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Abstract. High-throughput screens of the gene function provide rapidly
increasing amounts of data. In particular, the analysis of image data ac-
quired in genome-wide cell phenotype screens constitutes a substantial
bottleneck in the evaluation process and motivates the development of
automated image analysis tools for large-scale experiments. Here we in-
troduce a computational scheme to process multi-cell time-lapse images
as they are produced in high-throughput screens. We describe an ap-
proach to automatically segment and classify cell nuclei into different
mitotic phenotypes. This enables automated identification of cell cul-
tures that show an abnormal mitotic behaviour. Our scheme proves a
high classification accuracy, suggesting a promising future for automat-
ing the evaluation of high-throughput experiments.

1 Introduction

The technology of RNA interference (RNAIi) is an effective method to identify
the biological function of genes in the field of functional genomics. Together
with the availability of complete genome sequences from several organisms, RNAi
enables genome-wide high-throughput screening of gene function. In such screens
all known genes of a considered organism are systematically silenced one after
the other by inhibiting their expression, and then the resulting morphological
changes are analysed. However, such large-scale knockdown screens produce an
enormous amount of data which requires tools for antomated image analysis.
Our work is carried out within the EU project MitoCheck, which aims to
elucidate the coordination of mitotic processes in human cells at a molecular
level. The goal is to obtain a better understanding of the mechanisms of cancer
development. To identify the genes that are involved in cell division (mitosis),
genome-wide high-throughput RNAIi screens are performed. The effect of a si-
lenced gene on mitosis is studied based on fluorescence microscopy time-lapse
images of the treated cell culture. An automated evaluation of the resulting image
sequences requires classification and quantification of different mitotic patterns.
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Previous work on automated analysis of cell images has been done in differ-
ent application fields. Based on fluorescence microscopy complete cells as well as
single subcellular structures have been studied. Classification of complete cells
has been performed, for example, to investigate the influence of drugs on cellular
proteins [1]. There, cells are classified based on morphological characteristics of
the plasma membrane that depend on the level of protein activation. Another
application of complete cell classification has been considered in [2], where the
detection of mitotic cells in images from automated microscope systems has been
studied. Furthermore, work hag been done on automated recognition of subcellu-
lar structures, which is a major task in location proteomics (e.g., [3, 4, 5]). In this
field, the subcellular location of proteins is investigated in order to understand
their function. Automated analysis of cell images also plays an increasing role in
cytopathology, where computational methods have been developed to segment
and classify different cell types in brightfield microscopy images of cell smears
for early cancer detection [6].

We have developed an approach to analyse multi-cell images from large-scale
RNAIi screens. Tn comparison to previous work we analyse cell array images
that include a large number of cell nuclei in different mitotic stages. We classify
the nuclei into four different phases of the cell life cycle (interphase, mitosis,
apoptosis, and shape). This enables an evaluation of the mitotic behaviour of
a considered cell culture over time. Our automated image analysis work flow
covers three main steps: Segmentation of multi-cell images, image feature ex-
traction, and classification. Tn order to find the most appropriate algorithm for
fast and accurate segmentation, we compared three different thresholding tech-
niques according to their segmentation quality and computation time. Based on
a quantitative evaluation we found that a region adaptive thresholding approach
yields the best results. Using this approach we segment the images, compute a
large set of different types of image features, and then apply a Support Vector
Machine classifier. Qur approach has been successfully applied using multi-cell
images from genome-wide high-throughput screens. We obtained a high classifi-
cation accuracy of 96% that has been verified by ten-fold cross-validation.

Our approach allows to minimize the manual evaluation effort. Furthermore,
the results of an automated evaluation are objective and reproducible.

2 Methods

Since we have to cope with a huge amount of multi-cell images, fast and re-
liable segmentation and labeling of single objects is crucial. Various advanced
segmentation algorithms have been described in the literature, but as compu-
tation time plays an important role when dealing with huge amounts of data,
segmentation accuracy as well as speed of the algorithm are decisive criteria.
We investigated three different thresholding techniques and evaluated the seg-
mentation accuracy by manually counting correctly and incorrectly segmented
cells. This manual evaluation has been performed for each tested algorithm for
four different images that included in total 761 cell nuclei. The first technique
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is a global thresholding scheme, where the threshold is automatically calculated
using Otsw’s threshold selection method [7]. However, a global threshold did
not yield satisfying results, even after applying background correction, due to
overlapping grey values of background and objects. The evaluation of the seg-
mentation accuracy resulted in only 55.9% correctly segmented cell nuclei.

The second and the third segmentation technique are two versions of an adap-
tive thresholding algorithm. This algorithm uses a quadratic sliding window to
calculate local thresholds for different regions of an image. A local threshold is
only calculated if the variance within the window reaches a user-defined thresh-
old, else a global threshold is nused [8]. This ensures that only for regions that
contain a certain amount of information (e.g., regions including an object and
background) the local threshold is calculated, which reduces the computation
time. Global as well as local grey value thresholds are automatically calculated
using Otsu’s threshold selection method. In the first version of the algorithm we
apply the grey value threshold only to the central pixel of the sliding window
and shift the window by one pixel, which leads to a high segmentation accuracy
of 98.0%. Since here the variance calculation has to be carried out for each pixel
of the image, the computation time is rather high. Tn the second version of the
algorithm, the threshold is applied to every pixel of the sliding window and the
window is shifted by one window width. Thus, the number of calculations for
determining the variance and the local threshold is decreased enormously. In
our tests this strategy reduced the computation time for the segmentation by
a factor of about 330 and still yielded 92.1% correctly segmented nuclei. Here,
we used a window width in accordance with the average nucleus diameter (e.g.,
30 pixels). Since the speed of the segmentation algorithm is a major criterion in
our application and an accuracy of 92.1% in this context is acceptable, we chose
to adopt the second version.

For each segmented and labeled cell nucleus we calculate a set of image fea-
tures that has been previously used for the classification of subcellular pheno-
types [5]. This set includes granularity features, object- and edge-related features,
tree-structured wavelet features, Haralick texture features, grey scale invariants,
and Zernike moments. In total we compute 353 features per cell object. For the
training set, we standardize each feature w.r.t. a mean value of zero and a stan-
dard deviation of one. In the test set, the feature values are linearly transformed
based on the transformation parameters from the training set.

To classify cell nuclei into the four classes interphase, mitosis, apoptosis, and
shape, we apply Support Vector Machines with a Radial Basis Function (RBF)
as kernel function. SVMs are mathematically well-founded and their complexity
is independent of the dimension in feature space compared to other classification
methods. This property allows us to work with a high number of features and
we can skip the feature selection step as it is not crucial. We solve the multi-
class classification problem with a ”one-against-one” approach. To optimize the
penalty parameter C and the kernel parameter v for the Radial Basis Function,
we perform a three-fold cross-validation with varying values of C and ~ on the
training set (model selection) prior to the actual training of the classifier.
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Table 1. Confusion matrix, 510 training and 127 test samples; accuracy: 96.9%.

Classifier Qutput
True Class Interphase| Mitosis | Apoptosis Shape
Interphase 100 0 0 0
Mitosis 0 91 9 0
Apoptosis 0 17 83 0
Shape 0 0 0 100

3 Experimental Results

We have applied our approach using a set of fluorescence microscopy multi-cell
images, considering in total 637 cell nuclei. The images have a grey value depth
of 12 bit and a resolution of 1344 x 1024 pixels. All nuclei had been classified
by biologists into one of the four phases of the cell life cycle: (1) nuclei in the
growing and resting phase (interphase), (2) mitotic nuclei (mitosis), (3) nuclei
performing programmed cell death (apoptosis), and (4) a class which covers cases
of clustered nuclei (shape). Using our region adaptive thresholding approach all
nuclei were segmented automatically and the image features were calculated. We
split the available samples for each class randomly in the training data and test
data (ratio 4:1), resulting in a training set size of 510 nuclei and a test set size of
127 nuclei. The feature values were standardized and a Support Vector Machine
classifier was trained as described above. An evalunation of the experimental
results yielded an overall classification accuracy of 96.9%.

Since our test set was relatively large, the result obtained from this classifica-
tion can already be considered to be significant. Tn order to check the reliability
of the result we repeated the classification step, applying a ten-fold outer cross-
validation on the whole data set of 637 cell nuclei. This classification yielded
an average accuracy of 96.0%. Thus, both classification results correspond very
well and we can draw the conclusion that we can rely on an overall classification
accuracy of around 96%.

We also determined the confusion matrices (see Tables 1 and 2) which re-
vealed that misclassifications appeared mainly between the classes mitosis and
apoptosis. This is due to the fact that samples of these classes are sometimes
very similar. Even for a human observer it can be hard to distinguish these two
classes based on a single image. The lower classification accuracy of the apoptosis
class can be ascribed to the comparatively small number of 60 samples in this
class compared to the other classes (interphase: 322, mitosis: 110, shape: 145).

4 Discussion

We have presented an approach for antomated cell phenotype analysis which
can handle multi-cell images and classifies the segmented cell nuclei with a high
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Table 2. Averaged confusion matrix for ten-fold cross validation given 637 samples;
average accuracy: 96.0%.

Classifier Output
True Class Interphase| Mitosis | Apoptosis Shape
Interphase 99.38 0.31 0 0.31
Mitosis 0 90.91 9.09 0
Apoptosis 1.67 20.00 78.33 0
Shape 0 0 0 100

accuracy into four classes. By comparing the percentage of cells per class over
time for knockdown RNAi experiments with those from control experiments,
it is possible to automatically detect if mitosis is affected. This then indicates
that the silenced gene plays an important role in the process of mitosis. As
certain patterns are hard to distinguish based on single images, the exploitation
of temporal information by tracking of cells throughout an image sequence is
one possibility to further improve the classification performance.
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