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Abstract. Robust delineation of short-axis cardiac magnetic resonance
images (MRI) is a fundamental precondition for functional heart diag-
nostics. Segmentation of the myocardium and the left ventricular blood
pool allows for the analysis of important quantitative parameters. Model-
based segmentation methods based on representative image data provide
an inherently stable tool for this task. We present an implementation and
evaluation of 3-D Active Appearance Models for the segmentation of the
left ventricle using actual clinical case images. Models created from vary-
ing random data sets have been evaluated and compared with manual
segmentations.

1 Introduction

Cardiac Magnetic Resonance Imaging (MRI) has become a reliable method for
the detection of common heart diseases. Cardiac dysfunctions, most notably
the coronary heart disease, are the major cause of death in European countries
and worldwide [1]. A thorough functional analysis can provide valuable data for
cardiac diagnosis and therapeutical treatment planning. Fundamental parame-
ters include the ejection fraction, the stroke volume, and the myocardial wall
thickness. The computation of these values requires the delineation of the left
ventricular myocardium.

The segmentation of these structure in MR images is a complex task. A
variety of approaches have been proposed, which can be roughly divided into
semi-antomatic and fully-automatic segmentation techniques. The former in-
clude algorithms requiring a great amount of manual interaction, such as the
tracing of ventricular contours using intelligent scissors [2]. If huge amounts of
image data need to be processed, these methods are cumbersome. Therefore,
an automation of the procedure is highly desired, and approaches using de-
formable models or similar model-based criteria are common. Due to noise and
artifacts in MR images, model-based approaches providing inherent informa-
tion on anatomical structure are highly beneficial. For instance, Active Contour
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Models use image gradient forces and internal energy terms to determine con-
tour points via a local optimization scheme [3]. For 3-D images, this technique
has been extended to higher dimensional ”Balloon”segmentation methods [4].
However, the gradient image required for the edge detection is often perturbed
by noise and image artifacts, causing unsatisfactory segmentation results. Other
approaches combine known segmentation results to a single statistical model.
The segmentation is then performed by iteratively fitting the model to an input
image via an optimization process. For geometrical information, this approach
has found wide usage in the form of Active Shape Models, which have been ap-
plied to ventricular anatomy [5, 6]. Atlas-based segmentation methods utilize an
atlas built from a training set of patient images, representing common features
among those images [7]. Active Appearance Models (AAM) combine a model of
the shape structure with a model of gray value intensities and have been used in
a variety of applications [8]. Due to the more complex nature of the AAM, most
implementations were restricted to a two-dimensional approach. Recently, the
application of a full 3-D AAM to cardiac MRI and ultrasound was proposed [9].
Such approaches to cardiac functional analysis are subject to current research,
and several implementations and enhancements have been reported [10]. We
modified the approach of Mitchell et al. [9] and evaluated our implementation
using a random set of cardiac images taken from actual clinical routine.

2 Model Generation

The creation of a single model of cardiac appearance requires a preceding deline-
ation of the endo- and epicardial borders of the myocardium. After tracing the
contours semi-automatically using intelligent scissors [2], a Procrustes analysis
is performed on the set of points, registering the shapes to a common reference
frame via the Iterative Closest Point (ICP) algorithm [11]. The model parame-
terization is computed by creating a statistical model of the shape and texture
variation in the sense of a single Point Distribution Model (PDM) of shape and
texture dispersions [8]. A Principle Component Analysis (PCA) is employed for
this purpose [5]. In order to build a combined AAM, the PCA is applied three
times. First, a model of the shape variance is constructed from the registered
contour points. Subsequently, the texture model is generated by warping the tex-
tures enclosed by the outlined contours to a common reference frame, typically
the mean shape, and applying the PCA once again. Finally, the combined model
is constructed by creating combined parameter vectors

()T

and performing the PCA once more, where P, and P; denote the corresponding
eigenmatrices for shape and gray values, X and g give the population means, and
W is a suitable matrix describing the correlation of gray values and textures [8].
Inverting these linear equations, corresponding model instances are constructed
independently of each other. An exemplary generated shape model can be seen
in Figure 1.
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Fig. 1. Ventricular shape model (1.) and its application: Initial (m.), converged (r.).
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3 Model Fitting

The process of segmentation can be interpreted as a non-linear optimization
problem of fitting the multi-parametric heart model to the input image to be
processed. The difference is measured by the root mean square error
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where w denotes the vector of warped gray values from the input image, and g
the model gray value vector. A semi-3-D steepest descent optimization strategy
is employed, using the numerically computed derivatives of the error measure
and providing a stable algorithm. Transformation parameters are evaluated in
directions orthogonal to the heart’s long axis. The warping step is performed in
a 2-D piecewise-affine fashion, computing the triangle A = (t1, t2, t3) containing
each point p = (pg,py)7 and solving for its barycentric coordinates a, 3, and
~ defined by aty + Sts + vt3 = p. Although this takes advantage of the lay-
ered structure of the resampled image, the loss of three-dimensional information
results in an error that can not be eliminated completely. On the other hand,
this allows the computation of the derivatives at running time, in contrast to
the usage of a pregenerated approximation computed from a training set [5]. An
initialization of the mean model instance is provided by manually positioning
the contour and adjusting its scale and translation. One single image slice and
the corresponding segmentation can be seen in Figure 1.

4 Image Data and Evaluation

The model generation described above was performed using actual clinical rou-
tine images. Three types of MR devices manufactured by General Electric (Gene-
sis Signa), Philips ( Gyroscan Intera), and Siemens (MAGNETOM Sonata) were
used for the MRI acquisition. The image sets contained 30 anonymized dynamic
images, with each image consisting of 6 to 12 different image slices. Spatial planar
resolution was 256 x 256 voxels for most images. In the preprocessing step, these
images were resampled to a common number of slices, with resulting voxel sizes



174

Table 1. Minimum and maximum distance error measures for the five models.

Distance (mm)|M10 M15 M20 M25 M28
Minimum 0.08 0.11 0.22 0.24 0.31
Maximum |64.53 13.04 8.23 10.12 9.82

Table 2. Timings and numbers of iterations for the reference segmentations.

Computation time in sec. Iteration steps
Model|Average Minimum [Maximum [Minimum |Maximum
M10 | 81.14 37.94 157.85 3 13
M15 | 99.84 60.17 195.99 4 10
M20 | 92.74 23.40 189.98 3 10
M25 | 96.25 32.57 163.78 4 11
M28 | 101.62 | 46.12 181.20 3 11

ranging from 1.7mm to 1.9mm. Short-axis two-chamber views of the left and
right ventricle were selected, and the corresponding endocardial and epicardial
contours were delineated manually.

Five models have been generated, with 10 to 28 images used for the model
generation routine, respectively. The required images were selected randomly
from the pool of existing image data, the explainable variance was set to 98%
of the total variance. The accuracy of the models was determined by comput-
ing the averaged root mean square error (RMS) between manual segmentations
and automatically delineated myocardial contours, as well as the minimum and
maximum distance. For all models, the average segmentation error was 3.06mm
(minimum 1.84mm, maximum 6.91mm). This corresponds to error distances of
approximately 1.5 to 4 voxels, depending on the actual voxel size. As can be seen
in Table 1, the minimum and maximum error values for the generated models
(M10 to M28) vary with the number of included model images. By increasing
the number of training images, the maximum error is being reduced, whereas the
minimum error is being increased slightly, probably due to the greater amount of
model variation. Three clinical images contained visible deformations of the my-
ocardium, for instance dilated cardiomyopathy. The impact of these pathological
images on the model-based segmentation was examined separately by creating
a further Appearance Model. However, the effect of the inclusion of such images
was found to be considerably low.

Since an ordinary gradient descent optimization scheme was employed, the
efficiency was rather limited. Table 2 shows the average number of required
iteration steps to reach convergence, as well as the average time elapsed. The
computation was performed using an ordinary personal computer (1.7GHz, 2GB
RAM). As can be seen from the table, an increased number of model images leads
to a reduced number of iterations in some cases. In comparison to optimization
methods using precomputations, the method of directly evaluating the deriva-
tives in each iteration is more time-consuming. However, since the training set
descent matrix is just an approximation, the direct method is more robust.
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5 Discussion

We have presented an evaluation of a 3-D Active Appearance Model segmenta-
tion for the automatic delineation of cardiac anatomy. The implemented method
was analyzed using random sets of actual routine clininal case images for model
generation and testing. In this way a considerably high level of authenticity and
a realistic assessment of the method are achieved. The evaluation results hold
promise for a fully automatic model-based segmentation method, and demon-
strate that the quality of the resulting segmentations depends essentially on the
number of images used for the model generation. This underlines the importance
of large image databases as a precursor for a plausible model generation. The
results indicate that the model-based segmentation has to be combined with an
efficient and intuitive correction mechanism and a more efficient optimization
strategy to find its way into clinical routine image processing.
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