
Automatic Generation of Four-part Harmony

Liangrong Yi

Computer Science Department
University of Kentucky

Lexington, KY 40506-0046

Judy Goldsmith

Computer Science Department
University of Kentucky

Lexington, KY 40506-0046

Abstract

This paper introduces decision-theoretic
planning techniques into automatic mu-
sic generation. Markov decision processes
(MDPs) are a mathematical model of plan-
ning under uncertainty, and factored MDPs
demonstrate great advantages in an environ-
ment where the state space is large. Given
a melody, we use a factored MDP planner
to fill in the other three voices, based on the
characteristics of classical Western four-part
harmony.

1 INTRODUCTION

Our research group is interested in decision-theoretic
planning algorithms. We believe that our non-
deterministic planning research can also produce good
applications in music generation. For the four-part
harmony problem, the process of adding the other
three voices when given the melody can be viewed as
a planning problem. We create an automatic harmony
generator based on our factored MDP planner.

2 FUNDAMENTALS OF

HARMONY

2.1 WHAT IS HARMONY?

The music of most ancient cultures is monophonic,
which means it consists of individual melodies without
accompaniment. Harmony was developed early in the
Middle Ages. Harmony is a group of notes which sound
at the same time. The use of harmony makes music
rich and colorful. In our research, we only consider
one type of chord: the triad. A triad is a three-note
chord built in thirds [Ottman, 1970]. Conventionally,
in English, pitches are named with the first seven let-

ters of the alphabet, A B C D E F G. Figure 1 shows
an example triad.

A B C D E F G

root third fifth

C E GTriad I

Figure 1: An Example Triad

A triad can appear in three different positions. In a
root position triad, the lowest note is known as the
root, above which are the third and fifth. If the
third or fifth of the triad is the lowest note, then the
triad is in inversion. A triad is in first inversion

if the third is the lowest note; a triad is in second

inversion if the third is the lowest note. Figure 2 (see
also in [Ottman, 1970]) illustrates the triads in the
Major Scale (C Major). Major triads are represented
by Roman numerals in uppercase and minor triads are
represented by Roman numerals in lowercase.

o

 Tonic I C E G
 Supertonic ii D F A
 Mediant iii E G B
 Subdominant IV F A C
 Dominant V G B D
 Submediant vi A C E
 Leading Tone vii B D F

Scale Degree Name Triad Number Spelling in C Major

Figure 2: Triads in C Major

The elementary study of harmony is about chord pro-
gression. A chord progression is a series of chords

played in order. When writing harmony, we need to
consider the connection between chords. Much atten-
tion is placed on cadences. The cadence, in music, is
the place which gives the feeling of a temporary stop or
a full stop [Ottman, 1970]. The cadence often consists
of two successive chords. The two types of cadences
are authentic cadences, which use tonic and dominant
chords (V-I, I-V, v-i, i-v) and plagal cadences, which
use tonic and subdominant chords (IV-I, I-IV, iv-i, i-
iv).

Our research is now focused on four-part harmony, also
known as four-voice texture. One of the most familiar
examples is choir music (soprano, alto, tenor, bass).
In four-part harmony, we need to consider the appro-
priate range of each voice, chordal spacing among four
voices, voice movement within the same triad and dou-
bling in four-voice chords [Gauldlin, 1996]. Given the
melody line, the goal is to automatically generate the
other three parts. Of course, we hope that the mu-
sic will follow the classical western harmony theory in
principle and be acceptable to musicians and audience.

2.2 MUSIC NOTATION

The abc notation [Walshaw, 2007] provides computer
researchers a good way to represent music in ASCII

format. Originally it was designed to record folk and
traditional Western European tunes. But it is extensi-
ble to other types of music. In abc notation, the Mid-
dle C is notated as C, the D immediately above middle
C is notated as D, and so on up the scale. The next C
in the higher octave is notated in lowercase as c. The
next octave up is shown by an apostrophe immediately
after the note name, like c′. The octave immediately
below middle C is represented by a comma immedi-
ately following the note name, e.g. B,. Here is the
four octaves in abc notation:

C,D,E, F,G,A,B,CDEFGABcdefgabc′d′e′f ′g′a′b′

The users can further extend the notation by adding
more commas or apostrophes.

The abc notated music can be easily read by both com-
puters and humans. With a little training, musicians
can play a tune directly from the abc notation with-
out having to change it to sheet music. There are
many software packages which can read and process
abc notations. Some tools can even play music in abc
notation. All this make abc notation a good choice
for our research. We can easily write the inputs of the
planner, compare the results, and play the resultant
music or let the computer play it.

3 EXISTING WORK ON

HARMONY GENERATION

Horner and Ayres [Horner and Ayers, 1995] made some
early efforts to generate four-part harmony using ge-

netic algorithms (GAs). Their work was very suc-
cessful, but on a very constrained problem (chords
were given) [Biles, 2007]. Somnuk Phon-Amnuaisuk et
al. also worked in this area [Phon-Amnuaisuk et al.,
1999, Phon-Amnuaisuk and Wiggins, 1999]. In their
research work, the soprano information is input by the
users. The GA generates the other three voices with
musical domain knowledge encoded in the fitness func-
tion.

Research has been done to use constraints to model
musical harmonization. Francois Pachet and Pierre
Roy surveyed this area [Pachet and Roy, 2001].

In [Allan and Williams, 2005], a hidden Markov

model (HMM) is used to model the harmony pro-
gression. A hidden Markov model is a Markov process
with hidden states. In this harmony model, the visible
states represent melody notes and the hidden states
are chords.

Dan Ponsford et al. [Ponsford et al., 1999] developed
a grammar-learning system to learn significant charac-
teristics of the music from a corpus of music examples.
That grammar can then be used to generate new har-
monies in the same style.

4 MARKOV DECISION

PROCESSES

Markov decision processes (MDPs) are considered
a good way to model stochastic systems. Chord pro-
gression can be viewed as a stochastic process. The
choice of a chord is similar to the choice of an action
in MDP planning. If we use utilities to decide the
goodness of the harmony, then we will want to pick a
set of chords which can maximize the utilities. There-
fore, we believe that we can use MDP based planning
techniques to automate harmony generation.

An (MDP) is a five-tuple 〈S,A, Pr,R,C〉. S is a finite
state space, which contains all possible states. A state
s is a description of the system at a particular time.
A is a finite action space. At each time point t of
the process and each state s, the agent has a set of
available actions. After the agent takes an action, the
system may change from one state to another. The
state transition function Pr describes how the next
state depends on the current state and action. Pr is a
mapping from S×A×S into a real number in [0, 1], so
that Pr(j|i, a) defines the probability that the system
moves from state i to state j by taking the action a.

The function R : S → R assigns a reward to a state s.
The cost function C : S×A → R associates a cost with
performing an action a in state s. The combination of
the reward function and the cost function gives the
utility of each state. A policy is a mapping from a
state to an action. In MDP planning, the goal is to
find an optimal policy which maximizes the value of
each state.

There are two basic formats to represent MDPs. One
is the explicit or extensional representation in which
states are enumerated directly. The other is factored
or intensional representation. What we will use in har-
mony generation is the factored one.

Instead of enumerating states explicitly, a factored rep-
resentation defines a set of attributes that are sufficient
to describe the states [Boutilier et al., 1999]. Com-
pared to explicit representations, factored representa-
tions are considered more convenient and compact in
many situations.

A factored MDP is described by a set of state variables
X = {X1, ...,Xn}. Values of each variable are denoted
in lowercase (e.g., xi). Each Xi takes on values in
some finite domain Dom(Xi). A state x defines a value
xi ∈ Dom(Xi) for each variable Xi [Guestrin et al.,
2003].

In factored MDPs, transition functions are usually de-
scribed by dynamic Bayesian networks (DBNs). A
Bayesian network [Pearl, 1988] is a representational
framework for compactly representing a probability
distribution in factored form. Formally, a Bayesian
network is a directed acyclic graph in which vertices
correspond to random variables and an edge between
two variables indicates a direct probabilistic depen-
dency between them [Boutilier et al., 1999]. Each vari-
able is associated with a conditional probability ta-

ble (CPT) which specifies its probability conditioned
on all possible values of its immediate parents in the
graph. A two-stage temporal Bayes net (2TBN)
[Boutilier et al., 1999] is commonly used to describe the
state-transition probabilities of an action in an MDP.

A binary decision diagram (BDD) is a directed
acyclic graph with a single root [Andersen, 1997]. A
non-terminal vertex in a BDD is labeled with a vari-
able and has two children. One of the edges from the
non-terminal vertex v to one of its children is labeled
with TRUE; the other edge is labeled with FALSE. A
terminal vertex (leaf) is labeled with a Boolean value
and has no outgoing edges. A BDD maps n Boolean
variables to a Boolean value, which is specified by
the terminal vertex. Algebraic decision diagrams

(ADDs) generalize BDDs. In ADDs, a terminal vertex
can take real number values.

In factored MDP planning, we usually use ADDs to
represent states. ADDs can represent state transition
probabilities as well. With the ability to capture regu-
larities in the CPTs, ADDs fully take advantages of the
efficiency of factored MDPs. We can also use ADDs
to represent policies. In a policy ADD, the non-
terminal vertices are state variables and the terminal
vertices are labeled with actions. Therefore a policy
ADD maps a set of states to a set of actions.

Jesse Hoey et al. [Hoey et al., 1999] proposed stochas-

tic planning using decision diagrams (SPUDD).
SPUDD is an algorithm for finding optimal or near-
optimal policies for factored MDPs. The algorithm is
based on value iteration, but it uses ADDs to represent
value functions and CPTs. We built a planner based
on SPUDD, with a few modifications according to our
specific domain.

5 MODEL AND RESULTS

5.1 FROM HARMONY TO MDP

To simplify the problem, we only take care of the
melodic notes at each beat and only consider adding
triads at each beat. In the beginning of our work, all
the examples are in 4/4 rhythm and C major.

At each beat, there are four notes, one from each of
the four different parts. They can be considered as
variables of a state. One is known (the melody), the
other three are what we are trying to generate. Since
we add chords at each beat, we do not need to worry
about duration.

In our model, a state is made up of ten variables S1,
A1, T1, B1, S2, A2, T2, B2, S3, P. The first nine
variables correspond to music notes, represented in abc
notation. To make it legible, we use S, A, T, B to
distinguish the notes from soprano, alto, tenor and
bass respectively. The subscript tells whether the note
comes from the first chord or the second chord. P

records the position of the first chord in this state. An
example is shown in Figure 3.

In the hope of having a manageably small MDP, we
focus on two successive chords. That is the reason why
we include two chords in a state. By doing this, we can
tell how good the connection of the two chords is by
computing the utilities of that state 1.

Actions are defined as the choice of a specific chord.
The focused attention on triads leads to a fairly small
action space. We use 7 actions (7 triads) in the ma-
jor scale or 13 actions in the minor scale. At each

1Most rules of harmony consider longer sequences of
chords. We will take into account longer sequences as soon
as we have planners that can handle such models.

Figure 3: An Example State in the Harmony Model

state, even if the triad for the next beat is decided,
uncertainty still exists. A triad can appear in the root
position, the first inversion or the second inversion.
Since we only generate triads and the music is made
up of four parts, there might be repeats for notes (eg.
CEGc). It is also possible to omit a note (eg. CGcc).
Those probabilities can be either defined in advance or
learned from a corpus of music.

At each state, to choose an action, utility needs to be
computed. A utility function can be defined according
to classical harmony theory or learned from a specific
collection of music if we want to generate harmony
in that musical style. One way of defining the utility
function is to give a penalty when breaking a rule.
That can be done by giving negative rewards.

We start our experiments with music in C Major.
There are seven commonly used triads for a major
scale, which are already shown in Figure 2. Those
triads are numbered by their corresponding triad num-
bers. As long as an action is picked, the values of the
variables A2, T2, B2 in the next state are limited to
the notes in the chosen triad.

The DBN of this model is shown in Figure 4. Actually
Figure 4 is the DBN for action I, i.e. choosing triad I

(CEG). The CPT for variable A′

2
is also shown in the

figure and represented by a decision diagram. Accord-
ing to our definition of a state, one chord may appear
in two states. That results in redundancy. We can see
that the values of S′

1
, A′

1
, T′

1
, B′

1
, S′

2
are the same as

S2, A2, T2, B2, S3. Therefore, the transitions from
S2 to S′

1
, A2 to A′

1
, T2 to T′

1
, B2 to B′

1
and S3 to

S′

2
are deterministic.

We use a vector (s1 a1 t1 b1 s2 a2 t2 b2 s3 p)
to represent a state. For example, the current state
in Figure 3 is (c G E, C, g E G, C, e 1). Now we
pick action I (triad I), then the next state is (s′

1
a′

1

t′
1

b′

1
s′
2

a′

2
t′
2

b′

2
s′
3

p′). We know that s′
1

= s2,
a′

1
= a2, t′

1
= t2, b′

1
= b2, s′

2
= s3. s′

3
will be given

1

1

2

2

2

2

3

1

1

1

2

2

2

2

1

S

A

B

S

A

T

B

S

P

T

1

1

3

A’

T’

B’

S’

A’

T’

B’

S’

P’

 0.2 0.2 0.6 0.0

A’2

S’

C E G A/B/D/F

Figure 4: The DBN for Action I (choosing triad I:
CEG)

by the melody. p′=2, since the first triad of this state
is at the second beat of the whole music. The values
of A′

2
,T′

2
,B′

2
are restricted to C, E, or G (here we

ignore the different scales). Uncertainty still exists.
The chord can appear:

• in root position: a′

2
= G t′

2
=E b′

2
=C

• in first inversion: a′

2
=C t′

2
=G b′

2
=E

• in second inversion: a′

2
=E t′

2
=C b′

2
=G

• with doubling: a′

2
=C t′

2
=E b′

2
=C

• or other combinations.

Our model is a finite MDP. The horizon of this MDP
is the total number of beats given by the melody. In
planning with finite horizon, the ith iteration in the
value iteration algorithm represents the value function
for the states which are i steps away from the end of
the execution. In the SPUDD algorithm, to get the
optimal value function, the value iteration proceeds to
construct a series of n-step to go value functions Vn.

V n(s) = R(s) + max
a

[γ
∑

s′∈S

Pr(s′|s, a))V n−1(s′)]

At present, we only consider two rules:

1. The melodic note is better to appear in the cor-
responding chord.

2. We prefer authentic cadences, but we also accept
plagal cadences.

The two rules are encoded into the utility functions.

5.2 EXPERIMENTS

We ran our harmony generator on Beethoven’s Ode

to Joy. The music was divided into small units. Each
unit consisted of two measures, i.e. 8 beats. On each
unit, we picked the first two chords (the initial state)
and then implemented finite horizon planning. Given
the input of the melody in abc notation, the factored
MDP planner produced an optimal policy, which was
a series of actions. Each action corresponded to a triad
at a specific beat.

Although we get the chord progression, we still need
to generate the exact notes for the three parts. We
created a program to simulate the execution of the
policy. The simulator took the action according to the
optimal policy. As we discussed in Section 5.1, actions
are described by DBNs. s′

1
,a′

1
, t′

1
,b′

1
, s′

2
in the next

state would be the same as s2,a2, t2,b2, s3 in the cur-
rent state. s′

3
is given by the melody. p′ increases

one at each step. After taking the action, the values
for a′

2
, t′

2
,b′

2
are decided by the CPTs of the respec-

tive variables. The CPTs give us the probabilities of
the values. In each simulation, the program randomly
chooses the next state according to the transition prob-
abilities. If we run the simulator multiple times, we
may get a different harmony each time. The har-
monies are made up of the same series of chords, but
the individual voices will be different. Those different
harmonies are considered different views of the policy.
Human users have the option of choosing the harmony
they prefer. We picked two from the experiments of
Ode to Joy, shown in Figure 5 and Figure 6. Al-
though the chords progressions are the same, the two
pieces are slightly different. The first one in Figure
5 has more repeats, while the second one in Figure 6
encounters some big jumps in an individual voice.

The potential users of the harmony generation tool
would be amateur music lovers. Sometimes they want
to add harmonies to the music they like or to the
melody composed by themselves. But they probably
do not have enough music theory knowledge to do so.
Music can be translated into abc notation by hand
or by special tools. With the input in abc notation,
the automatic harmony generator will output a num-
ber of four-part harmony pieces with the same melody.

Figure 5: Generated Harmony 1

Figure 6: Generated Harmony 2

The users then hear those pieces through the speakers
of the computers or play the pieces themselves. They
can pick whichever they like best. Of course, they may
still want to make some changes to the selected one.
But that would be easier than writing harmonies from
scratch.

6 Conclusions

We introduced the idea of using factored MDPs to
model harmony generation. One specialty of the model
is that the values of some variables (S1, S2 S3) are
fixed before planning. That is because the melodic
notes are already given. Except for that, the planning
process is almost the same as the general MDP plan-
ning. From the perspective of musicians, the input of

the melody will result in the output of the four-part
harmony in abc notation. The common rules used
to write harmonies are encoded into the utility func-
tions of the MDP model. The harmony generator helps
them to do the tedious analyzing and writing process.

Our work shows that it is possible to apply decision-
theoretic planning techniques to automate music gen-
eration. Given a melody, our four-part harmony gen-
erator can produce reasonable music. The current har-
monies that are produced are not very sophisticated,
but we are confident that improved utility functions
will improve the quality of the generated harmony. For
instance, in the example of Ode to Joy, there are
several places where the same note is played by two
adjacent parts, which leads to a less full sound. We
also encounter big jumps within a part, which leads to
more difficult individual parts.

In classical four-part harmony, many factors are taken
into consideration. Our current model is preliminary,
and only includes two rules. As we integrate more
rules into the model, we believe that the generated
music will be much better. We will be investigating
the effects of different rules in the near future.

Acknowledgements

This work is partially supported by NSF GRANT
ITR-0325063.

References

Robert Ottman. Elementary harmony. Prentice-Hall,
1970.

Robert Gauldlin. Harmonic practice in tonal music.
W.W.Norton & Company, 1996.

Chris Walshaw. abc music notation, 2007.
http://www.walshaw.plus.com/abc/.

Andrew Horner and Lydia Ayers. Harmonisation of
musical progression with genetic algorithms. In pro-
ceedings of the 1995 International Computer Music
Conference (ICMC-95), 1995.

Al Biles. Evolutionary
music bibliography, 2007. http://www.it.rit.edu/∼
jab/EvoMusic/EvoMusBib.html.

Somnuk Phon-Amnuaisuk, Andrew Tuson, and
Geraint Wiggins. Evolving musical harmonisation.
In proceedings of the Fourth International Confer-
ence on Artificial Neural Networks and Genetic Al-
gorithms (ICANNGA-99), 1999.

Somnuk Phon-Amnuaisuk and Geraint Wiggins. The
four part harmonisation problem: A comparison be-

tween genetic algorithms and a rule-based system.
In Proceedings of the AISB’99 Symposium on Musi-
cal Creativity, 1999.

Francois Pachet and Pierre Roy. Musical harmoniza-
tion with constraints: A survey. Constraints Jour-
nal, 6(1):7–19, 2001.

Moray Allan and Christopher K.I. Williams. Harmon-
ising chorales by probabilistic inference. Advances in
Neural Information Processing Systems, 17, 2005.

Dan Ponsford, Geraint Wiggins, and Chris Mellish.
Statistical learning of harmonic movement. Journal
of New Music Research, 28(2):150–177, 1999.

Craig Boutilier, Thomas Dean, and Steve Hanks.
Decision-theoretic planning: structural assumptions
and computational leverage. Journal of AI Re-
search, 11:1–94, 1999.

Carlos Guestrin, Daphne Koller, Ronald Parr, and
Shobha Venkataraman. Efficient solution algorithms
for factored MDPs. Journal of Artificial Intelligence
Research, 19:399–468, 2003.

Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann, San Mateo, 1988.

Henrik Reif Andersen. An introduction to binary de-
cision diagrams, 1997. Lecture notes for 49285 Ad-
vanced Algorithms E97.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig
Boutilier. SPUDD: Stochastic planning using de-
cision diagrams. In the Fifteenth Conference on Un-
certainty in Articial Intelligence (UAI-99), 1999.

