results in diverseness in their appearance in Computed Tomography (CT) im-
ages. They are standardly located in both soft and calcified tissue, occupying
a large range of image intensities. Furthermore, local calcifications and ossifica-
tions, which are both very common in those lesions, represent persistent problem
since they introduce large discontinuities. Thus, region or edge based algorithms
often fail to properly segment the entire tumor. Tn our previous study [2] we
have demonstrated that in comparison with other segmentation methods, level
set framework showed the most promising results. This is due to its capability
to advance in two or more fronts and finally merge together into one bounding
surface, which is the key feature when an object with different tissue types is to
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Fig. 1. Flowchart of the segmentation process.
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be segmented. In this paper, we propose an extension to the approach presented
in our previous work [2], adding a knowledge-based propagation term to the
segmentation framework.

The most common approach in modeling of a priori knowledge in medical
image segmentation is to define an a priori shape and adjust it to the borders of
the specific object to be segmented. Although this method has been successful
in segmentation of healthy anatomy [3], Clark et al. point out that prior shapes
are virtually unfeasible for segmentation of tumors, due to the morphological
discrepancy between the subjects [4].

2 Methods

The segmentation approach proposed here relies on the level sets based de-
formable model, guided with gradients derived from the image under subject
and the individual belief map generated from the training set (Fig. 1). A belief
map indicates a likelihood that an image element belongs to the tumor. In this
work, belief map is solely based on the grey-levels of the image.

2.1 Belief Map Generation

Let 7 be a training set of grey-level images of tumor extracted region, T;(x),
T; : R® - R, 4 = 0..ny — 1, x = [z,9,2]7. It is important to notice that
each image from the training set, T;, contains grey-levels of the tumor while
all other parts of the image are set to zero. Tumors were previously manually
segmented by an expert. For each image in 7 a maximum likelihood estimation
of a Gaussian distribution of the grey-levels within the tumor is computed (u;,
0;). Mean Gaussian distribution is found at:

:nli _ :niz_: (1)

=0
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Let I(x) (I : R® — R) be an image to be segmented. Tn each image element, i.e.
voxel, a likelihood that given voxel belongs to the tumor is defined as:
1 _1o-=

B(x) = ol (2)

2.2 Level Set Evolution

Level sets are generalized surface movement framework [5], where surface evolu-
tion is defined as:

v (x,t)

ot

¥ (x,t) is a hypersurface defined on the entire image while the surface under sub-
ject is a zero level set of @. Speed function, F(x), defines velocity and direction
of movement in each point of the front. In our previous work [2], we have used
following speed function:

F(x) = Fp(x) + Fo(x) + Fa(x), (4)

Fy=a-gi(x). Fo=—f gi(x)k(x), F,=7 VQX), (5)
where k is the curvature of the current front (V%), gr is an edge potential
map, and Q is the advection force, defined as:

1
STive I QB = IVG 1), (©)

where G is the Gaussian filter. Fy,, F,, F, are propagation, curvature, and ad-
vection speed terms, respectively. This terms are weighted using three constants
[Oé, /3: ’”

Herein, we propose an extension to this framework by introducing additional
term B(x), Eq. 2, into the propagation part of the speed function:

Fp(x) = a- (8- B(x) + g1(x))- (M)

The level set propagation is realized within the National Library of Medicine
Tmage Segmentation and Registration Toolkit (http://www.itk.org).

= —V¥(x,t) F(x), (3)

gr(x)

2.3 Validation of the Segmentation Results

Statistical metrics for validation of a segmentation outcome in comparison with
the ground truth used in this study are defined as follows:

2.-TP
D = ,
SC= S TP+ FPT N’ )
TP TN
sensitivity = TPLFN’ speci ficity = TNLFP’ (9)

where TP, FP, TN, FN, are number of true positives, false positives, true neg-
atives, and false negatives, respectively. Dice Similarity Coefficient (DSC) is a
special case of the kappa statistics for very large samples.
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Table 1. Minimal and maximal value of three validation metrics for five patient

Patient Diagnosis Sensitivity  Specificity DSC
A Metastasis 0.59+-0.77 0.96=0.96 0.68=0.70
B Meningioma (WHO II)  0.83+0.90  0.98+0.99 0.72+0.86
C  Meningioma (WHO III) 0.81+0.88 0.98+0.99 0.79=0.83
D Meningioma (WHO I)  0.81+0.97  0.95:0.99 0.81:0.89
E Meningioma (WHO I) 0.90+0.96 0.98+-0.99 0.84=0.88

3 Materials

Five patient datasets were used, four thereof with diagnosed meningioma and
one with skull metastasis. All patients were scanned with Siemens Somatom
Plus CT, resolution 0.43x0.43x3mm. Tumors were manually delineated by one
of the coauthors (M.E.). For each test a group of four datasets is used for the
knowledge modeling and fifth dataset for the validation of segmentation results.

4 Results

Tn the Table 1 validation results for the five datasets under subject are shown.
Different results are archived by varying algorithm parameters [«, 3,7, §]. For all
patients, a significant improvement compared to classical level sets algorithm [2]
for all three validation metrics is noticeable. Figure 2 presents an example of the
segmentation workflow and a segmentation result. Entire segmentation process
lasts approximately one minute.

5 Discussion and Conclusion

For all patients, a significant improvement compared to classical level sets algo-
rithm [2] in all three validation metrics is noticeable. The algorithm here pre-
sented uses topological flexibility of level sets (e.g. fronts merging) together with
a knowledge-based term which stabilizes the algorithm and improves accuracy.
As Zijdenbos et al. [6] specified, DSC of more then 0.7 is considered to be a very
good segmentation result. In this study, for four patients, it was possible to reach
DSC of more then 0.8, with the sensitivity of above 0.85. However, segmentation
results for patient A’ are significantly less accurate, due to the fact that this
patient was diagnosed with a very large metastasis expanding to extra calvarial
soft tissue. It is clear from the Table 1 that segmentation accuracy decreases
with severity of the tumor (WHO grade). In our future work, we will focus on
improvements of knowledge modeling. First tests using a discrete method as in
Touhami et al. [7] showed promising results.
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Fig. 2. From left to right: Original image, represented using two sided intensity window,
Speed function, and a segmentation result.
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