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Abstract

This paper is part of a project to match descrip-
tions of real-world instances and probabilistic
models, both of which can be described at mul-
tiple level of abstraction and detail. We use an
ontology to control the vocabulary of the appli-
cation domain. This paper describes the issues
involved in probabilistic matching of hierarchi-
cal description of models and instances using
Bayesian decision theory, which combines on-
tologies and probabilities. We have two fielded
applications of this framework; one for landslide
prediction and one for mineral exploration.
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more general terms than others) and different levels of de-
tail (some have parts and sub-parts and some may be de-
scribed holistically). Descriptions of mineral occurreac

are recorded at varied levels of abstraction and detail be-
cause some areas have been explored in more detail than
others. There are some models that people spend careers in
developing and that are described in great detail for those
parts that the modeler cares about. Other models are less
well developed, and described only in general terms. Be-
cause the instance and model descriptions are generated
asynchronously, the levels of detail cannot be expected to
match. We do, however, need to make decisions based on
all of the information available.

This work has arisen from from an ongoing project in
which we are building decision-making tools for mineral
exploration (MineMatch) and hazard mapping (Hazard-
Match). MineMatch is similar in its goals to the Prospec-
tor expert system [Hart, 1975], but builds on the develop-

In many problem domains we need to match instances an@ients in probabilistic reasoning and ontologies of the last
models of real-world phenomena. For example, in geol-30 years. In previous work [Smyth and Poole, 2004; Poole
ogy, geological surveys of states, provinces and countriegnd Smyth, 2005], we described models using qualitative
publish descriptions of mineral occurrences in their juris probabilities, based on the kappa calculus, which measures
diction; these form the instances in one of our applica-uncertainty in degree of “surprise”. In this paper, we de-
tions. People spend careers describing probabilistic lmodevelop an approach based on probability for making deci-
of where different minerals can be found. There are twosions.

main tasks we consider:

In MineMatch we work with more than 25,000 instances
of mineral occurrences that are described using various

e given an instance, determine which models best fitgyaxonomies, including the British Geological Survey Rock
it. This would be used, for example, by someone whoc|assification schenteand the Micronex taxonomy of
has the mineral rights on a piece of land and wants tQineral®. We also work with more than 100 deposit
know what mineral deposits may be there based on thg)pe models, including those described by the US Geo-

description of the property.

e given a model, determine which instances best matc
the model. This would be used by someone who had
a model of where gold can be found, and they want t
find which piece of land is most likely to contain gold,

based on their model.

These models and instances are typically described by dif-
ferent people at different levels of abstraction (some use

logical Survey and the British Columbia Geological Sur-
ey*. Similarly, in HazardMatch we work with tens of
ousands of spatial instances (polygons) described using

0standard taxonomies of environmental modeling such as

rock type, geomorphology and geological age. To date we

Ihttp://iwww.bgs.ac.uk/bgsrcs/

2http://micronex.golinfo.com
Shttp://minerals.cr.usgs.gov/team/depmod.html
“http://www.em.gov.bc.ca/Mining/Geolsurv/



have worked with approximately ten models of landslide room

hazards which we compare with the spatial instances.

This work is quite different to other work on combining livingroom
probability and ontologies [Ding and Peng, 2004; Pool, bathroom  bedroom

Fung, Cannon and Aikin, 2005; Costa, Laskey and Laskey/ Vtvroom
2005] because we are using the ontologies to construct

rich hypotheses space rather than (only) having probabil- Kidsbedroom masterbedroom F
ities over the ontologies. The running example we use in

this paper is one where we can describe apartments and/or /\ / \

houses and their models.

Figure 1: Part of a taxonomic hierarchy of room types.
2 Models and Instances 9 y yp

Instances are things in the world. We describe instances byhe ontologies provide a hypothesis space over which we
naming them and Specifying their features (Va|ues on varican have probability distribution. We consider that prob—
ous properties). For example, an instance could be a parti@bilistic models (scientific theories) that makes probsbil
ular rock outcrop, a volcano that used to exist, or apartmeriiC prediction about a domain will provide the uncertainty
#103 at 555 Short St. A feature of that apartment could b&nowledge about properties and relations.

that its size is large and it contains two bathrooms.

Models are concepts in someone’s head that describe sorr‘\le Describing Model and Instances

phenomenon of interest. For example, someone may have a )
model of what rocks are likely to contain gold, a model of e adopt the OWL [McGuinness and van Harmelen, 2004]

where landslides may occur, or a model of an apartmentprminology of desciibing domains in terms of individuals,
that Sue would be content to live in. In the system we€lasses and properties.

consider here, models are named and described in terms

of probability distributions over the features of an instan 4.1 Instances

that manifests that phenomenon. For example, the gold | . . . . .
model will specify the probability over the features of a An instance is described by its value on various properties.

particular instance that is likely to contain gold. The land 1S can include its relationship to other individuals (e.g

slide model will specify the probability over the features 'S Parts). We, however, do not only want to state positive
for a particular location that predict whether that locatio facts: butalso negative facts such as that an apartment does

is prone to landslides. The model of Sue's apartment Wi”not contain a bedroom, or that the kitchen is a red colour

specify the features that predict whether Sue would be ex2Ut i not a pink (without enumerating all of the non-pink
pected to like a particular apartment. red colours). Thus we will represent instance descriptions

with the quadruples of form:
Given an instance and a model, the aim of matching, in the

context of this paper, is to determine the probability that t (individual property, value truthvalug

instance manifests the phenomenon of the model. wheretruthvalueis eitherpresentr absent

For example, to say that an apartment has a master bed-

3 Ont0|ogles room, but does not have a kid’s bedroom we could write:

The models and instances are described at different levels  (aptl, containRoonmasterbedroonpresen
of abstraction using ontologies. As part of the ontologies
we assume that we have taxonomic hierarchies that specify
the vocabulary for different levels of abstraction. The-tax , . . o . . .
It is important to distinguish an instance from its descrip-

onomic hierarchy defines the hierarchical relationship be-. . . . . S
tion. An instance is a real physical thing that exists in the

tween concepts. Figure 1 shows an example of a taxonomit . .
hierarchy. Abedrooris a kind ofroom A masterbedroom world we are reasoning about (the real world at some time,

is a kind ofbedroom In this figure,roomis the topmost some temporall_y (_axte_nded world, or even some imaginary
class. world). A description is a set of quadruples.

(aptl,containRoonkidsbedroomabseni

We do not assume that the ontologies include uncertainty 2  Models

about properties and relations. Ontologies are created and

maintained by communities, which can agree on vocabuModels describe abstract instances rather than any partic-
lary, even if they do not agree on probabilities and modelsular instance. For example, apartment motipt 13 may



brl and the arc connecting these two individuals represent
quadruple/Apt_13 containsRoonbrl, p2).

pl
hasSize p2

LontainsRoom  P3 containsRoom

5 Abstraction hierarchies and probabilities

hasType
p6

(bedt ) P?containsed When matching a model with an instance, we need to take
@ into consideration the type l_mcertamty (because_ the in-
stance and model are at varied levels of abstraction). To
b ihaSType cope with type uncertainty, we consider that taxonomic hi-
erarchies in the ontology are associated with probatslitie
In particular, given a taxonomic hierarchy, we want a mech-
Figure 2: A Semantic network representation of apartmen@nism that can compufC;|Cy), whereC; is thesubClas-

modelApt_13. sOf G. This is the probability that an individual is @y
given all that you know about it is that it isG.

describe features that Sue would love to have in an aparti/é @ré not considering that the probabilities associated

ment, e.g., she usually wants a master bedroomin her apa?’f’-ith hierarchies are part of individual models. We are con-
menP. In particular, a model describes an instance that exSidering them as a part stiper model

hibits some phenomenon. It specifies what must be in am this paper we consider only taxonomic hierarchies which
instance, what cannot be there and what we would expeefre trees and where we can come(€;|Cy), as discussed
to be there. in Section 5.1. We are working on techniques for comput-

A model describes a set of related individuals. One of thesdd P(Ci[Ci), when hierarchies are not trees, and where we
individuals is the designated top-level individual. For ex _need to consider the problem of multiple inheritance, and
ample, in modeApt_13 the individuals are the apartment, interdependence between subclasses.

bedrooms, beds etc, and the designated top-level individua
is the apartment. 5.1 Tree abstraction hierarchies

A model is described in terms of quadruples of the form: Each class in a taxonomic hierarchy specifies a probability
distribution over its immediate subclasses. That is, each
(ind, prop, val, prob) link in the tree hierarchy is associated with a conditional
probability. This is the probability that an individual is i
whereind is an individual,propis a propertyyal is either 3 clas<C;, given that all you know about it is that it is in a
an individual or a class or a primitive value (depending ONclassC, and thaC;j is the immediate subClassQf. For
whetherpropis an objecttype property, ote@sTyperop-  example, the claseomin the hierarchy shown in Figure 1
erty, or a datatype property), apgob is the probability. has a probability distribution over its immediate subabass

This quadruple specifies that an instance individual that haSUPPOse we have as part of this distribution:
valueval on propertypropwill matches the model individ-
ualind with probability prop. P(bedroonfroom) = 0.3

Example The semantic network representation of part N
of an apartment modehpt.13 is shown in Figure 2. P(bed_roonproom) represents the probability that a random
The nodes represent individuals, classes and data typg§0m is abedroom

The top objectin a semantic network represents the Similarly, we can specify the probability of an immedi-

individual that we are talking about. The individual ate supClassQiedroomgivenbedroomwith probabilities
Apt.13 in Figure 2 is an apartment. Each arc is la-gch as:

beled with a probability. The valueal associated with
probability prob, individual ind, and arc fromind to P(masterbedroofbedroom = 0.2
val, labeled with propertyprop, represent quadruple '

(ind, prop, val, prob). - For example, individual#pt 13, P(masterbedroofbedroon) represents the probability

5For this paper do not think of these as preferences. We coult!ih"jlt a room is amasterbedroongiven all that you know

have a similar matcher for preferences, but this paper isitabo about it is that it is @edroom
models of uncertainty. Think of the model of what Sue would . - s ..
like as the probability that she will move into the apartmand The prior p_rObab'“ty that an individual is "_q a_dass can be
still be there after 6 months. This is, in fact, what the landlis ~ COmputed in a recursive manner by multiplying the prob-
interested in. abilities up in the tree. The probability that an individual



belongs to root classdom) is 1 (as it represents the set of the instance. We want to determine the posterior probabil-
all individuals). That isP(room) = 1. For example, given ity of M ~ i given thei’s description, which specifies the
the probability as abové(masterbedroomcan be calcu- probability that the instancemanifests the phenomenon
lated as follows: that the model is modeling.

P(masterbedrooin In generaI,M;f ~ ij represents that model individuM_k
matches the instance individug where a model individ-

= P(masterbedroofbedroon) x ual is one of the individuals described in the model (i.e.,
P(bedroonfroom) x P(room) it is one of the first elements of a quadruple), and an in-

= 02x03 stance individual is one of the individuals described in the

instance description.

In this representation, computing the probability thatCy
given thati € Cj is linear in depth difference &&; andCy
and otherwise is not a function of the hierarchy’s size.

We cannot directly determine the match between model
and instance unless we know which model individuals cor-
respond to which instance individuals.

We useMy = i to denote that model individud corre-
sponds to instance individuglandMy = to denote that

individual My does not corresponds to any instance indi-

AS discussed in Section 4.2 a model descr_|bes a_concre_{ﬁdual_ A role assignment is a list of correspondence state-
instance that matches that model. In particular, it speci- ents of the formd/ — i, M = | such that eacMy ap-
fies what must be in an instance, what cannot be there angdl, . . exactly once in thjé list and edgtappears at most

what we would expect to be there. However, a model doe
not specify what happens when the model doesn’t hold (as
that depends on what other models there are, and the backote that matchs-, does not define the role assignment. It
ground probabilities). The role of the supermodel is to pro-defines the degree of match, given a role assignment.

vide background information (that is beyond any mOdeI)Given a role assignment, the model description defines

on how likely individual—property—valugriples are. In a Bayesian network. The problem of matching a model
particular, the super model contains the following: M with an instancei reduces to computin®(M ~
ilobservation from the constructed Bayesian network,
e the supermodel contains the probability distribution of where observation is the instaricedescription.
each class in the tree abstraction hierarchies as dis-

cussed in Section 5.1. 7.1 Construction of Bayesian network

6 Supermodel

o the supermodel contains quadruples of the form:  Gjyen a role assignment, the semantic network defines a
Bayesian network. We can construct it dynamically during

{cl, prop, val, prior) the inference as follows:

wherecl is a class in the taxonomic hierarchyrop
is a propertyyal is either an individual or a class or
a primitive value, angrior is the prior (background)
probability.

e there is a Boolean nod@v ~ i} ) for each correspon-
dence statememy = ij, whereij #.L of the role as-
signment.

¢ there is a Boolean node for each correspondence state-
mentMy =L of the role assignment, which we will
write (Mx =_). This node will be observed with value
true.

That is, the prior probability that an individual of
type cl has valueval for property prop is avail-
able from the supermodel. For example, quadruple
(room hasColour“greerf,0.4) tells us that the prior
probability of a random room has “green” colour is e for each individualMy in the model description and

0.4. for each functional propertprop such thatprop is
hasTyper datatype, there is a random variable which
7 Probabilistic Matching we will write (M, prop). The domain off My, prop)

is the range of propertgrop.

One objective of the matcher is to rank the models or in- e for each individualM in the model description and
stances given instance and model descriptions. The basic for each non-functional properggrop such thatprop
problem is to match an instance with a model. When we is datatype or the range qfrop is class (i.e.,prop
say that a modd\l matches an instanéewe writeM ~ i is hasTypé and for each valu&/ in the range of
to mean thaM matches with. Note that\ is the top-level prop, there is a Boolean variable, which we will write
individual in the model andis the top-level individual in (M, prop,V).



o the parent of eacfiM ~ ij) node, and eactMy =)
node, is nod&M, ~ i) such that there is a directed
edge fromM, to My in the semantic network (i.e.,
quadruple(My, prop, My, prob) exists in the model
description).

the parent of eactMy, P), and eacMy,P,V) node is
node(My ~ij).

the probability distribution of eaciM ~ij) node

conditioned on its pareqMy ~ ip) is:
P({Mg ~ij) =true| (Mp ~ ip) = true)

P((Mg ~ij) =true[(Mp ~ip) = false)

p
prior

where p is the probability associated with the indi-
vidual Mg in the semantic network. That is, quadru-
ple (Mp, prop, My, proby is the part of the model de-
scription. The prior probabilityprior is taken from
quadruple(Mp, prop, M, prior> that exists in the su-
permodel.

the probability distribution for eaciMy =_1) node

conditioned on its parefMy ~ ip) is:
P((Mc=L) =true|(Mp ~ip) =true)

P((Mg =L1) =true|(Mp ~ip) = false)

1-p
1— prior

where p is the probability associated with the indi-
vidual Mg in the semantic network. That is, quadru-
ple (Mp, prop, My, p) is the part of model description.
The prior probabilityprior is taken from quadruple
(Mp, prop, M, prior ) that exists in the supermodel.

The domain of a(My, prop) node is the range of
prop. To specify the conditional probability of
(My, prop) node conditioned on its pare(i ~ i;),

we do not have the distribution over all the values of
(Mg, prop), rather, we have the probability for values
that model cares about. The conditional probability

P({M. prop) | (M ~ ij) is:

—If the range of prop is class,
P({Mk, prop) [ (M ~ ij)) is:
P((M, prop) € V|(Mi ~ij) =true) = prob
P((My, prop) € V|(My ~ij) = falseg = prior
— If propis datatype property:
P((M, prop) =V|(My ~ij) =true) = prob
P((M, prop) =V| (Mg ~ij) = false) = prior

whereprobis the probability associated with quadru-
ple (M, prop,V, prob) in the model description. The

prior probability prior is taken from the quadruple

(M, prop,V, prior) that exists in the supermodel.

e The probability distribution for eacHMy, prop,V)
node conditioned on its pare(Wl ~ ij) is:
P({(M, prop,V) =true| (M ~ij) = true)
P((M, prop,V) =true| (M ~ij) = false)

p
prior

where p is the probability associated with value
V in the semantic network. That is, quadruple
(Mg, prop,V, p) exists in the model description. The
prior probability prior is defined by the supermodel,
i.e., quadrupléMy, prop,V, prior) exists in the super-
model.

Example Consider matching the apartment model
Apt_13 as shown in Figure 2 with instanagtl defined as
follows:

(aptl, hasSizg'large’)

(aptl,containsRoonR1, preseni

(R1,type masterbedroonpreseny
(R1,containsBedbl, presenj

(b1,type bed preseng

(aptl,containsRoonR2, presen

(R2,typeroom presen

For the individualbrl of the model as shown in Figure2,
we can have the following possible mappings:

brl1=R1
brl=R2
bri=1

Whenbrl maps toR1, we can have the following possible
mappings foibr2:

br2=R2
br2=_1

When both model and instance have many individuals of
the same types there are many possible role assignments.

For the role assignmen&pt_.13=aptl,brl = R1 bedl =
bl,br2 =1, the semantic network shown in Figure 2 de-
fines a Bayesian network as shown in Figure 3.

The Boolean variabléApt. 13~ aptl) denotes whether
model Apt_13 matches with instancaptl. The Boolean
variable (brl ~ R1) represents whether individubtl of
the model matches with the individuBl of the instance.
The Boolean variablébr2, 1) represents whether individ-
ual br2 of the model does not map to any individual of
instance.
The conditional probabilities of the Bayesian network
shown in Figure 3 are constructed using the supermodel
andApt 13's description. Some of these probabilities are
shown below:

P((Apt_13~ aptl) =true)
P((Apt.13 hasSizg= “large”| (Apt_13 ~ aptl) = true)

PO
pl



pl m .
; . ntainsRoom
; asSize P2ontainsRoom  p3_° tainsRoo

P4 containsBed

asType b ontainsBed %asType p

masterBedRoo @

PY hasType

+ role assignmnet:
Apt.13=aptl, brl1=R1,
bedl = b1, br2 =1

(Apt_13 hasSizg
(brl,hasType

(bedl ~ bl)
(b1, hasType

Figure 3: A Bayesian network defined by the semantic netwlokve in Figure 2 for the role assignme#tpt_13= aptl,
brl=R1,bedl=bl,br2=1.




When (Apt_ 13~ aptl) = false P({Apt.13 hasSizg=
“large”| (Apt.13~ aptl) = false) is the prior probability
thatApt_13 is of size “large”.

After constructing a Bayesian network, given a role assign-
ment, from the semantic network, we want to compute the
posterior probability oM ~ i, i.e, P(M ~ i|observation.
The observation is the instanés description, which can
be at different level of abstraction thafis description. In
the Bayesian network shown in Figure 3, the model in-
dividual brl maps to instance individué&l. The model
specifies (brl,type bedroomp4) and instance specifies
(R1,type masterbedroonpresen}, which are at different
level of abstraction. To insert the evidence in the con-
structed Bayesian network, we need to take this differ-
ence into consideration. In particular, we need to map
the instance description to the evidence for the constiucte

Bayesian network. 73

7.2 Mapping an instance description to evidence

conditional probability of My, prop) € vis:

P((M, prop) € v|{Mp,prop) eV) = 10
P({M. prop) € v|(Mp, prop) V) = P(v|-V)

Using Bayes rule, probability°(v|—V)can be
computed as follows:

P(v) —P(V)
P(v|-V) = 1-P(V)
where P(v) and P(V) are the probabilities of
classesv andV respectively. We can compute
P(v) andP(V) using the probabilities associated
with the abstraction hierarchieas discussed in
Section 5.1.

Inference

We can compute the posterior probability of matefivi ~

ilobservation, from the constructed Bayesian network us-
An instance description is a set of quadruples of the formgng any standard inference algorithms, e.g., VE [Zhang and
(ix, prop,V, preseny, and(ix, prop,V,absenj. We map the  Poole, 1994]. The posterior probability of match depends
instance description to the evidence for the constructe@n the role assignments of the individuals. We maximize it

Bayesian network as follows:

over all possible role assignments.

e the quadruple(ix, prop,V, presen}, if propis non- 8 Conclusion

functional, provides observatiofiy, prop,V) = true
for the constructed Bayesian network.

In this paper, we have proposed a framework for decision

making in rich domains, where we can describe the obser-

e the quadruple(iy, prop,V,absen}, if prop is non-  vations (or instances) in the world at multiple levels of ab-

functional, provides observation: iy, prop,V) =

straction and detail and have probabilistic models at diffe

false ent levels of abstraction and detail, and be able to use them

to make decisions. We can build knowledge-based deci-

e the quadruple (iy, prop,v, presen}, if prop is sion tools in various domains such as mineral exploration
functional and datatype, provides observation:and hazard mappings, where we need to have probabilistic

ik, prop) = v.

reasoning and rich ontologies.

e the quadruple(iy, prop,v, presen}, if prop is func-  Acknowledgments

tional objecttype opropis hasTypeprovides obser-
vation: (i, prop) € v. We have two cases:

— If the observatiorik, prop) € vimplies “true” or
“false” for the node(Mp, prop), such tha, =
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