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Abstract. Acute aortic dissection is a life-threatening condition and
must be diagnosed and treated promptly. For treatment planning the
reliable identification of the true and false lnmen is crucial. However, a
fully automatic Computer Aided Diagnosing system capable to display
the different lnmens in an easily comprehensible and timely manner is
still not available.

In this paper we present the first step towards such a system, namely
a method that segments the entire aorta without any user interaction.
The method is robust against inhomogeneous distribution of the contrast
agent generally seen in dissected aortas, high-density artifacts, and the
dissection membrane separating the true and the false lumen.

1 Introduction

Acute aortic dissection is a life-threatening condition and must be diagnosed
and treated promptly. The reliable identification of the true and false lumen
is crucial for treatment planning. This is, however, a difficult task, even for
trained professionals. A fully automatic Computer Aided Diagnosing (CAD)
system capable to display the different lumens in an easily comprehensible way
is still not available. It is thus the aim of this research to provide the radiologists
generic tools to support diagnosis and treatment planning. In order to accomplish
such a CAD system, an accurate segmentation of the entire aorta including the
aortic arch as well as the ascending and descending segments is essential.
Different solutions for the aorta segmentation can be found in literature.
These include vessel axis extraction and border estimation [1, 2], nenral network
[3], watershed-based [4], region growing [5] and level set-based [6] approaches.
All of these methods segment just a well defined part of the aorta, require man-
ual initialization and some even user intervention. Moreover, these methods are
not robust against the disturbing artifacts in the image data like the different
densities of the contrast agent caused by flow variations in the two lumens, re-
construction errors due to high contrast agent density [7] and last but not least
they are not able to deal with the dissection membrane within the aortic lumen.
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We have developed a method for the fully automatic segmentation of the
aorta based on the Hough transformation (HT) and a deformable model (DM)
framework. An extensive survey of the DMs is given in [8]. The DMs always
require an accurate initialization of the object. Behrens in [9] suggests a Hough-
based algorithm combined with a Kalman filter to obtain an approximate seg-
mentation of tubular structures. The drawback of this approach is, however, the
need for three initial parameters (starting point of the aorta, the aorta radius,
and an approximate axis direction). Additionally, the large number of applied
HTs make the segmentation relatively slow. In comparison to this approach, our
method incorporates more a priori anatomical knowledge about the shape of the
aortic arch and therefore needs no initial parameters.

2 Description of the method

We present a robust, model based approach capable to segment the aorta regard-
less the inherent deficiencies present in CTA images of aortic dissections. The
method is based on the observation that on the one hand the aorta lumen has
an approximately circular cross section and on the other hand the aortic arch
forms a 180°-sector of a torus. Using this a priori knowledge as a simple model in
combination with the Hough transformation yields a reliable aorta segmentation
method. As will be shown in the results, the circular shape of the aorta is an
ideal constraining factor to support the segmentation process.

In order to create an initial mesh for the DM, two seed points must be
determined in the ascending as well as in the descending aorta. The points can
be placed by a user (semiautomatic segmentation) or they can be calculated
automatically as will be described next.

In the first step the region of the heart is detected by calculating the average
intensity of all axial slices. As the heart chambers have large cross sections filled
with contrast agent, the highest average intensity is a reliable locator. Starting
from the slice with the highest average intensity 20 axial slices were taken with a
distance of 1 cm. On each of these slices the two circles defined by the strongest
Hough-peaks were detected which mostly corresponded to the ascending and
descending aorta. For the first slices, still in the heart region, no such circles
are detected. Tn the next step, the centers of the detected circles from all of
the slices are projected to an axial plane, which results in a set of points given
by (z,y) coordinates. Tn order to obtain the positions of the aorta the set of
points have to be spatially clustered, which in our case was performed with
the K-means algorithm. According to our experiments the HT within the given
interval superior the heart can detect not only the ascending and descending
aorta but also the spine (although with a lower probability). Based on this
consideration we have set the number of clusters to three. The centers of the two
largest clusters in terms of number of elements approximate the position of the
ascending and descending aorta. As the last step we search for the slice closest
to the heart on which the two detected circles are members of the respective
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clusters. The centers of these two circles serve as the seed points (Ca,Cp) of
the ascending and descending aorta, see Fig. 2(a)/1.

Based on the relative position of (C4,Cp) the radius r of the aortic arch
can be estimated with r = |C4 — Cpl/2, see Fig. 2(a)/2. With an additional
HT on the reformatted slice perpendicular to the connecting line of the circle
centers C'4 and Cp, the superior point of the aortic arch can be estimated as
shown in Fig. 2(a)/3. Since the aorta and the pulmonary artery are located
close to each other, in fact two different circles are detected in the preceding
step. From anatomical knowledge, however, we know that the aorta lies superior
to the pulmonary artery (Fig. 2(a)/4) yielding Cgoe as the circle center. The
center Cpep, of the aortic arch, Fig. 2(b), can now be determined with Cjcp, =
Cooe +T’(8AD—8900)/(| AD—8900|) were C op = BA-{—(BD— A4)/2.
So far the aorta centerline is defined by the three circle centers C4, Cgge, and
Cp. For further refinement, additional slices are reformatted in 15 degree steps
by pivoting around C,.p, yielding 13 additional circle centers and aorta diam-
eter pairs (C;,d;) ¥V i = 0°,15°,...,180°, see Fig. 2(b)/5. To avoid outliers in
the first place, the two connecting lines between (Cge, Cooe) and (Cggo, Cispe )
are taken as a rough aortic arch model and the ROI in every reformatted slice
can be restricted to 2.5-times the average aorta diameter. Defining tight ROIs
not only increases the robustness, but also reduces the computational load of the
approach, as the time consuming HTs are only applied to small subimages found
by the model assumptions with the previously estimated parameters. Based on
the center points C;, a good approximation for the midline of the aortic arch is
given. Starting from Cigge the aorta segmentation is extended, in 2 ecm steps,
through the descending aorta towards the iliac bifurcation Fig. 2(b)/6. For com-
putational efficiency the ROI is located at the same position as in the last slice
and the ROI is limited to 70 x 70 mm?. As the vessel’s cross section close to the
bifurcation loses its circular shape, the distal end of the descending aorta can be
easily detected and the process stopped. The centerline of the aorta and the arch
is then interpolated from the center points using a cubic spline, see Fig. 2(b)/7.

To further refine the segmentation, an elastically deformable model (DM) is
used. The initial mesh of the DM can be easily generated using the aorta cen-
terline with the associated aorta diameters. This initialization is then optimized
using the mass-spring analogy as described in [10].

3 Results

The method was applied to 21 patients of which 3 had normal healthy anatomy
and 8 abdominal aortic dissection. The 10 remaining patients have shown mul-
tiple pathologies as 3 aneurisms, 6 stenosis, and & stent grafts. The CT datasets
typically consisted of 500 — 650 slices of 512 x 512 pixels using 16-bit quantiza-
tion, with a pixel size of 0.6 — 0.65 mm, and an effective slice thickness of 2 mm.

From the 21 datasets only the 3 aneurism and one heavy stenosis case failed,
as our current implementation can not yet handle the variing lumen diameter.
In spite of the sometimes bad signal-to-noise ratio and the presence of distractor



164

Fig.1. (a) The detection of the three initial circles to estimate the parameters of
the aortic arch (b) the refinement of the aortic arch and the descending aorta with
additional circles. The steps described in the text are highlighted with numbers

objects like stents, the segmentation process was successful in all other cases, as
demonstrated on some examples in Fig. 2.

To obtain a quantitative assessment, the datasets were manually segmented.
The mesh of these segmentations were taken as the ground truth and com-
pared to the results of the 17 successful segmentations. To quantify the perfor-
mance, we determined the average distance of the two meshes perpendicular to
the manual segmentation. Our method performed equally well for the group of
healthy patients (3), dissections (8), small stenosis (2) resulting in an overall
average error of 1.1 & 0.17 mm. The best segmentation had an average distance
of 0.84 + 0.92 mm and the worst one of 1.33 £ 1.04 mm. The results were less
satisfactory for the stent graft cases with an average distance of 2.22 4+ 0.33 mm.

The average time required to perform a manual segmentation was 40 min
per dataset. In contrast, the processing time was less than 1 min for the semiau-
tomatic segmentation (the two initial points were placed by a user), and about
6 min for the fully automatic procedure using a standard 2.4 GHz PC.

4 Discussion and conclusion

Tn this paper we presented an automatic method for the segmentation of the
aorta using a model based approach. The method uses HTs to detect the ap-
proximately circular shape of the aorta on the individual slices orthogonal to the
vessel, and a 3D elastically deformable mass-spring model to more accurately
adjust the detected contour to the aortic lumen. The method is robust against
acquisition artifacts typically present in 3D CTA images of aortic dissections.

The performance of the method has been evaluated on CT angiographic
images of 21 patients. The results have been satisfactory, even if mannal seg-
mentation by a human expert would have produced a more accurate delineation
of the lumen on some slices.
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Fig. 2. (a) Accurate segmentation of the aortic arch displayed on an axial slice, (b)
segmentation with the dissection membrane close the lumen wall, (c) the aorta outline
on a slice of a noisy dataset, (d) 3D rendering of the segmented aorta

Our future work will concentrate on the detection of the dissection membrane
within the identified region of interest. The detected membrane is then used to
identify and visualize the true and false lumen of the aorta.
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