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ABSTRACT 
We describe collaborative efforts between a knowledge 
representation team, a community of scientists, and scientific 
information managers in developing knowledge models for 
ecological and environmental sciences.  Formal, structured 
approaches to knowledge representation used by the team (e.g., 
ontologies) can be informed by unstructured approaches to 
knowledge representation and semantic tagging already in use by 
the community.  Observations about the process of collaboration 
between the team and the community are used to generate an 
interaction model for supporting software tools.   

Categories and Subject Descriptors 
H.5.3 [Information Interfaces and Presentation]: Group and 
Organization Interfaces – Computer-supported cooperative work, 
Web-based interaction.  

General Terms 
Design, Human Factors 

Keywords 
Collaboration, observation, ontologies, concept maps, ecological 
knowledge 

1. INTRODUCTION 
Understanding and solving global environmental problems 
requires a new kind of science:  science that is interdisciplinary, 
collaborative, and responsive to the needs of decision-makers [9, 
17, 29].  Cross-disciplinary networks of scientists worldwide are 
marshalling their understanding in efforts to provide scientific 
results that target complex problems.  Formal networks of 
scientists—such as the Long Term Ecological Research (LTER) 
networks originally developed in the US (http://www.lternet.edu/) 
and now located worldwide (http://www.ilternet.edu/)—employ 
information managers whose primary task is to provide online 
access to relevant information.  With available resources rapidly 
increasing, the difficulty of discovering and making use of those 
resources (e.g., knowledge synthesis) is increasing as well, 
especially in conjunction with rapid expansion of the Web as a 
whole.  A number of efforts are underway to enable better sharing 
of data, information, and knowledge within the natural sciences, 
as discussed in [1, 16, 22, 26].  These efforts include ontology-
driven applications that make use of formal semantic reasoning to 
enable integration of heterogeneous resources. 

Ontology-based approaches require eliciting shared knowledge 
from large communities of domain scientists and decision makers.  

The authors are part of several large-scale initiatives that will use 
shared ontologies: the National Science Foundation-funded 
projects Science Environment for Ecological Knowledge (SEEK; 
http://seek.ecoinformatics.org) and Assessment and Research 
Infrastructure for Ecosystem Services (ARIES; 
http://ecoinformatics.uvm.edu/projects/the-aries-framework.html) 
that focus on automated integration of environmental and 
economic data with models and analytical pipelines; and the EU-
funded SEAMLESS project (http://www.seamless-ip.org), aimed 
at generating integrated assessment tools to understand how future 
alternative agricultural and environmental polices affect 
sustainable development in Europe. In all these projects, the need 
to crystallize community knowledge into formal ontologies has 
emerged paramount.  However, each of these projects has been 
confronted by the challenges identified by Grudin [10] specific to 
groupware development, particular the following two problems: 

• Disparity in work and benefit.  Scientists who have the 
knowledge that must be incorporated into ontologies lack 
understanding of the benefits that semantic modelling will 
ultimately provide them and are unwilling to engage in 
activities that do not provide clear, short-term benefits.  
Information managers who might be able to provide some of 
the knowledge and may even understand the long-term 
benefits for the scientists have more immediate problems and 
focus their time on developing short-term solutions.  Hence, 
ontology development requires “additional work from 
individuals who do not perceive a direct benefit” [10]. 

• Critical mass and Prisoner’s dilemma.  Ontology-driven 
applications are expected to be most useful when multiple 
users share their resources.  The work involved in ontology 
development and annotation of resources is not justified by a 
single user.  Hence, these projects require a “critical mass of 
users to be useful” [10] and early adopters must commit to 
substantial effort with no guarantee that others will follow. 

Grudin makes a number of relevant suggestions for addressing 
these problems [10]:   

• Reducing the work required of non-beneficiaries and indirect 
beneficiaries. 

• Design processes that create benefits for all group members. 

• Build in incentives for use. 

Developing an innovative approach to community-based ontology 
development that incorporates these suggestions presents an ill-
defined, unstructured problem requiring creative thinking.  
Development of solutions to such problems can be conceived as 



two-phased [27]:  1) an idea generation phase that requires a 
combination of divergent thinking and domain expertise, and 2) 
an implementation phase.  In this paper, we focus on the idea 
generation phase, envisioning systems that could effectively link 
short-term user needs supported by informal semantics with 
longer-term formal ontology development.  The ideas are based 
on our experiences working with these science communities, 
understanding of their tasks, and ongoing efforts at community-
based ontology development.  The goal of this paper is to propose 
innovative designs for systems that enable collaborative ontology 
development derived from our particular case, and also to 
stimulate vibrant debate and creative thinking about generic 
issues that confront interdisciplinary ontology development 
efforts. 

We begin with a brief description of the participants.   That is 
followed by a brief description of our ontology needs and an 
upper-level ontology that we have created.  These sections 
provide context for understanding the kinds of knowledge that we 
need to elicit from the community and the resources that we have 
available to apply to the problem.  Next, we present a set of use 
cases for supporting semantic-based work tasks that are 
commonly undertaken in our communities.  We describe how 
these tasks provide an opportunity to capture knowledge relevant 
to formal ontology development while providing immediate 
benefits to the users.  We provide a high-level conceptualization 
of a system that we are currently designing to implement these 
ideas.  Then, we describe methods that we have already 
undertaken to extract knowledge from users in direct and indirect 
ways, without the support of enabling systems.  These provide 
real examples of tasks that inform ontology development.  We 
discuss how these could be incorporated into our hypothetical 
system in ways that limit the work required from the user.  Lastly, 
we abstract our specific problems and proposed solutions into a 
simple model for enabling collaborative ontology development.    

2. PARTICIPANTS 
Initially, each project had its own Knowledge Representation 
(KR) research and personnel.  Several years ago we began to 
collaborate with a view towards constructing ontologies that 
would interoperate between projects, providing an opportunity to 
leverage each others’ work but also creating a larger, multi-
disciplinary group that was more capable of critical evaluation of 
different proposed ontologies.  

The KR team has cross-disciplinary expertise in computer science 
and domain science.  It consists of two computer scientists with 
expertise in ontologies, reasoning, and semantic mediation, and 
four domain scientists with differing disciplinary expertise, 
relatively high levels of computing experience, and varying 
backgrounds in knowledge representation.  The team has met 
regularly to devise strategies for ontology development.  
Discussion at these meetings ranges from formal symbolic logic 
to philosophy of science to targeted discussion about implicit 
knowledge embedded in datasets.  Time and effort was required 
to bridge disciplinary boundaries and understand inherent 
assumptions that impact the teams’ ability to collaborate on what 
is clearly an interdisciplinary task.  Numerous real examples of 
environmental data and analyses obtained from scientists and 
information managers have guided and informed these 
discussions.  One of the domain scientists is tasked with 
knowledge engineering, and is responsible for developing and 
maintaining the ontologies in Protégé 

(http://protege.stanford.edu/).  Another is tasked with acting as 
liaison to the scientific community.  

The KR team collaborates with the scientific and information 
management communities to elicit domain-specific knowledge.  
Few of the community collaborators have the time or interest to 
cultivate an understanding of formal ontologies.  Nor do they 
fully understand the benefits of ontology-driven systems, since 
few examples of these systems exist.  Hence, their personal 
commitment to ontology development is limited.  Yet they 
recognize that semantic approaches may provide future benefits to 
them and are willing to help to the extent that it does not impede 
their more immediate objectives.   

3. ONTOLOGY NEEDS 
In each of our projects, KR is tightly integrated into technical 
research and development.  We are working toward semi-
automated and automated resource discovery and integration, 
including finding and merging heterogeneous datasets and 
construction of workflows that pipe data through heterogeneous 
computing environments [4, 5, 6].  We are also constructing 
knowledge-driven rule-based systems.  These applications require 
high-quality ontologies and formal reasoning provided by 
description logics for consistency checking and validation.  Much 
of the functionality provided by ontological reasoning will be 
hidden from the user, yet will automate many low-level tasks that 
the user would otherwise have to undertake manually.   

Our ontology development has been two tiered:  1) development 
of an upper-level structuring framework for observation and 
measurements (core ontology), and 2) development of domain-
specific extensions to the core ontology.  Our early work was 
more focused on the first though the need for domain extensions 
was known and information was continually gathered from the 
community whenever possible.  Recently, the core ontology has 
been finalized and is currently being documented [15]. 

Scientists make observations about the world that are recorded as 
measurements.  The core ontology is the Extensible Observation 
Ontology (OBOE), which is a formal and generic conceptual 
framework for describing the semantics of observation and 
measurement.  The objective of OBOE was to separate knowledge 
that is essential for describing observation and measurement from 
knowledge that is asserted by a scientist and therefore a function 
of opinion, interpretation, or even space and time.  OBOE 
requires that an observation is about an entity (concept or thing), 
and a measurement is of a characteristic of the entity.  
Measurement relates a value to a measurement standard as well 
as an estimate about the confidence level of the value (e.g., 
measurement precision).  OBOE prescribes a structured approach 
for organizing domain-specific ontologies through the use of 
“extension points,” i.e., specific classes, properties, and 
constraints that are elaborated by different areas or views/models 
of science.  Therefore, OBOE can serve as an upper level 
framework for defining new domain ontologies as well as 
interoperating and relating existing domain ontologies. 

While OBOE enforces a formal framework for describing the 
semantics of observational data, extension of this framework with 
domain ontologies requires the knowledge and experience of 
domain scientists.  The KR team is continually involved in 
outreach to acquire community-based vocabularies and 
informally-structured knowledge.  These outreach activities 



provide a flow of informally-structured semantic description 
among collaborators (Figure 1). 

 

Ultimately the knowledge representation team must make some 
independent decisions about how best to model the domain within 
a formal ontology.  This, therefore, necessitates at least one and 
perhaps many iterations of review by scientists.  When the team 
has an ontology ready for review, we would like to recruit people 
from that domain to view it, comment, and propose changes.  
While trees may be used effectively to review the hierarchical 
structure, relationships are more difficult to communicate 
effectively.  They do not understand symbolic logic commonly 
employed in editors.  Usability testing of graphic visualizations 
conducted by the SEEK project indicates that they are confusing 
to domain users (Downey, personal communication).  
Additionally, community-wide ontological commitment [8] 
requires collective decision making, difficult to achieve without 
synchronous communication.  Currently, there is no obvious 
mechanism by which to obtain the needed input from reviewers. 

4. USER SEMANTIC TASKS AND 
COMPUTER-SUPPORTED USE CASES 
There is a need for more collaboration between our KR team, 
scientists, and information managers.  The complexity of 
ontologies and the difficulty of the knowledge modeling task 
presents a daunting obstacle to those who are not familiar with 
knowledge representation.  We need tools that link knowledge 
elicitation with tasks in which the community is already engaged, 
and development of methods and tools that enable rapid mapping 
from those to formal ontologies.   

There are many reasons to capture and represent knowledge in 
science, separate and apart from the resource discovery and 
integration goals of the Semantic Web.  Smith [23] suggested that 
oftentimes philosophers turn to science as a reliable way to learn 
about the things and processes of a given domain.  Much effort in 
science is focused on acquiring knowledge through scientific 
discourse.  This begins during formal education but is ongoing 
throughout the life of a scientist, who must be able to share his 
own perspective and understand those of competing explanations.  
Those semantic perspectives are implicit in the artifacts of 
science: tools, models, datasets, and publications.  Creation of 
these artifacts involves tasks that are inherently semantic and 
could both contribute to ontology development and be assisted by 
a knowledge base.  Here we provide four use cases of some 
example tasks, knowledge-based computer support for those 
tasks, and a vision for interaction mechanisms between and 
among different stakeholders.  

4.1 Controlled vocabulary use case 
Karen Mann is an information manager for one of the LTER field 
sites.  She and several of her colleagues at other field sites have 
decided to construct a standard set of terms and definitions to be 
used as metadata keywords, to enable better data discovery by 
scientists across the LTER network.  She is aware of the 
observation ontologies that are being developed, but doesn’t 
really understand them.  She is reluctant to attempt to make use of 
an approach that she doesn’t understand.  She does understand 
that ontologies enable even better data discovery and integration 
than her approach.  Therefore, she wants to work within the 
context of keywords and controlled vocabularies since that is 
what she understands, but she would also like to link her list of 
keywords to the ontology to take advantage of whatever 
additional functionality is made available. 

Karen enters a website that provides an intuitive interface to a 
knowledge base that holds many ontologies, both private and 
shared.  From this website she can create and manage her own 
private knowledge base.  She imports a list of terms that she has 
previously generated.  She can also import informal definitions 
(not constrained logical definitions), or she can enter the 
definitions on the website.  Her colleagues import their lists into 
their own private knowledge base as well.   They all indicate to 
the system that they want to share (or not) their private 
knowledge bases.  Karen selects her colleagues’ shared 
knowledge bases from a list, generates a collaborative knowledge 
base, and sends a message through the website asking them to 
collaborate with her.  From a collaboration screen, they are able 
to merge their vocabulary lists into a single unfiltered list.  The 
system maintains a link between their individual lists and the 
collective list, so that any changes made during collaboration can 
optionally be copied back to their individual knowledge bases.  
Their screens are linked.  When one person selects or edits a term 
everyone else’s screen automatically shows the change.  They can 
make use of VoIP or a chat window to discuss their vocabularies.  
In this case, because there are a number of participants they prefer 
to use chat [14].  Their chat session is recorded and at the end of 
their discussion they can request for the chat session to be copied 
to a blog attached to the collaborative knowledge base, providing 
a permanent record.   

They collaboratively review duplicate terms and definitions to 
determine semantic relationships.  They identify synonyms and 
can drag and drop synonyms on the screen so that they are 
adjacent to one another.  Where there are semantic conflicts they 
resolve them and edit the collective vocabulary.   

Once they have a complete collective list of terms, they can 
choose an option to annotate the terms in their list with an 
ontology.  A list of ontologies is provided to them, which includes 
a list of “Our Favorite Ontologies” that the system generates from 
each individual’s list of “My Favorite Ontologies.”  They decide 
on the ontologies they want to use (all of which are extensions to 
the OBOE observation ontology), and begin to the annotation 
process.  For each term, the system automatically shows them 
syntactically exact matches from their selected ontologies along 
with definitions.  They can easily explore parent, sibling, and 
child concepts as well as other related concepts to ensure that they 
understand the context of any given concept in the ontology and 
to reconsider their term selection.  They are able to search the 
knowledge base using a google-style interface to see what other 
concepts might be relevant.  They can ask the system to analyze 
their searches and suggest concepts based on the choices by other 

Figure 1.  Collaborative relationships between the 
knowledge engineering team, scientists, and information 
managers, and the types of semantic information that are 

shared



users who have made similar searches.  If they are uncertain about 
whether a concept is appropriate, they can request several levels 
of help: tips and tricks, online documentation of annotation 
procedures, examples, live chat with a knowledge engineer, or e-
mail support.  

If they do not find a concept that fits, they can suggest terms to be 
added to the ontology.  They recommend a concept and the 
system provides them with a wizard to capture their 
recommendations about where the concept belongs in the 
ontology.  The system allows them to go ahead and use the term 
with a tentative annotation.  Asynchronously, a knowledge 
engineer will consider where to place the term in the ontology.  
The system will provide him with information about the term 
from their knowledge base and from their search history; he may 
also request additional information from them.  If he decides to 
add the concept as suggested, the system makes any needed 
adjustments to their knowledge base.  If the concept is not added, 
the knowledge engineer can identify it as a synonym or make 
some other link from that term to the ontology such that the user 
can continue to use that term but the system can resolve it to the 
correct annotation.  They will get automatic notification of the 
final decision made by the knowledge engineer.  Task support for 
the knowledge engineer is further discussed in Section 4.4.   

When Karen and her colleagues apply keywords to resources such 
as datasets or publications, they each apply terms from their 
individual controlled vocabulary.  They can then select an option 
for automatic annotation that runs a script that constructs the 
correct ontological annotation.  The metadata therefore includes 
keywords from the local vocabulary and annotation to one or 
more ontologies allowing the resources to be used with ontology-
driven discovery and integration tools. 

4.2 Data description use case 
John Green is an ecologist with LTER who collects field data on 
plants.  He has numerous spreadsheets with similar but slightly 
varying schemas that he has collected over a number of years.  
John is interested in contributing his data to a portal so that he can 
participate in a new collaborative project that will analyze plant 
species from around the globe.  In order to do so, he must provide 
metadata that includes ontological annotation.   

The LTER information managers have previously developed a 
web application that walks users through the process of creating 
metadata for datasets.  Their knowledge base is accessed by this 
application, providing access to the site’s controlled vocabulary 
linked to ontologies.  His information manager has provided some 
training on how to make use of the application.  John has never 
actually used the system, but has a vague recollection of how to 
do it and enters the website with confidence knowing that both the 
description and annotation tasks are supported with intuitive user 
interfaces online help for novices.   

John creates metadata for the first dataset.  He loads the dataset 
into the web application, which analyzes the dataset and is able to 
automatically generate a fair amount of metadata.  The system 
prompts him for the remainder of the metadata.  Then he must 
begin the semantic annotation process.  He starts with the 
controlled vocabulary for his site.  The system prompts him to 
select keywords for the dataset as a whole, then for each attribute 
in the dataset.  Because the keywords are linked to an upper-level 
ontology, the system prompts him to annotate the relationships 
between attributes required by that ontology and guides him 

through that task.  If John has an attribute that he does not think is 
adequately expressed by any of the terms in the controlled 
vocabulary, he has all of the same ontology exploration 
functionality available to the information managers.  He can 
suggest terms to be added to the controlled vocabulary and/or to 
the ontology using the same procedure as the information 
manager.  In this case, his recommendation is forwarded to the 
information manager who can assess the term, add it to the 
controlled vocabulary and link it to the ontology, or forward it to 
the knowledge engineer if it requires modification of the 
ontology.   

Once the first dataset has been described and annotated, John has 
several datasets that used the same schema.  He loads the second 
dataset and indicates to the system that it is a duplicate of the first 
in terms of physical, logical, and semantic description.  The 
system analyzes both datasets using a metadata ontology and 
verifies that that seems to be the case.  The system duplicates the 
metadata and annotations then prompts John for any edits that 
might need to be made.  The system “knows” which parts of the 
metadata or annotations could possibly change because of the 
existence of the metadata ontology and leads him through those.  
If the datasets are not duplicates, the system will inform John 
where there are discrepancies and support him through the 
process of comparing datasets, resolving issues and generating 
correct metadata and annotations. 

The remaining datasets are similar to the first dataset but vary in 
different ways.  John loads a new dataset into the tool and 
indicates to the system that it is similar to the first dataset.  The 
system compares table structures, data types, and column content 
and recognizes where there are differences.  Again, the system 
knows where metadata and annotations could possibly change, 
and prompts John to enter the correct information. 

John wants to generate a template dataset that is already described 
and annotated (to the extent possible) for future use.  He can pick 
any of the datasets already described and annotated, and request a 
template.  The system generates a blank table with associated 
metadata and annotations, then prompts for other information that 
is likely to be constant, such as project descriptions and 
personnel.  John can elect to fill these in automatically from the 
original dataset or he can enter new information manually.  Once 
the template is finished, he can save it and easily generate new 
datasets from it.  Every time he does so, the system prompts him 
for information that is collection-specific. 

Now that John has his datasets described and annotated, he 
contributes them to the portal, which is also tied to the knowledge 
base.  He and a number of other scientists then begin to 
collaboratively decide which data should be integrated.  They 
enter a web application that allows them to load up multiple 
datasets and collectively discuss them.  As with the information 
managers, they can link their screens such that changes by one 
person automatically appear on everyone else’s screen.  They also 
have chat, blog, and VoIP options.  As they discuss the datasets 
they are able to map between them semi-automatically using the 
knowledge base and attribute annotations.  They can modify any 
of the mappings that the knowledge base suggests plus add new 
mappings.  They can generate integrated datasets based on their 
mappings that inherit relevant metadata and annotations from the 
source datasets, prompting them to complete whatever new 
metadata or annotations are needed.  As they collaboratively 
decide on the mappings between datasets, the knowledge base 



tracks their decisions.  For instance, the scientists decide that 
dataset 1 attribute 12 maps to dataset 2 attribute 6.  These two 
attributes were annotated differently and there currently is no 
relationship between those concepts in the ontology.  Through 
their collaborative mapping, however, they have indicated that 
there is indeed a relationship between these concepts.  As they 
work through semi-automatic mapping of many attributes from 
many datasets the system is able to analyze their choices and 
suggest changes to the ontology to the knowledge engineer.   

4.3 Concept mapping use case 
Through the data portal, John has begun a dialogue with several 
scientists from different disciplines about potentially working 
together on a research project.  Because they are familiar with 
different theories, research paradigms, and study methods, they 
need to spend a significant amount of time developing a 
conceptual framework that is well thought out and integrates their 
different perspectives.  They are located in different universities 
and they can’t take enough time away from their teaching to 
adequately develop a collaborative approach.  They decide to 
make use of a new web application that provides collaborative 
concept mapping and is linked to the knowledge base.   

They enter the website and rather than choose specific ontologies, 
they select the portal and request to use the same ontologies as the 
portal.  Independently, they each draw concept maps and process 
flow diagrams that represent their research interests.  Each term 
that they use, if present in the selected ontologies, is automatically 
completed as they type it in.  Again, if they want to use a term 
that isn’t in the ontology they can suggest terms.  The linkages 
between terms in the diagram provide information about 
relationships between concepts that the system tracks, analyzes, 
and can use to suggest changes to the knowledge engineer.   

Once they have each constructed their own diagrams they can 
collaboratively view and discuss each others work using linked 
screens, chat, blogs, and VoIP.  They can draw diagrams together 
representing their collective views.  As they discuss the diagrams 
they begin to resolve semantic issues.  They determine that there 
is a close relationship between certain concepts in their different 
disciplines but they use different terminology for those concepts.  
As they find these differences they draw links on their diagrams.  
The system tracks these linkages and can use them to suggest 
links across domain-specific extensions of the ontology.   

They can request the system to “show datasets,” and next to each 
term on their maps it will provide titles of datasets in the portal 
that are annotated with that term or related terms.  They can 
explore these datasets in the same collaborative way as described 
above, and construct integrated datasets.  The portal is linked to a 
repository of publications that have been annotated.  Therefore 
“show publications” can be used to display publications that have 
been annotated with the terms related to those they have used. 

After drawing many diagrams, exploring datasets, and reading 
relevant publications they are ready to design their research 
project.  They make use of a “workflow design” module that 
provides some structure for diagramming a conceptual scientific 
workflow using concepts from the knowledge base.  Each node in 
the workflow represents a computational analysis or procedure 
[16].  Links between the nodes represent flow of output data from 
one component to input data for the next.  They use terms from 
model and process ontologies, with the system using automatic 
word completion.  They can indicate specific datasets from the 

portal that are to be input to the workflow.  When they are 
satisfied with their workflow, they can export it as a beginning 
workflow for a scientific workflow system and the annotations are 
transferred with the workflow. 

4.4 Ontology review use case 
Bob Card is a knowledge engineer working with the LTER 
community.  He works on a tightly-coupled team that includes 
both computer and domain scientists.  Combining the teams’ 
collective knowledge with information from text mining he has 
generated the knowledge base used in the above cases.  He is 
rapidly receiving input from all of the suggestions made by his 
colleagues, as well as analysis of user actions from the system.  
He needs some sort of semantic management system to help him 
track all of these recommendations, make sense of them, and 
generate automated response to users who are affected by a given 
decision that he makes. 

He is able to generate term lists from any combination of the 
above sources, flexibly sort and group terms, and try out tentative 
hierarchical structures before making any changes to his formal 
ontology.  As he works with the tentative hierarchies he can invite 
participants to collaborate with him using linked screens.  Or, he 
can request that colleagues review and modify a copy of any 
tentative hierarchy.  The system will compare the modified copy 
with his tentative structure and show him where changes have 
been proposed.  At any point he can modify the tentative 
ontology.  When Bob is ready, he can request the system to align 
his tentative ontology with the existing ontology and show 
changes.  When he is satisfied with the tentative ontology he can 
“commit” it and the system will automatically replace the affected 
portion of the existing ontology with the necessary changes.  The 
earlier version is stored in case he needs to return to it.  The 
system analyzes the changes and determines which annotated 
resources are affected.  It creates a new version of annotations for 
those resources and notifies the user of the change. 

5.   EXAMPLE COLLABORATION-
CENTERED SOLUTION 
Our team has started investigating technical solutions to the 
challenge of defining user-friendly, semi-automated processes to 
distill disciplinary knowledge into formal ontologies.  Our goal is 
to accomplish this with the least possible amount of difficulty for 
the user and transparent, non-obtrusive involvement of the 
knowledge base.  The approach that we are taking is design of 
interacting systems for knowledge base development and 
management, community-based ontology interaction, and 
multiple knowledge-based applications (Figure 2.).   

The ThinkCap Collaborative Knowledge Portal is a prototype 
web application still under development that provides user 
interfaces over a remote, multi-ontology knowledge base, 
designed to meet the needs of both non-technical and technical 
users (http://ecoinformatics.uvm.edu/technologies/thinkcap.html).  
It aims to allow remote users of diverse disciplines and technical 
levels to develop shared conceptualizations that are automatically 
formalized into OWL or RDFS ontologies. 

The paradigm of knowledge elicitation being implemented in 
ThinkCap uses a knowledge engineer in an asynchronous way; by 
decoupling the formal knowledge base from the "arena" of user 
discussion full concurrency of the editing of both is made 
possible.  The process is assisted by a full-text search engine that 



indexes OWL concept descriptions as well as user-provided 
documentation (such as web pages or academic papers).  

We are currently extending ThinkCap to help such a diverse 
community of users negotiate the rigorous, streamlined axioms in 
an OWL knowledge space.  A new collaborative portal in 
ThinkCap will use a reasoner-assisted process and an upper 
ontology to define different views of an OWL knowledge base.  
These simplified views will allow applications to show only the 
level of semantic complexity necessary for the immediate task.  
Views will include conversion of ontologies to topic maps 
(www.topicmaps.org). Topic maps reflect the knowledge in the 
ontology base in ways that are much friendlier to the user 
community and much easier to operate on concurrently.  The 
portal will provide a web-based whiteboard environment for 
collaborative topic map editing.  A reasoner-assisted listener 
process will analyze user changes to the topic map and provide 
suggestions to a knowledge engineer about possible relevance to 
the underlying OWL axioms.  Once a prototype has been tested 
with users, we will design additional interfaces. 

OntoGrow is an interface to ThinkCap that is currently under 
design.  OntoGrow will provide functionality for communities to 
interact with ThinkCap and can either be accessed directly or 
indirectly through an application add-in.  OntoGrow has three 
objectives:  1) provide community feedback/critique of 
ontologies, 2) recommend a term for an ontology, and 3) map 
semantics between a resource and one or more ontologies.   The 
multiple views of ThinkCap will allow OntoGrow to provide 
wizards that step a user through these processes in more intuitive 
ways.  For instance, to recommend a new term, the user could 
first be asked to provide its definition through the dictionary view, 
find a related term with a thesauri search, place the term in a 
hierarchy by using a taxonomy to expose the context around the 
related terms that the user has selected, and relate the term on a 
topic map generated from the portion of the ontology that 
includes that hierarchical element.  Thus, the user can be stepped 
through the task of ontology navigation by using their choices at 
each point to simplify the choices at the next level of complexity. 
The applications that are currently being developed by our 
projects will each be able to make use of OntoGrow as an add-in 
or through remote calls, providing a uniform mechanism of 
interaction with the knowledge base.  In addition, we are 
designing a new system, SciDesign, that is envisioned to provide 

the semantic-driven functionality described in our use cases.  
SciDesign will provide an interface for knowledge-based 
scientific discourse, resource discovery, exploration, and 
management, and research design.  As scientists and information 
managers make use of SciDesign for individual or collaborative 
efforts, their actions will be captured and analyzed by the system 
and used to inform ontology development.  Technical designs for 
SciDesign, OntoGrow, and ThinkCap are currently being 
developed under the second, implementation phase of complex 
problem solving that follows idea generation. 

6. KNOWLEDGE ELICITATION- 
CENTERED PROCESSES AND 
SOLUTIONS 
We present four approaches that our KR team has used to acquire 
scientific knowledge, beginning with the least demanding for the 
participants and ending with the most collaboration-intensive.  
Each is followed by suggestions for incorporation of these tasks 
into the proposed system. 

6.1 Text mining 
In science, the knowledge representation method of choice has 
historically been written texts (publications) or conference 
presentations with accompanying figures and tables. These 
approaches are highly expressive and have worked well for 
sharing scientific knowledge for generations.  A wealth of 
information about scientific concepts is locked up in textbooks 
and publications.  Effective mechanisms for mining these sources 
provide abundant information for ontology development with no 
additional effort on scientists’ parts.  The downside of this 
approach is that structure or presentation of knowledge within a 
text represents the perspective of one or a few scientists, and does 
not necessarily capture the perspective of the broader community.  
It may not provide a knowledge model for which there can be 
widespread ontological commitment [8].  Therefore, text mining 
approaches are dependent on extensive collaborative review of 
the results.  
The knowledge representation team is exploring different ways of 
extracting knowledge from a popular ecological textbook [3] for 
use in the OBOE framework.  The team is quantifying the 
strength of association among key ecological terms using various 
measures of proximity.  For example, the term “population” is 
strongly associated with “individual” and also “community”; 
however, the association between “individual” and “community” 
is considerably weaker.  Moreover, the proximity of different sets 
of prepositions and verbs to coupled ecological terms is being 
used as a mechanism to determine the most likely type of 
relationship between terms.  For example, when “individual” and 
“population” are in close proximity, words like “in”, “part” and 
“contain” are often also in close proximity suggesting a part-of 
relationship between these terms.  The team is also using book 
chapter, section, and subsection headings to help structure the 
nested ecological terms, which helps distill broader concepts in 
the textbook domain (e.g., “competition” or “ecosystem”). 
There are many mechanisms for incorporating text mining into 
the hypothetical system.  This functionality could be provided to 
knowledge engineers within ThinkCap.  Text mining could be 
integrated into SciDesign as an aid for scientific literature search 
and review.  Substantial time is dedicated by scientists to 
following the literature in their own discipline.  Increasingly the 
boundaries between disciplines must be crossed and scientists 

Figure 2.  Interacting systems that make use and inform 
development of multiple ontologies. 



must search for relevant literature in disciplines that are less well 
known to them.  Visual analytics is a new approach that mines 
semantic content across many potential resources and provides 
tools for visual content analysis [25].  Linking visual analytics 
with text mining would provide scientists with functionality to 
more easily, effectively, and comprehensively conduct literature 
searches.  Providing computer support that enables this task 
would create an environment where it is to the scientist’s benefit 
to use the system while providing valuable semantic information 
for ontology development.  In a given literature search, selection 
of multiple resources from different disciplines, journals, 
websites, and other online sources provides evidence that these 
content sources are semantically related in some way.  Combining 
source-specific semantic keywords with the choices and actions 
of many scientists equates to other forms of social tagging 
prevalent in Web 2.0.  The system should be equipped to analyze 
these choices, mine the relevant texts, and both suggest other 
literature that might be relevant to the scientist and in parallel, 
propose terms and relationships to the knowledge engineer. 

6.2 Keywords and controlled vocabularies 
Scientist’s regularly apply keywords to textbooks, publications, 
and datasets.  Traditionally these are uncontrolled, though 
controlled vocabularies are becoming more common (i.e. for 
computer science publications IEEE and ACM share a definite 
tree-structured list of terms).  Additionally, the titles they choose 
provide information about important terms.  Mining titles and 
keywords for concepts and relationships provides a pathway for 
acquiring views on scientific knowledge that requires little effort 
from scientists, but does require collaboration with information 
managers who know how to access these on their systems. 
Separate from our projects, LTER information managers 
conducted a mining project on network datasets and publications 
in order to develop a controlled vocabulary [21].  A list was 
generated by compiling all words appearing in metadata titles, 
keywords, and attributes, and in publication titles and keywords.  
The resultant list contained 21,153 terms.  The list was filtered for 
‘of,’ ‘the,’ and similar definite articles and prepositions.    Terms 
were then rated in importance based on a number of usage 
criteria.  The information managers are continuing to work with 
this list to develop a controlled vocabulary for use in tagging 
datasets and publications.  They provided this list to our KR team, 
who were able to incorporate these terms into ontology 
development.  The intention of both groups is to ultimately link 
the information managers’ controlled vocabularies to the ontology 
such that controlled keywords applied to any resource are 
automatically annotated to the ontology, the ontology can be used 
to suggest terms that are not available in the controlled 
vocabulary, and the process of users applying new keywords can 
inform continued development of both the controlled vocabulary 
and the ontology.  
In the proposed system, support for information management 
activities could be embedded in SciDesign.  One of the above use 
cases explicitly addresses supporting construction and 
management of local vocabularies.  There are many other 
information management activities that could be supported.  
Sometimes these activities are conducted by information 
managers, but there are many scientists who work independently 
and must conduct these activities themselves.  Even when 
information managers are employed, they must work closely with 
scientists.  Design of functionality to assist information 

management needs can be leveraged to support the activities of 
the scientists.   
For instance, information managers collectively invest much 
effort in designing databases, developing normalized schemas, 
standardizing keywords, and developing standards for metadata.  
They have their own knowledge arena that combines both generic 
data management concepts and how those concepts are best 
applied to a particular domain of interest.  Separate ontologies 
should be constructed to capture this knowledge.  Rule-bases 
could be constructed that link to those ontologies and can be used 
to guide data management efforts.  For instance, in designing a 
new table for collection of a particular kind of field data, the 
system could use an ontology and rules about database design to 
provide expert advice and best practices, mine available data to 
find and show examples of datasets that meet those guidelines and 
are semantically equivalent to the data the scientist intends to 
collect, and suggest one or more table designs.   

6.3 Concept mapping 
Concept mapping is an approach that the KR team has used that 
provides direct input for ontology development from a number of 
scientists while they are engaged in an activity that is useful to 
them.  Concept mapping is a representation mechanism that has 
been developed to support a constructivist notion of learning [18]. 
Concept maps are a form of directed graph that captures 
associations (links) between concepts (nodes; Figure 3). Concept 
mapping provides maximum flexibility for conceptualization of a 
domain of interest, and any kind of association can be mapped.  
From a collaborative perspective, concept maps provide visual 
representation of disparate conceptual frameworks including the 
most important terms from a particular view, and places those 
terms in context with one another for rapid understanding.   

 
Figure 3.  Example concept map showing relationships 

between terms related to the scientific method. 
The utility of concept maps as a mechanism for enabling 
interdisciplinary discussion has been demonstrated [11, 13].  In 
cross-disciplinary problem solving efforts, colleagues with 
differing conceptual frameworks often have limited ability to 
comprehend each other [7, 28, 13]. The degree to which 
comprehension is limited depends on the conceptual proximity of 



relevant conceptual frameworks - hence, two physical scientists 
are more readily able to collaborate than a physical and social 
scientist, or a life scientist and a computer scientist.  Enabling 
cross-disciplinary collaboration is therefore a problem of 
representing disciplinary concepts in a way that enables rapid 
comprehension and learning by those outside of that discipline 
such that integrative problems can be solved.  

The process of concept mapping is analogous in many ways to 
social tagging systems.  The content, in this case, is an 
unrepresented concept in the mind of the scientist.  A node in a 
concept map represents that concept.  Two scientists may use 
different terms in the node that describes that concept, essentially 
tagging that concept differently.  Links between nodes specify 
that a relationship of some sort exists between those concepts.  
This is roughly equivalent to inferring implicit semantic links 
between Web content.  Two scientists drawing concept maps 
about the same research area will each have their own map using 
the same or different terms and relationships, but they are tagging 
the same semantic content.  During scientific discourse, these 
disparate concept spaces may become partially aligned.  Hence, 
concept maps from multiple scientists build a participatory 
ecosystem of content that can provide important vocabulary, 
indicate synonyms, show informal associations between terms, 
and provide hierarchical relationships.  These semantic tags 
require structuring by the KR team and subsequent review and 
editing for clearance, cohesion, and soundness.  However, the 
benefit of using concept maps is that it engages the scientific 
community in supplying knowledge for ontology development in 
a way that has other direct and immediate benefits to them, such 
that they are more likely to participate.   

In the proposed system, concept maps and other diagrammatic 
forms are expected to be an important part of SciDesign.  
Scientists draw many sorts of diagrams and frequently find that 
mode of expression useful while discussing complicated cross-
disciplinary subjects.  Process diagrams, flow diagrams, project 
diagrams – there are an unlimited number of uses of diagrams.  
The system should provide flexible, intuitive diagramming tools 
that can be collaboratively constructed and shared, plus easily 
extracted and converted to publication-quality diagrams.  If the 
nodes on the diagrams are linked to ontologies they can provide 
an individual “view” of the knowledge base, allowing each 
scientist to maintain his own conceptual perspective without 
compromising the collective formal structure.  We have found 
that it is important to the scientists to be able to express their 
individual view with no constraints, and that the underlying 
subsumption hierarchy is much less important to them [20].  
Science is, after all, about investigating areas of our 
understanding where there is not agreement, and understanding 
linkages across hierarchies rather than within hierarchies.  Much 
of our analysis involves providing mechanisms for online and 
collaborative construction of concept maps and other scientific 
diagrams that facilitate working with different ‘views’ of a set of 
ontologies based on individual perspectives and choices about 
representation. 

6.4 Meeting with scientists 
The utility of ontologies has been introduced to scores of 
ecologists during a week-long training workshop on 
ecoinformatics that the SEEK project holds each January.  The 
participants in this training are 20 new faculty and postdoctoral 
associates selected from on average 60-80 applicants from around 

the US. The selected participants represent the most technically-
savvy of young ecologists tackling problems that require 
computational approaches.  During the workshop, one full day is 
spent covering ontologies.  Over the four years that the training 
has been conducted, the ontology portion has been constantly 
modified based on feedback from students, and many new 
approaches have been tried.  In general, the students are exposed 
to exercises that highlight the semantic issues in ecological 
datasets and the requirements for resolving those issues.  They 
construct ontologies for their research interests on paper.  We 
demonstrate ontology editors and touch graph visualizations.  
They step through portions of ontology editing exercises such as 
CO-ODE’s pizza ontology [12].  The ontology portion of the 
training is always the most difficult to present, and often receives 
criticism in post-training surveys.  Even though participants 
understand the semantic issues and recognize that ontologies 
might be useful for addressing them, they do not think that it is 
important for them to understand ontologies.  In the most recent 
training (January 2007) survey feedback indicated that 50 percent 
of participants, when asked what one thing they would change 
about the training, thought the ontology portion should be 
removed.  This is a clear indication that direct exercises with 
ontologies is an obscure task for ecological scientists and more 
gentle tools are needed for communicating semantic models. 

The KR team has attempted to engage groups of scientists in 
ontology development through working meetings where they are 
asked to talk about their research, explain terms, brainstorm 
hierarchies, and provide lists of terms.  Generally, their level of 
interest in these activities fades rather rapidly, mirroring the 
response from the training activities.  Additionally, the 
hierarchical structures that they propose are often unusable in our 
ontologies due to logical errors.  Most importantly, those who are 
willing to participate are typically new faculty who are under 
substantial pressure to produce research results quickly in order to 
obtain tenure.  Their modus operandi is to only get involved in 
activities that will quickly lead to publication.  Few obtain any 
short-term professional benefit for assisting in the development of 
ontologies; hence, few can remain engaged at the level needed.   
Given all of these issues, the KR team has to be creative about 
finding other ways to obtain their input.  The hypothetical system 
as a whole represents a new approach to “meeting with the 
scientists.”  This new approach is virtual rather than physical, and 
focuses on linking user-centered task support with knowledge 
development task needs.  It combines “pulling” ontology 
development through analysis of the way semantics are used by 
the community with “pushing” ontology development with easy 
mechanisms for reviewing and suggesting changes during task 
performance.  It is an attempt to solve the problems of disparity of 
work and benefit, critical mass, and Prisoner’s dilemma [10] that 
are prevalent in collaborative ontology development projects.  It 
does that by bridging the gap between formal and informal 
semantic approaches in ways that reduces workload and provide 
benefits for all participants. 

7. COLLABORATIVE ONTOLOGY 
DEVELOPMENT MODEL 
Developing semantic systems that depend on and enable group 
sharing of resources differ in fundamental ways from developing 
software that supports individuals and large organizations [10].  
One clear difference is that in both of the latter, the tasks to be 
supported are well-defined in advance by product managers or in-



house IT experts, respectively.  In contrast, semantic tasks may be 
understood for the work of the KR team but are poorly defined for 
any new community that is to be supported.  For instance, much 
work has been conducted on semantic tasks of online shoppers 
and therefore systems that support and make use of these 
activities are becoming common place.  Those tasks are not 
necessarily analogous in any way to the semantic tasks of a 
completely different group such as scientists.  The semantic tasks 
must be understood before they can be supported.  A second 
difference is that the introduction of systems that drastically 
change work patterns require corresponding investments in 
dealing with social and political factors that go along with change 
management.  These issues are largely absent in development of 
single-user software.  They are strongly present in organizational 
settings where there is also an infrastructure in place to provide 
training, restructure work, and provide leadership.  Our semantic 
systems for scientists bring about all of the challenges of 
changing work processes with little of the supporting 
infrastructure.  This is a common reason for failure of new 
groupware solutions.  For these reasons and many others it is 
essential that collaborative knowledge development teams 
become strategic in their activities.  Unfortunately, there are few 
models available to guide strategic choices. 
We propose the following model for development of semantic 
systems that depend on collaboration between knowledge 
representation specialists and the communities that they aspire to 
support.  System development should be explicitly divided into 
two phases: an idea generation phase and an implementation 
phase (Figure 4).  The idea generation phase can be conceived of 
as product development on steroids.  It is separated out to 
emphasize that this is a lengthy, time-consuming process that may 
require as much resource investment as the implementation phase.   

 

Idea generation is an iterative process that has the goal of 
discovering linkages between semantic tasks of the collective 
group of participants that can be leveraged by system design.  In 
its simplest form, it consists of learning about the workflow of 
each participating stakeholder group, analyzing those in terms of 
semantic tasks, then analyzing the collective set for tasks that can 
be linked in some way.  In practice this involves a rather chaotic 
period of interaction between different participants and the KR 
team as they learn about each other’s perspectives and search for 
common ground.  These interactions are difficult because they 
depend on overcoming the very semantic barriers that semantic 

systems target.  Developing cross-disciplinary understanding is 
the first step towards the truly interdisciplinary perspective that is 
required for effective idea generation.  While there are few 
theories about enabling interdisciplinary interaction, social 
science research on boundaries, boundary crossing, and boundary 
spanners point to the importance of constructing shared artifacts, 
facilitated by an individual whose is explicitly tasked with 
mediating between the groups [24, 13, 30, 2].  The role of a 
mediator in any sort of groupware development is currently 
unspecified but in the semantic system case, could include soft 
system analysis of the KR team, domain specialists, and the 
broader community. 

8. CONCLUSIONS 
This paper describes interactions that have taken place between a 
knowledge representation team, natural scientists, and information 
managers, and uses those to drive a set of use cases for design of 
systems that enable better collaboration on ontology development.  
Previous interactions have been stymied by the lack of 
community understanding of ontologies and willingness to 
dedicate time towards ontology development.  These problems 
reflect the lack of direct, immediate benefit for the participant.  
Our experience leads us to believe that formal ontology 
development could be more effectively informed by constructing 
tools that capture semantic decisions that are made in the course 
of the community’s everyday work.  Our community of interest 
regularly semantically tags the artifacts used in the conduct of 
science – datasets, publications, and models, and makes use of 
them in ways that capture semantic linkages.  Design and 
development of systems that capture these semantic decisions and 
effectively make use of them to inform ontology development has 
been initiated but is in its infancy.  Ultimately, we hope to have 
prototype systems and showcase applications that use those 
systems to demonstrate the collective benefits of ontology-based 
systems and applications.   
The ideas that are generated through this process are not a 
complete set.  They represent one or a few of many possible 
integrated approaches to linking semantic tasks.  As the ideas are 
implemented and enacted within the broader community, other 
ideas will emerge.  It is extremely important that any strategy 
taken explicitly account for feedbacks throughout the entire 
process including providing mechanisms to incorporate the views 
of the broader community in long-term system development. 
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