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Preface

This volume contains the proceedings of the First International Workshop on Visual
Languages and Logic (VLL 07), held in Coeur d’Aléne, Idaho,USA, on the 23rd
September 2007, as a satellite event of the 2007 IEEE Symposium on Visual Languages
and Human Centric Computing (VL/HCC 2007).

Our goal in proposing the VLL Workshop to the VL/HCC organisers was to bring
together researchers to explore the current state of research at the intersection of visual
languages and logic, including topics such as: graphical notations for logics (either
classical or non-classical, such as first or higher order logic, temporal logic, descrip-
tion logic, independence friendly logic, spatial logic); diagrammatic reasoning; the-
orem proving; formalisation (syntax, semantics, reasoning rules); expressiveness of
visual logics; visual logic programming languages; visualspecification languages; ap-
plications; and tool support for visual logics.

The eight papers presented here were each reviewed by three or four programme
committee members, and provide an insight into some of the interesting combinations
of logic and visualisation currently being investigated.

As anyone who has organised such a meeting knows, success depends on many
people. We wish to thank the members of the Programme Committee, who, despite
being given a very short time to complete their tasks, provided prompt and helpful
feedback.

Thanks are also due to the VL/HCC 2007 organisers for providing the opportunity
to run VLL 07, and for their logistic support, and to the Swedish Institute of Computer
Science for its sponsorship. Finally, we wish to thank the VLL 07 presenters, without
whom there would be no workshop.

These proceedings will be published as volume 274 in the CEURse-
ries, published electronically and available online at http://ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/.

Philip Cox1, Andrew Fish2 and John Howse2

23rd September 2007

(1) Dalhousie University, Canada
(2) University of Brighton, UK
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A Sequent Based Logic for Coincidence Grids
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Abstract

Information is often represented in tabular format in everyday documents such
as balance sheets, sales figures, and so on. Tables represent an interesting point in
the spectrum of representation systems between pictures and sentences, since some
aspect of tables are sentential or conventional in nature, while others are graphical.
In this paper we describe the logic of a particular formalized tabular representation
system, that of coincidence grids. Although less common than everyday tables,
this system is recommended for use in the search for solution of so-called “Logic
Puzzles”. Such puzzles provide a specific reasoning task in service of which the
tabular representation is used.

1 Introduction
Representations appear to range along a spectrum from the highly conventional sen-
tential representations to pictorial representations which are strongly isomorphic to the
objects which they represent. The diagrams used in the Hyperproof program are “pic-
torial” in this sense, being pictures of a checkerboard on which blocks of various sizes
and shapes are placed [3]. The diagrams introduced by Euler and Venn [4, 8] and stud-
ied by Shin in [6] and Hammer in [5] have some features of pictorial representations,
but lack others. For example, in Euler diagrams, closed curves are used to represent
sets, and the points within such curves represent the members of the represented sets.
This is not a direct pictorial representation of a set in the way that Hyperproof’s blocks
are, or could be, pictures of real objects.

The main body of this paper is concerned with a discussion of the logic of a par-
ticular tabular representation, one that we call coincidence grids. This representation
is recommended for use in the solution of certain “logic puzzles” found some puzzle
books. We have chosen to study this somewhat uncommon representation because the
representation is used in service of particular reasoning problems, and these problems
have clear cut structures. This representation uses graphical constraints in only a very
simple way compared to representations like the Venn and Euler systems. The only
graphical constraint which is exploited by the use of tabular representations is that
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each cell of the table can contain exactly one value, and therefore if a value is already
present in a cell then no other value can fill that role.

1.1 Outline
The methodology which we adopt is exactly that used by logicians investigating proof
and model theories of the more familiar sentential logics, for example first order logic.
In Section 3 we specify the syntax of the representation, and then, in Section 4 we
present a model theory for the representation, that is a mapping from the representation
to the world which allows us to assert that certain instances of the representation are ac-
curate descriptions of the (real or imaginary) world. Next, in Section 5, we describe the
inference rules which may be applied to instances of the representation to produce new
instances. Finally, in Sections 6 and 7, we give proofs of soundness and completeness
for the logic described.

2 Coincidence Grids
Coincidence grids are recommended in “logic puzzle” books as an aid to solving certain
kinds of logic puzzles. Here is an example problem:

Sylvia and four other workers in Midsville were unemployed for a short time last
year when they decided to change their occupations (one was a telephone operator)
and undergo retraining for new jobs. The five are now happily re-employed (one is a
mechanic). From the premises below, determine each worker’s first name, last name
(one’s is Swanson), former job, and present job.

1. The five workers are Tom, the former welder, the present arcade manager,
Ms. Cortez, and the present fitness instructor (who is not Mr. Bertram).

2. Ralph used to be a foreman.

3. Marie who is neither Cortez nor Monroe, used to be a secretary.

4. Mr. Hampton is now a mail carrier.

5. The programmer, who is not Erica, used to repair TVs.

Figure 1 shows an example coincidence grid used in the solution of this puzzle.
Puzzles of this type involve the attributes possessed by individuals. Each individual,
typically a person, is known to have a number of attributes: first name, current occupa-
tion, etc. The set of available values for these attributes is stated in the puzzle and these
values are shared among the individuals exhaustively and exclusively. A solution to the
puzzle is a statement of exactly which single and unique value for all of the attributes
each individual has.

The main interest in this paper is in formalizing and characterizing the reasoning
that may be performed using the coincidence grid representation system. In contrast,
the main interest in logic puzzles is in the extraction of the correct information for
display in the initial diagram. This is an essentially heterogeneous reasoning problem,
of the form discussed in [1, 2, 7] but we do not discuss this feature of logic puzzles
in this paper. If one were to imagine the sentential assumptions expressed in a formal
logic, perhaps as formulae whose atomic subformulae are constrained to be equalities,
then the puzzles would be quite trivial to solve, indicating that the real trick in these
puzzles is an appropriate understanding of the subtleties of the semantics of natural
language.
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Figure 1: A coincidence grid diagram

There are two variable quantities in the coincidence grid, the number of attributes
with which the problem is concerned, and the number of values each attribute may
take on. Information concerning these problems comes in the form of assertions about
the coincidence or non-coincidence of pairs of values for attributes. For example, the
sentence “Ralph used to be the foreman” asserts that the object with first name “Ralph”
also has the former occupation “foreman”. The diagram of Figure 1 consists of a num-
ber of individual grids, each of which have as their axes two of the attributes mentioned
in the problem. For example the rightmost grid on the top row of the diagram has as
its axes the “first name” and “former occupation” attributes. The diagram has a unique
square grid for each pair of distinct attributes.

If we adopt the convention that a cell marked with a X which is in a particular row
and column indicates that the object with the property labeling the row is the same as
the object with the property labeling the column, and the same cell marked with a ×
means that those same properties are known not to hold of the same object, then we can
use the representation to indicate concisely certain assertions about the problem. For
example, the X in the leftmost column of the grid representing the product of the “first
name” and “former occupation” attributes, represents the assertion that “Ralph used to
be a foreman” (hypothesis 2 of the example problem). While the × in that same grid
represents the assertion that “Tom is not the former welder”.

3 Syntax
We begin by defining the basic syntactic building blocks which will be used to construct
coincidence grids:

• Grids - for all natural numbers n we will have a countably infinite number of
n × n grids each consisting of n2 cells. Each grid is taken to represent informa-
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tion relating two attributes, each row or column represents information about an
individual value, and each cell is taken to represent whether there is some object
which has as values both those represented by that cell’s row and column.

• Labels - a countably infinite number of labels (collected into the set L) used to
give names to the rows and columns of each grid.

• Marks - Cells of grids can be marked with either X or ×. X will be used in a
cell when a single object is taken to have the pair of values of the cell’s row and
column labels, and × will be used when the object does not have that value pair.

When referring to the rows and columns of a grid we will rely on the common
understanding of these notions. For convenience we will make reference to cells of a
grid using pairs of rows and columns, for this we will use a square bracket notation,
e.g., [r, c]. When using this notation the order of r and c is irrelevant, i.e., [r, c] = [c, r].

Definition 3.1 (Labeled Grid)
A labeled grid l of size n is 〈gl, rowsl, colsl〉 where gl is a n×n grid and rowsl, colsl

are one-to-one functions from the rows (resp. columns) of gl to disjoint subsets of L.
We will refer to the ranges of rowsl and colsl as label sets.

For convenience we define labelsl = rowsl ∪ colsl
1. Using the function labelsl

we can derive the partial function cellForl from pairs of cell labels to cells (with cells
represented by the intersection of a column and a row), cellForl(i, j) = [a, b], when
labelsl(a) = i and labelsl(b) = j.2 Finally we will sometimes refer to the cells of a
labeled grid using the pairs of their column and row labels l,m, e.g., (l, m) where as
before the order is irrelevant, i.e., (l,m) = (m, l).

Definition 3.2 (Grid Layout)
A grid layout is a compatible collection of labeled grids. A collection of labeled grids,
l1, . . . lk all of size m, is said to be compatible when:

• No two labeled grids in the layout have the same set of labels (for each i 6= j,
labelsli 6= labelslj ). Note that this condition also excludes the inclusion of two
labeled grids where the columns and rows are swapped.

• Row and column labels travel in packs, i.e., it isn’t possible for the same label to
appear in more than one distinct label set (for each i, j, rowsli and colsli are
each either equal to or disjoint from each of rowslj and colslj ).

• Every pair of label sets from some labeled grid is represented by some labeled
grid in the layout (for each distinct pair rowsli , colslj there is a grid l with
labelsg = rowsli ∪ colslj )).

We call a grid layout with n distinct row label collections, each of m labels, an n, m-
grid layout.

When drawing a grid layout, we observe the convention that all grids sharing the
same row label collections are drawn in series from right to left and with their row

1Here and where convenient we will view functions as a sets of ordered pairs, and subject them to set
operations.

2Here and throughout the remainder of the paper subscripts will be omitted when they can be unambigu-
ously inferred from the context.
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labels in the same order, and that all grids sharing the same set of column labels are
drawn top to bottom with their columns in the same order. Thus the labels for the rows
and columns of the grid layout can be placed along the top and left edges of the grid
layout labeling rows and columns which span multiple grids.

The grid layout defines the tabular structure in which information may be repre-
sented. Information is represented by placing values into this structure. This is mod-
eled using a marking function.

Definition 3.3 (Marking function)
A marking function, M , for the grid layout G is a (possibly partial) function from
pairs of labels of the cells of G to the set {X,×}. Given a cell in a row labeled r
and column labeled s, M(r, s) = X and M(r, s) = × are taken to mean that the
referenced cell is marked with the corresponding symbol. M(r, s) is undefined when a
cell is unmarked. We will say that a marking function is total when it assigns either X
or × to all pairs of labels of cells in the grid layout.

Definition 3.4 (Coincidence grid)
A coincidence grid, (G, M), is a grid layout G along with a marking function M for
that grid layout.

4 Semantics
Coincidence grids are used to reason about information regarding the values for at-
tributes of a set of objects. Coincidence Structures are mathematical objects which
model this kind of information and thereby are used to give meaning to coincidence
grids.

Definition 4.1 (Coincidence Structure)
An n, m-coincidence structure is a tuple 〈Partition, denotedBy〉 where Partition
is a collection of n disjoint finite sets each with m elements and denotedBy is a one-
to-one function from members of sets in Partition to labels in L. We call the union of
the sets in Partition the values of the structure.

If A is an coincidence structure, the relation coincidesA is defined so that
coincidesA(a, b) is true just when a and b are labels in L and there are members j, k of
the same set in PartitionA such that denotedByA(j) = a and denotedByA(k) = b.
It is trivial to show that coincidesA is an equivalence relation.

Definition 4.2 (|=)
Given a n, m-coincidence structure A and the coincidence grid (G, M) with G a n, m-
grid layout, we write A |= (G, M), and say that A is a model of (G, M) iff

• for each labeled grid g in G there are not two row labels l, l′ such that
coincides(l, l′) nor two column labels m,m′ such that coincides(m,m′).

• for each cell in g in a row labeled l and a column labeled m marked with X,
coincides(l,m) is true.

• for each cell in g in a row labeled i and a column labeled j marked with ×,
coincides(l,m) is false.
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Definition 4.3 (C |= C′)
A coincidence grid C′ is a consequence of a coincidence grid C, C |= C′, if every model
of C is a model of C′.

5 Proof System
The inference rules of the proof theory are given in sequent style below. When we
reason with coincidence grids, the grid layout is fixed: inference proceeds by modifying
the marking function, by adding or removing values at individual cells.

5.1 Erasure
The rule of ERASURE allows us to remove zero or more marks from a diagram.

(G, M) ; (G, N)

Proviso: N ⊆ M

Figure 2: Rule: ERASURE

The ERASURE rule does not require N to be a proper subset of M . When N and
M are identical, we draw attention to this fact by referring to the rule as REITERATION.

5.2 Cases
Definition 5.1 (Extension of M at a cell)
Let M be a marking function which is undefined at (l,m).

• MX
(l,m) = M ∪ {((l,m),X)}, i.e. MX

(l,m) is just like M except that MX
(l,m)

assigns X to (l,m).

• M×
(l,m) = M ∪ {((l, m),×)}, i.e. M×

(l,m) is just like M except that M×
(l,m)

assigns × to (l,m).

The CASES rule allows us to examine the exclusive cases generated by extending a
marking function at a single cell in both possible ways.

(G, MX
(l,m)) ; (G, N) (G, M×

(l,m)) ; (G, N)

(G, M) ; (G, N)

Figure 3: Rule: CASES

5.3 Contradiction
We now need a crucial definition which defines the pathways that allow information to
flow between grids. Intuitively, a cell in grid relates two values (a, b) to one another
(perhaps by containing a check). There is a cell in another grid relating the one of these
values to a third value (a, c) say. Yet a third cell relates (b, c), and the values on these
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three cells are dependent on one another (in particular, it isn’t consistent for exactly
two of them to contain a check and the other a cross.) We identify these cell collections
as triads.

Definition 5.2 (Triad)
Given a coincidence grid C, a triad is three cells of C related by a chain of attribute
pairs. Three cells [x1, y1], [x2, y2], [x3, y3] are related by a chain of attribute pairs
when there are labels t1, t2, t3 in three labeled grids a, b, c in C, such that
cellFora(t1, t2) = [x1, y1], cellForb(t2, t3) = [x2, y2], and cellForc(t1, t3) = [x3, y3].

In Figure 1, an example of a triad would be the cells (TV Rep, Programm.),
(Programm., Erica), (TV Rep, Erica). This example also shows the importance of tri-
ads, i.e., since we know that the former TV repair-person is currently employed as a
programmer, and we know that Erica isn’t currently a programmer we can conclude
that Erica wasn’t formerly employed as a TV repair-person. With the notion of triad
in hand, we can now define a contradictory marking function for a diagram, which we
will later show means that the diagram cannot represent a solution to the problem.

Definition 5.3 (Contradictory Marking Function)
A marking function M is contradictory if any of the following conditions hold:

1. M assigns two checks in the same row or column of a grid (M(l0, l1) = X =
M(l0, l2) for any l0 from one label set and with l1 and l2 distinct values from a
second label set).

2. M assigns one row or column of a grid to be completely filled by crosses
(M(l0, l) = × for any l0 and for all l drawn from a second label set.)

3. M assigns a triad two checks and a cross (M(l0, l1) = X = M(l0, l2) and
M(l1, l2) = ×).

(G, M) ; (G, N)

Proviso: M is contradictory

Figure 4: Rule: CONTRADICTION

Definition 5.4 (`)
For any coincidence grids (G, M) and (G, M ′), we say that (G, M ′) can be proved
from (G, M), written (G, M) ` (G, M ′), iff there is a tree of applications of the above
rules of inference whose root contains (G, M) ; (G, M ′), and whose leaves are all
closed (derived from no premises using ERASURE or CONTRADICTION).

A simple example proof is shown in Figure 5. Before leaving this discussion of the
proof theory, we prove the following important result, which we will use later:

Proposition 5.1 For any sequent (G, M) ; (G, N), we can build a proof tree whose
leaves contain all of the sequents (G, Mi) ; (G, N), where Mi is a total extension of
M .
Proof The proof is by induction on the number of places that M is undefined.
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Figure 5: An Example Proof

Basis: If M is total, then we can build a proof with (G, M) ; (G, N) as the only
leaf of a tree consisting of one application of the REITERATION rule.

Step: Assume that the result follows for all marking functions undefined at i < k
cells, we will show that the result follows for any marking function undefined at k cells.

A single application of CASES to the given sequent yields the following tree:

(G, MX
(l,m)) ; (G, N) (G, M×

(l,m)) ; (G, N)
CASES

(G, M) ; (G, N)

By the induction hypothesis, we can build a proof tree with the required property above
each of the new sequents:

Π
(G, MX

(l,m)) ; (G, N)
Σ

(G, M×
(l,m)) ; (G, N)

CASES
(G, M) ; (G, N)

The proof Π has at it leaves all of the sequents which are total extensions of MX
(l,m),

and Σ’s leaves are the total extensions of M×
(l,m), so together the leaves have all total

extensions of (G, M) on their left hand sides (and (G, N) on the right).

6 Soundness
Theorem 6.1 (Soundness) For any coincidence grids (G, M) and (G, M ′), if (G, M) `
(G, M ′) then (G, M) |= (G, M ′)
Proof The proof is by induction on the height of the proof tree.

Basis If the height of the tree is 1, then the proof must involve one application of
CONTRADICTION or ERASURE.

• ERASURE: Suppose for the sake of contradiction that (G, M) 6|= (G, M ′).
There exists some model, A such that A |= (G, M) and A 6|= (G, M ′). Since
both coincidence grid contain the same labeled grid G we know that A 6|=
(G, M ′) can not be due an incompatibility between label sets in G and the
coincides relation. Thus there is some cell (l,m) such that it is marked with
a check in M ′ and coincides(l, m) is false, or it is marked with a cross in M ′

and coincides(l,m) is true. In either case, this mark was present in M , and A
therefore fails to be a model of (G, M). Contradiction.

8



• Contradiction: It suffices to show that any coincidence grid to which CONTRA-
DICTION can be applied has no models.

Suppose for sake of contradiction that (G, M) is an coincidence grid of size n to
which CONTRADICTION applies, and that A |= (G, M). There are three cases
depending on which of the clauses of CONTRADICTION applied.

1. Some grid of (G, M) contains a row labeled l with two check marks, in the
columns labeled m and m′ say. This means that both coincides(l,m) and
coincides(l, m′) are true, and hence that coincides(m,m′) is also true,
which means that A 6|= (G, M), contradiction. The case of two checks in
the same column is analogous.

2. Some grid of (G, M) contains a row [l,m1], . . . , [l,mn] with all crosses.
This means that no row label mi is mapped to the same member of A as l
is. But this is impossible since there are n members of A, n of the mi, and
each mi is mapped to a different member of A. Contradiction. The case of
a grid with a column with all crosses is analogous.

3. Some triad in (G, M) contains two checks and a cross, i.e., M(l0, l1) =
X = M(l0, l2) and M(l1, l2) = ×. Since M(l0, l1) = X = M(l0, l2),
coincide(l0, l1) and coincide(l0, l2) are derived from A. Since coincide
is transitive, it follows that coincide(l1, l2). But since A |= (G, M) and
M(l1, l2) = ×, this cannot be true. Contradiction.

Step Suppose that the height of the proof tree is k > 1 and that the result holds for
all proofs of length less than k.

The inference at the root must be an application of CASES on some cell with labels
l and m. We must show that (G, M) |= (G, M ′). Suppose not, i.e. that there is some
model A of (G, M) which is not a model of (G, M ′). In every model coincides(l,m)
is either true or false, and so either A is a model of (G, MX

(l,m)) or of (G, M×
(l,m)).

But we know that (G, MX
(l,m)) |= (G, M ′) and that (G, M×

(l,m)) |= (G, M ′) from the
induction hypothesis, which is a contradiction.

7 Completeness
In this section we will demonstrate the completeness of the proof system, i.e., that it is
sufficiently powerful to allow that any logical consequence of a coincidence grid can be
proved to be so. To show this result, we will present a generic strategy (Algorithm 7.1)
for building a proof with any coincidence grid C as the premise and any coincidence
grid C′ as the conclusion. Furthermore we will show that if this strategy fails then that
C′ can not be a logical consequence of C.

The strategy proceeds as follows. First, we build a proof tree with C ; C′ as the
root and a leaf Ci ; C′ for each total extension of C. If there is any leaf which can
not be closed, established using either the ERASURE or CONTRADICTION rules with
no premise then the strategy fails.

Algorithm 7.1 (Canonical Proof Strategy)
We begin with any two coincidence grids (G, M) (the premise) and (G, M ′) (the con-
clusion).
Step #1: Start the proof with the sequent (G, M) ; (G, M ′) as the root.
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Figure 6: A coincidence grid with no models to which CONTRADICTION can not be
applied

Step #2: While there exist unmarked cells in the left hand side of the sequent of some
leaf of the proof: select at random any unmarked cell (l,m) in (G, M ′′) of each leaf
(G, M ′′) ; (G, M ′) and apply the CASES rule to add the branches (G, M ′′X

(l,m)) ;

(G, M ′) and (G, M ′′×
(l,m)) ; (G, M ′) to the proof above that leaf.

Step #3: Close each leaf with an application of the ERASURE or the CONTRADICTION
rule with no premise. If this is not possible for any leaf then fail, otherwise the proof is
complete.

To prove that this strategy is correct (that any logical consequence of a diagram can
be proved in this manner) we first consider the case that C has no models, and show
that if a diagram has no models then the contradiction rule can be applied to every total
extension of C (Proposition 7.2). Then we need to consider the case where the proof
has a leaf Ci ; C′ which can not be established using the using either the ERASURE
or CONTRADICTION rules. First we show that any total non-contradictory coincidence
grid is true in some model (Proposition 7.1). Then we know that Ci must have a model,
and that Ci and C′ differ on some cell. Using this diagram we build a model A such
that A |= C but that A 6|= C′ (Proposition 7.4), which means that it can’t be the case
that C |= C′.

We begin by observing that there are some coincidence grids which have no mod-
els, but to which CONTRADICTION can not be applied. An example of one such coin-
cidence grid can be found in Figure 6. We need to show that every total extension of
such a marking function does permit the application of CONTRADICTION.

Proposition 7.1 All coincidence grid (G, M) with G a total marking function which
is not contradictory are true in a model.
Proof We construct a model of A of (G, M). For each label l in G, determine
{m | M(l,m) = X} ∪ {l}. There is exactly one m along each dimension that
has this property, since CONTRADICTION does not apply to (G, M). Let Properties
be the collection of these sets. (In other words, we use the labels themselves as the
values of 〈Properties, denotedBy〉.) As the function denotedBy we use the identity
function on the labels of G. 〈Properties, denotedBy〉 is a model of (G, M).

Proposition 7.2 If (G, M) has no models, then CONTRADICTION can be applied to
every total extension of (G, M).
Proof We prove the contrapositive. Let T be a total extension of M to which CON-
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TRADICTION does not apply. Using Proposition 7.1, we know that (G, T ) has a model,
and since T is an extension of M we know that this model is also a model of (G, M).

Proposition 7.3 If (G, M) has no models, then (G, M) ` (G, M ′) for any marking
function M ′.
Proof By Proposition 5.1 there is a proof tree Π whose root contains (G, M) ;

(G, M ′)) and whose leaves contain the sequents (G, Mi) ; (G, M ′) for all total
extensions, Mi of M . By Proposition 7.2, the contradiction rule can be applied to each
leaf of this tree, and so (G, M) ` (G, M ′).

Proposition 7.4 Given coincidence grids (G, M) which has a model and (G, M ′),
such that M(l,m) = X and M ′(l, m) = × for some l,m, then no model A such that
A |= (G, M), can be a model of (G, M ′).
Proof Since we know that in (G, M), M(l, m) = X we also have that coincidesA(l, m)
can be derived from all models A in which (G, M) is true. However in any model A′

which makes (G, M ′) true, coincidesA′(l,m) can not hold (since M ′(l,m) = ×), so
there can be no model A such that A |= (G, M) and A |= (G, M ′).

Lemma 7.1 For all coincidence grid (G, M) and (G, M ′), Algorithm 7.1 finds a proof
(G, M) ` (G, M ′) iff (G, M) |= (G, M ′).
Proof First we consider the possibility that (G, M) has no models. In this case all
coincidence grid are logical consequences of (G, M) so the algorithm should generate
a valid proof for any coincidence grid (G, M ′) (see Proposition 7.3). Using Proposi-
tion 7.2 we know that the CONTRADICTION rule can be applied to each leaf generated
by the algorithm and thus that a valid proof is generated.

Now we consider the case that (G, M) has a model. If the algorithm generates a
proof then from soundness we know that (G, M) |= (G, M ′). If the algorithm fails
then we need to show that (G, M) 6|= (G, M ′). Assuming that the algorithm fails we
know that there was some leaf (G, Mi) ; (G, M ′) generated by the strategy which
could not be closed, established by the ERASURE or CONTRADICTION rules without
a premise. From the fact that the CONTRADICTION rule can not be applied to that
sequent and Proposition 7.1 we know that (G, Mi) has some model which we will call
A. Furthermore from the fact that the ERASURE rule can not be applied and that Mi

is total, we know that Mi and M ′ disagree on the content of some cell. Thus from
Proposition 7.4 we know that no model of (G, Mi) can be a model of (G, M ′), i.e.,
A 6|= (G, M ′). Since (G, Mi) is an extension of (G, M) we know that A |= (G, M)
and finally that (G, M) 6|= (G, M ′).

Theorem 7.1 (Completeness)
For any two coincidence grids (G, M) and (G, M ′), if (G, M) |= (G, M ′) then
(G, M) ` (G, M ′).
Proof The proof of this theorem is a direct result of Lemma 7.1.

Corollary 7.1 For any two coincidence grid C, C′ the question of whether C′ is a logi-
cal consequence of C is decidable.
Proof Since there are a finite number of unmarked cells in any coincidence grid we
know that Algorithm 7.1 will terminate (though possibly in exponential time), the rest
is a direct result of Lemma 7.1.
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8 Conclusion
In this paper we have formalized a logic of coincidence grids, by defining the syntax
proof theory and semantics for the representation. We have shown that the proof theory
is both sound and complete for the semantics.

The logic that we have defined permits a search for proofs based on a “generate
and test” method. The CASES rule allows us to mark a previously unmarked cell and
then to determine the consequences of each possible mark. While having the twin
virtues of soundness and completeness, this is not a natural logic for proof search using
these representations. There are more intuitive rules which allow inference between
diagrams, for example a rule which allows the addition of a × to any unmarked cell
in a row or column that already contains a X. This rule, and others like it, are easily
definable using the inference rules presented here however we have not yet found a
way to define a collection of rules which allow us to dispense with CASES entirely.
This is due to the fact that we have yet to find a natural contradiction rule that can be
applied to recognize all diagrams that have no models. Finding that stronger version
of contradiction and a set of natural inference rules which would allow us to dispense
with CASES is the subject of future work.
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Abstract

Interval-valued computation is an unconventional computing paradigm. It is
an idealization of classical 16-, 32-, 64- etc. bit based computations. It represents
data as specific subsets of the unit interval – in this sense this paradigm is classified
into the continuous space machine paradigm near to optical computing. In this pa-
per we show the visual reasoning power of interval-valued computations, namely,
we demonstrate that the decision process of quantified propositional formulae is
fully representable in a natural visual form. Further, we give a temporal-logical
interpretation of interval-valued computations.

Keywords: new computing paradigms, visual reasoning, interval temporal logic

1 Introduction

In the last fifteen years a new direction of computing has emerged which develops ideas
for computing devices motivated by nature. It includes DNA computing, quantum
computing and relativistic computers, among others.

In [11] another new computing paradigm was introduced, the so-called interval-
valued computation system. In this paradigm, data is represented by specific subsets of
the unit interval, namely, by finite unions of disjoint subintervals. This data representa-
tion corresponds to the notion of generalized intervals ([2], [7]). In these papers some
logics of temporal relations between such generalized intervals (that we callinterval-
valuesin this paper) are analyzed. In [11] some other operators were proposed to con-
struct an interval-valued computing system and also the SATproblem was solved by a
linear interval-valued computation. In [12] and [13] it wasproved that a restricted class
of interval-valued computations is adequate for PSPACE, that is, the class of languages
decidable by this class of interval-valued computations coincides with PSPACE.
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Reasoning by diagrams and intervals is an important area of visual representations
of mathematical and logical reasoning. For example, Venn- and Euler-diagrams are
well known, such as graphical versions of interval temporallogic ([4], [8]). An old
method for visualizing Boolean algebraic calculations is the method of Venn diagrams.
It is suitable to formulæ built from two or three propositional variables. There are good
ideas to generalize Venn diagrams to a higher number of variables ([1], [3], [5], [6],
[10], and [14]). Venn-diagrams are suitable to visually represent propositional logical
laws. Of course, our interval-values are also able to represent propositional reasoning
in a nice and natural visual form, because the interval-values form a Boolean algebra
in which every finite Boolean algebra is visually representable. Moreover this visual
representation is also suitable to help visually to follow the decision process of the va-
lidity of quantified propositional formulae. This problem is PSPACE-complete. This
complexity class includes such typical problems that solution of two-player games like
chess or go. In this paper we demonstrate the visual expressibility of the decision pro-
cess of validity of quantified propositional formulae. We also formalize an interval tem-
poral logic equipped by some modalities concerning the operators on interval-values.
A decidability and a complexity result will also be given.

2 The idea of interval-valued computations

In [11] Nagy proposed a new discrete time/ continuous space computational model,
the so-called interval-valued computing. A precise description of the model can be
found in [13], that we will recall and use. It involves another type of idealization than
Turing machines – the density of the memory can be raised unlimitedly instead of its
length. It is a natural model that can formulate computations of computers with higher
and higher bit number in a byte in a unified framework.

As long as the paradigm keeps using only finite unions of intervals, the system fits
within the bounds of classical Neumann-Church-Turing typecomputations.

The computation works on specific subsets of the interval[0, 1), more specifically,
on finite unions of [)-type subintervals. In a nutshell, interval-valued computations
start with

[

0, 1

2

)

and continue with a finite sequence of operator applications. It works
sequentially in a deterministic manner.

The allowed operations are motivated by the operations of the traditional comput-
ers on bit sequences: Boolean operations, shift operationsand an extra operator, the
product. The role of the introduced product is connecting interval-values on different
’resolution levels’. Essentially, it has the same functionlike magnification operators
in optical computing ([15]) which is another continuous space computing paradigm
where data is represented by 2-dimensional complex-valuedimages.

In the interval-valued computing system, an important restriction is eliminated, i.e.
there is no permanent limit on the number of bits in a data unit(byte); we have to sup-
pose only that the number is always finite. Of course, in the case of a given computation
an upper bound (the bit height of the computation sequence) always exists, and it gives
the maximum number of bits the system needs for that computation process. Hence
our model still fits into the framework of the Church-Turing paradigm, but it faces dif-
ferent complexity bounds than the classical Turing model. Although the computation
in this model is sequential, the inner parallelism is extended. One can consider the
system without restriction on the size of the information coded in an information unit
(interval-value). It allows to increase the size of the alphabet unlimitedly in a computa-
tion. In this article we employ this inner parallelism to extend the visual expressiveness
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of calculations with interval-values. Complex manipulations on the interval-bytes can
be shown, acting uniformly to the whole stored data – the interval-value. This makes
possible, for instance, the visual representation of the decision process of quantified
propositional formulae.

3 Interval-values and operators

As we mentioned, interval-values are finite unions of disjoint left-closed, right-open
subintervals of the unit interval[0, 1).

Figure 1: Examples of visual presentations of interval-values

Formally these values are defined in the following way.

Definition 1 The setV of interval-valuescoincides with the set of finite unions of[)-
type subintervals of[0, 1). The setV0 of specific interval-valuescoincides with
{

k
⋃

i=1

[

li
2m , 1+li

2m

)

: m ∈ N, k ≤ 2m, 0 ≤ l1 < . . . < lk < 2m

}

.

We note that the set of finite unions includes the empty set(k = 0), that is,∅ is also
an allowed interval-value.

Similarly to traditional computers working on bytes, we allow bitwise Boolean
operations. If we consider interval-values as subsets of [0,1) then the corresponding
operations coincide with the set-theoretical operations of complementation (A), union
(A ∪B ) and intersection (A ∩B). V forms an infinite Boolean set algebra with these
operations.V0 is an infinite subalgebra of the last algebra. Instead of set theoretical
operators we also can use the appropriate Boolean logical operators (negation, disjunc-
tion, conjunction). We note that other usual Boolean operators, as xor (A ⊕ B) or
implication (A→ B) are definable in the usual way.

Assisting formulation of the remaining operations, a function Flength : V→ R is
going to be defined. Intuitively, it determines the length ofthe first (starting) “compo-
nent” of the input interval-value, that is, the first (from left) maximal subinterval of the
unit interval included in the given interval-value.

Definition 2 Let A be an interval-value. Let the functionFlength : V → R be
defined as follows. If there exista, b ∈ [0, 1] satisfying[a, b) ⊆ A, [0, a) ∩A = ∅ and
[a, b′) 6⊆ A for all b′ ∈ (b, 1], thenFlength(A) = b− a, otherwiseFlength(A) = 0.
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Figure 2: Examples for∩ and∪

Figure 3: Example for complement
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Flength helps us to define the binary shift operators onV. The left-shiftoperator
will shift the first interval-value to the left by the first-length of the second operand and
remove the part which is shifted out of the interval[0, 1). As opposed to this, theright-
shift operator is defined in a circular way, i.e. the parts shifted above 1 will appear at
the lower end of[0, 1). In this definition we write interval-values in their “characteristic
function” notation instead of subset notation.

Definition 3 The binary operatorsLshift andRshift onV are defined in the follow-
ing way. Ifx ∈ [0, 1] andA, B ∈ V then

Lshift(A, B)(x) =

{

A(x + Flength(B)), if 0 ≤ x + Flength(B) ≤ 1,
0 in other cases.

Rshift(A, B)(x) =

{

A(frac(x− Flength(B))), if x < 1,
0 if x = 1.

Here the function frac gives the fractional part of a real number, i.e., frac(x) =
x− ⌊x⌋, where⌊x⌋ is the greatest integer which is not greater thanx.

Figure 4: Examples of shift operators with interval-values

In Figure 4 some examples can be seen for both operationsRshift andLshift.
The second operands are shown in grey but they are not the realparts of the resulting
interval-values. Notice that using both shift operators ina combined way one can delete
any desired parts/components of an interval-value.
Now we define the so-calledfractalian producton interval-values.

Definition 4 LetA andB be interval-values andx ∈ [0, 1). Then the fractalian prod-

uctA ∗B includesx if and only ifB(x) = 1 andA
(

x−B
x

Bx−B
x

)

= 1, whereBx denotes
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the lower end-point of theB-component includingx andBx denotes the upper end-
point of this component, that is,[Bx, Bx) is the maximal subinterval ofB containing
x.

Figure 5: Examples for product of interval-values

We can explain this in a more descriptive manner. IfA contains exactlyk interval
components with endsai,1, ai,2 (1 ≤ i ≤ k) andB contains exactlyl components
with endsbi,1, bi,2 (1 ≤ i ≤ l), then we determine the value ofC = A ∗B as follows:
we set the number of components ofC to bek · l. For this process we can use double
indices for the components ofC. The starting- and end points of theij-th component
areai1 + bj1(ai2 − ai1) andai1 + bj2(ai2 − ai1), respectively.

The idea and the role of this operation is similar to that of unlimited shrinking
of 2-dimensional images in optical computations ([15]). Itwill be used to connect
interval-values of different resolution. As we can observein Figure 5, as well, the
fractalian product of two interval-values is the result of shrinking the first operand to
each component of the second one.

4 A representation ofn independent truth values

In this section we give a natural interval-valued computational representation of all
variations ofn independent truth values which is only a visual rephrase of the well-
known truth tables and will be useful not only in checking whether a given propo-
sitional formula is a logical law or not but also in the interval-valued computations
deciding whether a given quantified propositional formula is true or not.
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For lack of space, we do not define formally theinterval-valued computations, con-
sult [12] or [13] for the formal details. Our focus is on the visual expressivity of the
model. For the aims of the present paper it is enough to know that it is a sequence of
interval-values where each new member of the sequence results from an operator appli-
cation of one or two precedents in the same sequence and whichis starting with

[

0, 1

2

)

.
In this manner,deciding a languageL by an interval-valued computationmeans con-
structing an algorithm that for any input problem instance responds an interval-valued
computation sequence with the following property: the result of the interval-valued
computation sequence created by the algorithm to an input word w is equal to the unit
interval[0, 1) if and only if w is in L.

We give a computation which constructs a quite natural interval-valued represen-
tation of n independent truth values. LetK1 be

[

0, 1

2

)

. For all non-negative inte-
gersk, we defineK3k+2 = K1 ∗ K3k+1, K3k+3 = RShift(K3k+2, K3k+1) and
K3k+4 = K3k+2 ∪K3k+3.

Fact 1 By an induction onk one can establish that

K3k+1 =

2
k−1

−1
⋃

l=0

[

2l

2k
,
2l + 1

2k

)

.

By the previous fact this computation sequence produces suitable interval-values since
it satisfies the following.

Fact 2 For any(x1, . . . , xn) ∈ {0, 1}n there existsr ∈ [0, 1) satisfying that
(x1, . . . , xn) = (r ∈ K1, r ∈ K4, . . . , r ∈ K3n+1).

All of our interval-valued computations (at least the ones deciding validity of quan-
tified propositional formulae) will start with the construction of K1, . . . , K3n+1, if n is
the number of propositional variables of the input formula.The first 4 interval-values
in Figure 6 and 8 areK1, K4, K7, K11, they represent 4 independent truth values of
x1, x2, x3, x4. This method is an alternative of Venn/Euler diagrams to have all possi-
ble combinations of the truth values of the Boolean variables in the same diagram. The
novel idea is that we assign 1 dimensional objects (interval-values) for the variables
without requiring their connectivity.

Of course, using these interval-values representing all possible variations of the
truth/falsity of the propositional variablesx1, . . . , xn, one can easily decide the va-
lidity of propositional formulae, by executing the Booleanoperations on the interval-
values on the desired order. In this way any propositional formulaϕ(x1, . . . , xn) gets
its interval-truth-value by an appropriate interval-valued computationC(ϕ). Not spec-
ifying C(ϕ) more formally, we can observe that for any propositional formulaφ built
from propositional variablesx1, . . . , xn and for anyr ∈ [0, 1) the following holds:
r ∈ C(ϕ) ⇔ ϕ is satisfied by the truth valuation(x1 : (r ∈ K1), x2 : (r ∈
K4), . . . , xn : (r ∈ K3n+1)). The fifth lines of Figure 6 and 8 representC(ϕ) for
the two given formulae, respectively.

5 Visual solution of a PSPACE-complete problem

We employ the visual reasoning power of interval-valued computations for a more
complex task. We show that the sequence of interval-values produced by the com-
putation represents visually the full information needed to understand the solution of
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the given case of the PSPACE-complete problem QSAT, i.e. theproblem whether any
given quantified propositional formula is true. This problem is decidable by a linear
interval-valued computation.

We specify visually the needed computation. The computation starts with the deter-
mination of the interval-values of the independent variables (lines 1–4 on Figures 6 and
8). We concentrate on that how these interval-values visually encode the information
needed to follow the decision process for validity of quantified propositional formulae.

A quantified propositional formula –without loss of generality – is of form
∀t1∃t2 . . .Qnϕ whereQi is ∀ for oddi and∃ for eveni. It is called true or valid if and
only if ∀t1 ∈ {0, 1}∃t2 ∈ {0, 1} . . .Qntn ∈ {0, 1}ϕ(x1 : t1, . . . , xn : tn) holds.

By using only Boolean operators the interval-value of the quantifier-free formulaϕ
can be computed (the result can be seen on line 5 in Figures 6 and 8). Then by using
shift and logical operations in an appropriate way, one can continue the computation
in a way such that the interval-valued decision algorithm constructs interval-values
C0(ϕ)(= C(ϕ)), C1(ϕ), . . . , Cn(ϕ) with the following properties.

• Ci(ϕ) = {r ∈ [0, 1) :
Qn−i+1tn−i+1 . . . Qntn
ϕ(x1 : (r ∈ K1), . . . , xn−i : (r ∈ K3(n−i)−1), xn−i+1 : tn−i+1, . . . , xn : tn)},

• Ci+1(ϕ) can be constructed fromCi(ϕ) and the interval-value corresponding to
xn+1−i, that is, fromK3(n+1−i)−1.

Figure 7 shows the way of computation at existential quantifier. By disjunction and
shift operators the corresponding neighbor parts of the components are also filled. The
corresponding neighbor parts of the interval-values are the following interval pairs:
[

2l
2k , 2l+1

2k

)

and
[

2l+1

2k , 2l+2

2k

)

wherek is the index of the quantified variable we are
dealing with in the actual step. They are not separated by vertical lines on Figures
6, 7 and 8. A part and its corresponding neighbor differ (i.e.exactly one of them
is contained by the interval-value) if and only if the value of the formula depends on
the value of the actual variable using the fixed values of the other variables that are
represented by the actual part of the interval-value.

The steps to determineCi+1(ϕ) needs alternating∀- and∃-transformations. A∀-step
means checking the interval AND its corresponding neighborin Ci(ϕ), while an∃-
step amounts to checking the interval OR its corresponding neighbor.∀-step visually
means simply a check if the appropriate neighbor of the examined subinterval is also in
Ci(ϕ) while an∃-step checks if the appropriate neighbor of the examined subinterval
OR the subinterval itself is inCi(ϕ). An example of∃-transformation is presented on
Figure 7, the∀-transformations are going in a similar manner. Since the steps compute
the parts of the interval-value of the various corresponding parts in a parallel way, an
∃-step and a∀-step needs a constant number of operation application on interval-values
(see Figure 7, where the computation obtaining line 6 of Figure 6 is shown using line
5 and the value of the variablex4). Since the number of these steps exactly the same
as the number of the variables, the computation can be performed in a linear number
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Figure 6: This quantified formula is true
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Figure 7: Visual computation at existential quantifier

22



Figure 8: This quantified formula is not true
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of operation, i.e. a linear size of algorithm on the length ofthe computation sequence
(number of computed interval-values).

In Figure 6 and 8 one can follow two interval-valued computations deciding whether
a given quantified propositional formula is true. The lines 1–4 show the 4 independent
truth values, the 5th line shows the result of the evaluationof the Boolean operators and
lines 6–9 include the result of adding one quantifier per lineto the formulae. Finally,
the QSAT formula is true if and only if the resulted interval-value (line 9) is [0,1). (If
it is not true, the empty interval is obtained.)

6 Interval-valued computations and interval temporal
logic

Temporal logic also has strong connection to visual computing. In [4], a visual spec-
ification language of propositional temporal conditions isgiven which constitutes a
subset of propositional temporal logic, more specifically,interval temporal logic. In
[8], an interval temporal logic for repeating temporal events is introduced. Thinking
[0,1) as a time flow we can investigate its temporal logic. If we consider only classical
temporal operators, then its temporal logic trivially coincides with the temporal logic
of (R+0, <) whereR

+0 is the set of nonnegative reals. However, it is an interesting
question, what happens if we add the non-logical operators of interval-values to the
temporal logic over [0,1) as binary modal operators.

Definition 5 The members of the following set of formulae are interval-valued modal-
temporal formulae. It is the minimal set of strings satisfying the following:

• a, b, . . . are (atomic) formulae,

• FirstHalf is a formulae,

• if ϕ, θ are formulae, then(ϕ ∧ θ), (ϕ ∨ θ) and¬ϕ are formulae, too,

• if ϕ, θ are formulae,2→ ϕ and←2ϕ are formulae, too,

• if ϕ, θ are formulae thenR(ϕ, θ), L(ϕ, θ) andP (ϕ, θ) are formulae, too. (R, L
andP are binary operators, they coincide with the shift and the product opera-
tors.)

Definition 6 An interval-valuationv is a function assigning to each member of{a, b,
. . .} an interval-value. Then for any interval-valued modal-temporal formula‖ϕ‖v is
an interval-value of the interval-valued modal-temporal formulaϕ. The definition of
this notion is the expected one. We just write three clauses of this definition.

• ‖FirstHalf‖v =
[

0, 1

2

)

,

• ‖2→ ϕ‖v is {t ∈ [0, 1) : (t, 1) ⊆ ‖ϕ‖v},

• ‖P (ϕ, θ)‖v = ‖ϕ‖v ∗ ‖θ‖v.

The shift operators have intuitive meaning in this temporallogic: an event can start
only earlier/later by the starting component of the value ofa second event. The product
operator can be explained as a modal operator in the following way.P (ϕ, F irstHalf)
expresses thatϕ holds at the first half of the actual evaluating interval, or generally,
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P (ϕ, θ) expresses thatϕ holds at that parts of the actual evaluation interval what belong
to the down-scaled “copy” of‖θ‖v.

A modal-temporal formula is said to be modal-temporal logical law if with every
valuationv its interval-value is [0,1).

Problem 1 How to axiomatize this kind of modal-temporal logic? Is it decidable? If
yes, what is its complexity?

We have a partial answer to this question.

Claim 1 The problem if a modal-temporal formula built up only fromFirstHalf but
without other propositional variables is decidable by exponential time. If the usage of
the product operator is restricted such that it always takesa product withFirstHalf ,
then the arising problem is solvable in polynomial space. Moreover there is a PSPACE-
complete problem is among them (as it was presented).

7 Conclusion

We have demonstrated the visual reasoning power of a recent unconventional comput-
ing system. Its expressiveness depends on data representation by interval-values which
makes it possible by its topological properties.

It is worth thinking over what further problems can be naturally represented by gen-
eralized intervals. Possible candidates are problems about occurring events in temporal
logic with a notion of compositionality. The product operator would provide transfer
between different compositional levels; embeddability ofmacro- and micro scales can
be conceptualized. In this way, also visual analysis and visual representation of re-
occurring, periodic hierarchical events – e.g. in biostatistics and health insurance –
would be available.

Further generalization is possible to regions in higher dimensional spaces, mainly
to R

2. In this way one should work out the connections of interval-valued computing
to so-called optical computing where objects of computing are 2-dimensional images
([15]) through their visual applications.
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Spider Diagrams of Order
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Abstract

Spider diagrams are a visual logic capable of makeing statements about rela-
tionships between sets and their cardinalities. Various meta-level results for spider
diagrams have been established, including their soundness, completeness and ex-
pressiveness. Recent work has established various relationships between spider
diagrams and regular languages, which highlighted various classes of languages
that spider diagrams could not define. In particular, this work illustrated the inabil-
ity of spider diagrams to place an order on certain letters in words. To overcome
this limitation, in this paper we introduce spider diagrams of order, incorporating
an order relation and present a formalisation of the syntax and semantics. Subse-
quently, we define the language of such a diagram and establish that the class of
such languages includes that of the piecewise testable languages.

1 Introduction
Diagrams are often used to convey information and aid communication in a variety
of areas, including software engineering, mathematics and every day life. Recently,
the perception of the role of diagrams in logic has been overturned, with advances
showing that diagrams can be given precise syntax and semantics with, subsequently,
formal reasoning systems being built on them; for example [5, 6, 8, 14, 17]. As a result,
the utility of diagrams is seen as broader, and some considerable effort is now being
placed on exploring visual languages in the context of logic.

One such logic is the language of spider diagrams (see, for example [8, 16]). With
regard to applications of spider diagrams, they have been used to assist with the task
of identifying component failures in safety critical hardware designs [1] and (implic-
itly) in a variety of other areas, such as [2, 9, 18]. It has been established that spider
diagrams have the expressiveness of monadic first order logic with equality by pro-
viding translations between these two languages that preserves semantics [16]. In this
paper, we consider the expressiveness of spider diagrams in comparison with regular
languages, building on results presented in [3] where a limitation is highlighted. In par-
ticular, regular languages often constrain the orders that letters may appear in a word of
that language, but spider diagrams are unable to do this. To overcome this expressive-
ness limitation, we extend the spider diagram language to include facilities for ordering
elements. Extending spider diagrams to include an order relation will allow them to be

∗a.j.delaney@brighton.ac.uk
†g.e.stapleton@brighton.ac.uk
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used in more application areas. For example, one may choose to use spider diagrams
over finite state machines when defining languages; see [3] for further discussions on
this relationship.

One of our goals in increasing the expressiveness of spider diagrams is to provide a
specification tool for trace semantics and synchronisation expressions. Trace semantics
and synchronisation expressions have existing formal language characterisation in [4]
and [13] respectively. Our first step is to extend spider diagrams and examine the
ramifications with respect to formal language theory. A longer term goal of this body of
work is to examine whether diagrammatic logics make a more succinct ‘programming
language’ for problems with solutions in regular language space. The results in [3] on
the descriptional complexity of spider diagrams and finite state automata support this
succinctness conjecture.

In more general terms, the study of the relationships between logics and formal lan-
guages has led to a range of important results related to decidability, the circuit synthe-
sis problem and has provided new perspectives to the construction of non-terminating
programs, discussed in [19]. In this vein, it may well prove fruitful to further our un-
derstanding of the relationship between spider diagrams and regular languages. For
example, fragments of the spider diagrams language might correspond to classes of
regular languages that are not naturally characterised in any other way. Consequently,
this may provide a deeper understanding of the relationships between classes of regular
languages themselves.

In section 2, we briefly overview the existing spider diagram notation. Section 3 in-
troduces various concepts from formal language theory that are necessary for this paper
and discusses the relationship between spider diagrams and regular languages. Spider
diagrams of order are introduced and formalised in section 4. Finally, in section 5, we
prove that a fragment of the language of spider diagrams of order gives rise to the well
known class of piecewise testable languages also called level 1 of the Straubing-Thérin
hierarchy.

2 Spider Diagrams
This section will provide a brief overview of the spider diagram syntax presented in [8].
In figure 1, the spider diagram d1 contains two labelled contours, A and B. Contours
are simple closed curves. The diagram also contains three minimal regions, called
zones. There is one zone inside A, another inside B and the other zone is outside both
A and B. Each zone can be described by a two-way partition of the contour label
set. The zone inside the contour A can be described as inside A but outside B. A
region is a set of zones. The two zones outside B contain a spider; spiders are trees
whose vertices, called feet, are placed in zones (in this case, the spider has two feet).
Spider diagrams can also contain shading placed in zones, as in d2 (which contains
two spiders and four zones of which one is shaded). The horizontal line connecting
d1 and d2 in figure 1 denotes disjunction between diagrams; thus, the figure contains
d1 ∨ d2. Similarly, juxtaposition of two diagrams d1 and d2 with no connecting line
denotes their conjunction, d1 ∧ d2.

Our attention now turns to the semantics. Spider diagrams make statements about
sets (represented by contours) and their cardinalities (by using spiders and shading). In
figure 1, d1 expresses that A and B are disjoint, because there are no points interior to
both of the contours. Spiders assert the existence of elements, so d1 specifies that there
is (at least) one elements in either A or the universe outside both A and B. The spiders
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Figure 1: Two spider diagrams.

in d2 assert that there are at least two elements, one of which is in A−B and the other
is in A ∩B or B −A. Shading is used to place upper bounds on set cardinality: in the
set represented by a shaded region, all of the elements are represented by spiders. For
example, d2 expresses that the set A ∩B contains at most one element.

3 The Straubing-Thérin Hierarchy
In our previous work [3] we have studied the relationship between spider diagrams and
star-free regular languages. We established that sets of words from a subset of star-free
regular languages can be thought of as corresponding to models for spider diagrams
(a model will be formally defined later). The Straubing-Thérin hierarchy serves as a
fine-grained tool for describing various subsets of star-free regular languages. This
hierarchy is infinite but it is an open question as to whether the hierarchy is proper
above so-called ‘level 2’.

Level 0 of the Straubing-Thérin hierarchy is the set of languages {Σ∗, ∅} where Σ
is an alphabet. Level 1/2 is the well known shuffle ideal set, which is the polynomial
closure of Level 0. Level 1 is defined as the boolean closure of 1/2. This hierarchy
has been extended by Pin to consider varieties of languages [10]: in general for any
positive integer n > 0

level n + 1
2 is the polynomial closure of level n, and

level n + 1 is the boolean closure of level n + 1
2 .

The boolean closure of a set of languages L ⊆ Σ∗ is B(L ) which is formed by
taking the union, intersection and complement of languages. The polynomial closure
of a set of languages L ⊆ Σ∗, Pol(L ), is the finite union of languages of the form
L0a1L1 . . . anLn where L0, L1, . . . , Ln ∈ L and a1, . . . , an ∈ Σ.

For our purposes, it is sufficient to state that a formal language is a set of words
defined over an alphabet, Σ. The boolean operations ∪,∩ and ⊂ and the unary com-
plement ¬ operator maintain their well understood semantics over sets of words. The
additional boolean operation called the shuffle product, denoted t, will allow us to
utilise characterisations of the Straubing-Thérin hierarchy more suitable for our defini-
tions and theorems.

Definition 3.1. The shuffle product of two languages L1, L2 denoted L1 t L2 infor-
mally takes all words from L1 and intersperses letters from each word in L2. More
formally, the words in L1tL2 are precisely those of the form w0w1 . . . wn where there
exists a partition I ∪ J of {1, 2, . . . , n} with

1. I = {p1, p2, . . . , pi}, p1 < p2 < . . . < pi,
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Figure 2: A spider diagram.

2. J = {q1, q2, . . . , qj}, q1 < q2 < . . . < qj (thus i + j = n), and

3. wp1 . . . wpi
∈ L1 and wq1 . . . wqj

∈ L2.

As an example, the shuffle product of the sets of words A = {xy} and B =
{yz, y} is the set of words {xyyz, xyzy, yxzy, yzxy, yxyz, xyy, yxy}. Languages of
catenation level 1/2, that is the shuffle ideals, are of the form ktΣ∗ where k is a finite
set of words.

In this paper, we are concerned with the relationship between spider diagrams and
regular languages. We have already established various relationships between spider
diagrams and catenation hierarchy levels 1/2 and 3/2. In particular, we proved that
spider diagrams give rise to languages that are closed under permutation of words and,
thus, cannot constrain a language to contain words, w, in which certain letters must
occur before others.

As an example, the diagram d in figure 2 represents a star-free language of words
over the four-letter alphabet Σ = {AB,AB,AB,AB}; here the alphabet has been
obtained by considering the contours in the diagram, i.e. A and B, and the four possible
combinations of being inside or outside the contours, with A denoting ‘being outside
A’. The diagram asserts, by way of the spiders, that there is an element in A − B
or A ∩ B (because of the spider placed inside A) and an element not in A (by the
placement of the other spider). In terms of regular languages, we can take this diagram
as asserting that all words contain letters corresponding to these possibilities given rise
to by the spiders. The spider inside A, therefore, tells us that the words must contain
either the letter AB or AB. The other spider tells us that words must contain either
AB or the letter AB. We further refine the notation to include square brackets, [AB]
to aid readability of words. Words in the language of the diagram, denoted L (d), are
precisely those that contain at least one letter from the first spider and one letter from
the other spider, in either order. Using the characterisation of shuffle-ideal languages
given above we may construct a set of words, k, such that L (d) = k tΣ∗. Such a k is
given by

k = {[AB][AB], [AB][AB], [AB][AB],
[AB][AB], [AB][AB], [AB][AB], [AB][AB], [AB][AB]}

and we observe that k is closed under permutation. The language L (d) = k t Σ∗

maintains the closure under permutation property of the set k.
Spider diagrams are a monadic first order logic with equality (MOFLe) [16]. We

are interested in the relationship between logics and subsets of regular languages. The
main body of literature discussing this relationship [7, 10, 11, 12, 19] assumes the
existence of an order relation < adjunct to the standard monadic first order operators
of ¬,∨,∧, ⇐⇒ , the quantifiers ∃ and ∀ and predicates of the form Pa(x) which
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Figure 3: Generalising spider diagrams.

states that the letter a is at positive position x in a word w. Intuitively, if we do not
have an order relation, <, as in MOFLe then any language corresponding to a formula
will be closed under permutation. In other words, languages of the form, for example,
Σ∗AΣ∗B (A comes before B in every word) do not correspond to languages arising
from formulae in MOFLe. Consequently spider diagrams do not contain facilities for
ordering elements and it is this main body of literature, referenced above, that provides
a motivation for generalising spider diagrams to include facilities for ordering elements.

4 Generalising Spider Diagrams to Include an Order
Relation

As just stated, spider diagrams are limited in their expressive power and cannot en-
force any kind of order on elements represented by the spiders. Here, we generalise
the spider diagram syntax and extend their semantics appropriately to overcome this
expressiveness limitation. For example, the spider diagram of order labelled d1 in fig-
ure 3 contains spiders whose feet are labelled with dots. The number of dots is used
to place an order on the elements represented by the spiders (alternative syntax would
simply label the feet with natural numbers as opposed to dots; such a change of syn-
tax would have no impact on the work that follows and is merely a different means of
visualisation). Thus, this diagram d1 is interpreted as saying that there is an element,
x, in A − B and another element, y, in B − A such that x < y. The semantics of the
spider diagram of order labelled d2 are a little more subtle. This diagram expresses that
there is an element, x, in A and an element, y, in B − A such that, if x ∈ A− B then
x < y, otherwise y < x. Here we see that the labels can be used to place an order on
the elements represented by the spiders in the context of which sets those elements are
located.

A further modification is to allow spiders to have more than one foot placed in
each zone, an idea first raised in [15] but not in the context of ordering elements. For
example, in figure 3, d3 expresses that there is an element, x, in A−B, another element,
y, in B −A and a third element, z, in A ∩B. The element x satisfies either x < y and
x < z or y < x and z < x. The elements y and z are both represented by spiders that
have the same label (i.e. 2) and we interpret this as expressing y and z can be in either
order: y < z or z < y.

Sometimes we might want to express an order on certain elements (as in the exam-
ples we have just seen) but not on other elements; in the previous example, we did not
specify an order on y and z. Suppose we want express the following:

1. there exist three distinct elements, x1, x2 and x3,
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(a) A unitary diagram. (b) A compound diagram.

Figure 4: Spider Diagrams of Order.

2. x1 is in the set A−B,

3. x2 is in the set B −A,

4. x3 is in the set A ∩B, and

5. x1 < x2.

To allow this statement to be expresses succinctly by spider diagrams, we allow the
use of non-labelled feet as in the original notation. A diagram of order making this
statement can be seen in figure 4(a), where the spider placed in A ∩ B has no label,
thus indicating we do not mind whether x1 < x3 or x3 < x1, for example.

With regard to shading, it is interpreted in the same way as the original notation:
in a shaded region, all of the elements are represented by spiders. As with the spider
diagram language in [8], we allow diagrams to be taken in disjunction and conjunction,
forming compound diagrams. In addition, the compound diagram ¬d is also allowed.
We have just provided various examples of unitary spider diagrams of order. The com-
pound diagram in figure 4(b) represents the disjunction of two unitary diagrams d1∨d2.
The horizontal line joining d1 to d2 denotes disjunction; the juxtaposition of the unitary
diagrams would represent conjunction. For the remainder of this section, we provide a
formalisation of the syntax and semantics of spider diagrams of order.

4.1 Syntax
Each spider diagram of order consists of contours (closed, plane, labelled curves), spi-
ders which are trees whose nodes (called feet) are a character such as •, , , , . . .
and shading. For example, the diagram d1 in figure 4(a) contains two contours labelled
A and B and three spiders, one with a foot labelled , another with a foot labelled •,
and the other with a foot labelled . In general, any given spider may contain both
ordered feet (those of the form ) and unordered feet (those of the form •).

Formally, the syntax is defined at an abstract level, extending that given in [16]. The
contour labels in spider diagrams are selected from a finite set L. A zone is defined to
be a pair, (in, out), of finite disjoint subsets of L. The set in contains the labels of the
contours that the zone is inside whereas out contains the labels of the contours that the
zone is outside. The set of all zones is denoted Z . To describe the spiders in a diagram,
it is sufficient to say how many spiders there are with any given foot arrangement. For
example, in figure 5(a), there are two spiders inside A with a single foot labelled 1
and another spider also inside A but with single foot labelled 2. Thus, our abstract
definition of a spider diagram will specify the labels used, the zones, identify which
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(a) Simple example. (b) More complex example.

Figure 5: Illustrating the syntax.

zones are shaded and use a set of spider identifiers to describe the spiders. We have
adopted this approach because it directly extends the abstract syntax presented in [16].

To begin our formalisation, we start by defining spider feet, which may be ordered,
denoted with an integer index, or unordered, denoted with a • character and subse-
quently we define spiders. When we formalise the semantics, it is useful to have access
to the region in which a spider is placed, called its habitat.

Definition 4.1. A spider foot is an element of the set (Z+ ∪ {•}) × Z and the set
of all feet is denoted F . A spider, s, is a set of feet together with a number: s ∈
Z+ × (PF − {∅}) and the set of all spiders is denoted S. The habitat of a spider
s = (n, p) is the region habitat(s) = {z : ∃k (k, z) ∈ p}.

Spiders are numbered because unitary diagrams can contain many spiders with the
same foot set; essentially, we view a unitary diagram as containing a bag of spiders.

Definition 4.2. A unitary spider diagram of order is a quadruple d = 〈L,Z, ShZ, SI〉
where

L = L(d) ⊆ L is a set of contour labels,

Z = Z(d) ⊆ {(a, L− a) : a ⊆ L} is a set of zones,

ShZ = ShZ(d) ⊆ Z(d) is a set of shaded zones,

SI = SI(d) ( S is a finite set of spider identifiers such that for all (n1, p1), (n2, p2) ∈
SI(d),

(p1 = p2 =⇒ n1 = n2) ∧ habitat(n1, p1) ⊆ Z(d).

The symbol ⊥ is also a unitary spider diagram. We define

L(⊥) = Z(⊥) = ShZ(⊥) = SI(⊥) = ∅.

If d1 and d2 are spider diagrams then (d1 ∧ d2), (d1 ∨ d2) and ¬d1 are compound
spider diagrams of order.

We observe that the set of spider identifiers is just a set of spiders, but with at
most one spider with any given foot arrangement present. If, for example, the spider
identifier set contains the pair (2, {(•, z)}) then this would tell us that d contains two
spiders in zone z whose feet are of the form •. As a more concrete example, the spider
diagram of order in figure 5(b) has abstract syntax:

1. labels L(d) = {A}
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Figure 6: Illustrating the semantics.

2. zones Z(d) = {z1 = ({A}, ∅), z2 = (∅, {A})}

3. shaded zones ShZ(d) = {z1}

4. spider identifiers SI(d) = {(2, {(•, z1), (1, z2)}), (1, {(•, z1), (2, z1), (2, z2)})}.

It is useful to identity the set of spiders present in a diagram, which is implicit in
the spider identifier set and to be able to arbitrarily select feet of spiders. For example,
when defining the semantics, each spider, s, represents and element and the feet place
a disjunction of constraints on that element; thus to identify whether and interpretation
(see below) is a model for a unitary diagram there needs to be a choice of foot for which
s satisfies the constraint imposed.

Definition 4.3. The set of spiders in unitary diagram d is defined to be

S(d) = {(i, p) : ∃(n, p) ∈ SI(d) 1 ≤ i ≤ n}.

Let FootSelect : S(d) → F be a function. If, for all (n, p) ∈ S(d),
FootSelect(s) ∈ p then FootSelect is called a foot selection function for d.

It is further useful to identify which zones could be present in a unitary diagram,
given the label set, but are not present; semantically, missing zones provide informa-
tion.

Definition 4.4. Given a unitary diagram, d, a zone (a, b) is said to be missing if it is
in the set {(a, L − a) : a ⊆ L} − Z(d) with the set of such zones denoted MZ(d). If
d has no missing zones then d is in Venn form [8].

4.2 Semantics
Regions in spider diagram represent sets and the spatial arrangement of the contours
places constraints on the relationships between those sets. For example, in figure 6,
the diagram d1 contains two contours, A and B, that do not overlap, indicating that the
sets they represent are disjoint. Spiders make existential statements about elements. In
particular, each spider denotes the existence of a particular element in the set repre-
sented by the spider’s habitat, with distinct spiders denoting distinct elements. From
d1 we can deduce that there is an element, x, in A and two elements, y and z, in B.
The numbers on the spiders feet provide information on the ordering of elements in the
universe. With regard to d1, we deduce that x < y and x < z. The shading tells us
that all of the elements are represented by spiders, so d1 asserts that A contains a single
element, namely x. The diagram d2 expresses B ⊆ A (because B is placed inside A)
and there is an element, x, in A and another element, y, in B such that if y ∈ A − B
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then x < y. The foot labels have particular significance as they are used to place a
restriction on the order of elements.

To formalise the semantics, we need to first interpret the contour labels as sets and
interpret the order relation <. Thus, we extend the definition of an interpretation given
in [8] to spider diagrams of order.

Definition 4.5. An interpretation is a triple (U,Ψ, <) where U is a universal set and
Ψ: L → PU is a function that assigns a subset of U to each contour label and < is an
irreflexive, antisymmetric and transitive relation on U . The function Ψ can be extended
to interpret zones and sets of regions as follows:

1. each zone, (a, b) ∈ Z , represents the set
⋂
l∈a

Ψ(l) ∩
⋂
l∈b

Ψ(l) and

2. each region, r ∈ PZ , represents the set which is the union of the sets represented
by r’s constituent zones.

For brevity, we will continue to write Ψ: L → PU but assume that the domain
of Ψ includes the zones and regions also. Given an interpretation we wish to know
whether it is a model for a diagram; in other words, when the information provided
by the interpretation agrees with the intended meaning of the diagram. Informally, an
interpretation is a model for unitary diagram d (6=⊥) whenever

1. all of the zones which are missing represent the empty set,

2. all of the regions represent sets whose cardinality is at least the number of spiders
placed entirely within that region and

3. all of the entirely shaded regions represent sets whose cardinality is at most the
number of spiders with a foot in that region.

4. the elements represented by the spiders obey the ordering imposed on them by
the spiders’ feet.

We now make this notion precise.

Definition 4.6. Let I = (U,Ψ, <) be an interpretation and let d ( 6=⊥) be a unitary
spider diagram of order. Then I is a model for d if and only if the following conditions
hold.

1. The missing zones condition
⋃

z∈MZ(d)

Ψ(z) = ∅.

2. The function extension condition There exists an extension of Ψ to spiders,
Ψ : L ∪ S(d) → PU which ensures the following further conditions hold.

(a) The habitats condition All spiders represent elements (strictly, singleton
sets) in the sets represented by their habitats:

∀s ∈ S(d) Ψ(s) ⊆ Ψ(habitat(s)) ∧ |Ψ(s)| = 1.

(b) The distinct spiders condition Distinct spiders denote distinct elements:

∀s1, s2 ∈ S(d) : Ψ(s1) = Ψ(s2) =⇒ s1 = s2.
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(c) The shading condition Shaded regions represent sets containing elements
denoted by spiders:

Ψ(ShZ(d)) ⊆
⋃

s∈S(d)

Ψ(s).

(d) The order condition The ordering information provided by the spiders
agrees with that provided by <: there exists a foot selection function,
FootSelect : S(d) → F , for d such that

• for all s ∈ S(d), FootSelect(s) = (n, z) implies Ψ(s) ⊆ Ψ(z)
• for all s1, s2 ∈ S(d) with FootSelect(s1) = (n1, z1) and

FootSelect(s2) = (n2, z2), if n1 6= n2 then either
i. n1 < n2 and x < y where Ψ(s1) = {x} and Ψ(s2) = {y} or

ii. n2 < n1 and y < x or
iii. n1 = • or
iv. n2 = •.

If Ψ: L ∪ S(d) → PU ensures that the above conditions are satisfied then Ψ is a
valid extension to spiders for d. A foot selection function, FootSelect : S(d) → F ,
that ensures the above conditions are satisfied is also called valid. If d =⊥ then the
interpretation is not a model for d.

For compound diagrams, the definition of a model extends in the obvious inductive
way.

Theorem 4.1. Let d be a unitary spider diagram. Then d has a model.

Proof. (Sketch) Take U = S(d) and any foot selection function
FootSelect : S(d) → F for d. Using FootSelect, define Ψ: L → PU ensuring that
Ψ(l) contains precisely the set of spiders whose selected foot lies in a zone contained
by l, whenever l is in L(d). Further, use FootSelect to define < in the obvious way:
for spiders s1 and s2, s1 < s2 if and only if both of the feet selected for s1 and s2 have
integer labels, n1 and n2 respectively, and n1 < n2.

5 Regular Languages and Spider Diagrams of Order
The finite models of spider diagrams of order give rise to words. We take our alphabet
Σ to be a finite set of zones, (a, b) ∈ Z , such that a∪ b = L and further assume that all
unitary diagrams have a label set L (all unitary diagrams are semantically equivalent
to another unitary diagram with label set L, therefore expressiveness is not affected).
Each spider s in a unitary diagram d is said to give rise to a letter in word w by selecting
a foot of s using some fixed FootSelect function for d. An unordered foot (•, zi) =
FootSelect(s) specifies that the letter zi appears in w. An ordered foot of the form
( , zi) = FootSelect(s1) specifies that zi appears at a position in w before the letter
zj of an ordered foot of the form ( , zj) = FootSelect(s2), and so-forth.

For example, the diagram d1 in figure 4(a) has a model U = {x, y, z} where A
represents the set {x, y} and B represents the set {y, z} and < = {(x, z)}. Taking
Z(d) = Σ, but using the notational convention established in section 3 rather than the
formal syntax, then the following words

[AB][AB][AB], [AB][AB][AB]
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arise from this model. By contrast, ABABBA does not arise from this model for d1

as there must be an occurrence of the letter AB at some index in w after the letter AB
as (x, z) ∈ <. In other words if AB were at index 1 (the first letter) then AB must
occur at index 2 or 3. Conversely, given a word, we want to establish whether it arises
from a model for some given diagram. We say such words conform to the diagram.

Definition 5.1. Let w = w1w2...wn be a word in Σ = Z(d) and d ( 6=⊥) be a unitary
diagram. The bag (or multiset) of letters of which w consists is denoted bag(w). The
word w conforms, to d if and only if there exists a function, f : S(d) → (Z+ ∪ {•})×
bag(w) satisfying

1. f(s) is a foot of s,

2. f is injective with regard to bag(w): for all (n1, wi), (n2, wi) ∈ im(f), n1 =
n2,

3. f is bijective with regard to bag(w) when the image is restricted to the maximal
sub-bag of w whose elements are shaded zones in d, denoted shadebag(w): for
all wi ∈ shadebag(w) there exists s ∈ S(d) such that f(s) = (n, wi) for some
n.

4. for all s1, s2 ∈ S(d), if f(s1) = (n1, wi) and f(s2) = (n2, wj) are distinct feet
and n1 < n2 then the i < j

For d =⊥, no words in Σ∗ conform to d.

So, w conforms to unitary diagram d(6=⊥) provided, for each spider, s, in d,

1. each spider in d gives rise to a letter in w by way of selecting a foot,

2. a low ranked foot gives rise to a letter appearing at a lower index of w than a
letter corresponding to a higher ranked foot,

3. for each shaded zone, z, the number of occurrences of z in w is precisely the
number of spiders whose selected foot is z.

Definition 5.2. The language of a unitary spider diagram of order, denoted L (d), is
the set of words which conform to the diagram d.

Definition 5.3. When considering the language of a compound spider diagram of or-
der:

• L (d1 ∧ d2) = L (d1) ∩L (d2),

• L (d1 ∨ d2) = L (d1) ∪L (d2),

• L (¬d1) = Σ∗ −L (d1).

We can describe the language of d1 in figure 4(a) in the form k tΣ∗ where k is the
finite set of words generated only by spiders i.e.

k = {[AB][AB][AB], [AB][AB][AB], [AB][AB][AB]}

As d1 contains no shading or missing zones there are no letters prevented from being
in words of L (d1), thus L (d1) = k t Σ∗.
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Theorem 5.1. The set of languages for spider diagrams of order whose unitary parts
contain no shaded zones is the boolean closure of shuffle-ideal languages, that is level
1 of the Straubing-Thérin hierarchy.

Proof. (Sketch) Let l be a level 1 language. Then l is a boolean combination of shuffle
ideals. We show that each shuffle ideal is the language of a spider diagram. The
result that l can be represented then follows by the inductive construction of l and the
spider diagram language. An arbitrary shuffle-ideal language can be seen as the finite
disjunction:

k t Σ∗ = (k1 t Σ∗) ∪ (k2 t Σ∗) ∪ . . . ∪ (kn t Σ∗)

where k1, k2, . . . , kn is a partition of k where each |ki| = 1 and Σ ⊆ Z . We may then
draw a spider diagram of order for each ki with zone set Σ and one single-foot spider
for each letter in ki placed in the appropriate zone and having the appropriate rank.
The language of the disjunction of these diagrams is L (k tΣ∗). Conversely, we must
show each such spider diagram has a level 1 language, which is left to the reader.

6 Conclusion
The main contributions of this paper are two-fold. First, we introduced spider diagrams
of order, increasing the expressiveness of the spider diagram language. We then defined
the language of a spider diagram of order and established the set of such languages
includes all of level 1 of the Straubing-Thérin hierarchy. This builds upon the relation-
ships previously established in [3]. The exact relationship between spider diagrams of
order and the Straubing-Thérin hierarchy remains to be determined. We conjecture that
there are languages in the class 3/2 that are not the language of any spider diagram of
order. In the future we wish to endow spider diagrams with the full power of monadic
first order logic with equivalence of order. We further plan to establish whether spider
diagrams are a natural specification technique for use in trace analysis.
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Abstract

This paper describes an algorithm (Fast Zone Discrimination - FZD) for
analysing Concrete Euler diagrams and listing all present zones.

One application area of Euler/Spider diagrams, is modelling failure modes in
electronic circuits. For this a procedure is required to check Spider diagrams for
logical consistency by ensuring that all present zones in a model have been consid-
ered. Unused zones could be viewed as un-handled failure conditions. In order to
know which zones have not been used, a complete list of present zones is required
for each concrete diagram drawn.

To determine if zones are present, a concrete diagram must beexamined using
programmatic area operations. These area operations are costly of computer time
and it is desirable to eliminate all that are unnecessary.

The algorithm initially builds two sets of relationships from a concrete diagram
and then uses these to target searches for zones that may be present. Using the two
sets of relationships eliminates checking for a large number of missing zones; thus
processing diagrams quickly and efficiently.

Keywords: Euler, Fast Zone Discrimination, present, available region, java area, algo-
rithm.

1 Introduction

Definition 1.1 An Euler diagram is a finite set of of simple closed curves in the plane.

In earlier work[1] spider diagrams [2] have been used to represent the failure modes
of components and modules within safety critical electronic systems. By using logical
reduction and hierarchies of abstraction, mathematical modelling of complete safety
critical systems is possible.

Spider diagrams are based on Euler diagrams. This paper looks specifically at
determining which zones are present in an Euler diagram.

A zone is defined as a region in the plane formed by the intersection of curves in
the setI (the ‘included’, or inside set) and a set of curvesE, representing the curves
excluded from the set. For instance in figure1(a) there is a zone described byI =
{B, C, D} with E = {A}.

One way of looking for present zones would be to look for everypossible combina-
tion and then to use the excluded zones to check for obscuration. Checking all possible
combinations is henceforth referred to as the ‘Brute force method’.

∗r.clark@energytechnologycontrol.com
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(a) Euler Diagram (b) Intersection A B

(c) area to subtract

Figure 1: Simple Euler Diagram

The brute force method is simple, and would be practical for small numbers of con-
tours. However as constraint/spider diagrams become used in practice larger numbers
of contours and very large diagrams will become common. The Brute force method for
finding present zones is of the complexity orderNC.2NC (whereNC is the number
of contours in the Euler diagram). Because of this, a more efficient algorithm has been
sought.

In order to obtain information from the concrete diagram, a Java class called an
Area[3] is used. This provides Area operations such asexclusive orandsubtract. To
measure the effectiveness of a zone searching algorithm, the number of Area operations
is considered an appropriate metric.

Section 2 defines determining ‘present’ zones, and providesEuler diagram exam-
ples showing checking for the existence and obscuration of zones. Section 3 defines
relations between contours in an Euler diagram, and introduces the terms ‘pure in-
tersection’, ‘pure intersection chain’ and ‘enclosure’. The mathematical properties of
these relationships are then discussed and defined. Section4 shows how these rela-
tionships can be used to draw graphs representing Euler diagrams, and discusses a
practical algorithm implemented from spanning these graphs. Section 5 compares the
performance of the algorithm with the ‘brute force’ method.

2 Determining Missing and Present Zones

A ‘present’ zone is simply one on which one can place an object(or spider ‘foot’). For
instance there may be an area of intersection on a diagram that is obscured by other
contours. That intersection is impossible to use and therefore not considered ‘present’
in the diagram.

Actually determining whether a zone is present or not in a simple diagram is easy
by inspection. An example follows describing two zones and how they are proved
‘present’ or otherwise, using ‘Area’[3] operations.
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2.1 Zone Present Example

Let us examine an intersection and determine whether or not it is ’present’ in the dia-
gram. In figure 1(a) the intersectionA∩B can be observed. To define this intersection
we can say that it has a set of included contoursIn = {A, B} and a set of excluded
ContoursEn = {C, D} (where n is the nth zone under investigation).

By looking at the area formed (figure 1(b))we can see that the intersection exists.
The area of all other contours in the diagram must now be subtracted from the intersec-
tion to check for obscuration (see figure 1(c)). After subtraction of the areas formed by
C ∪ D there is an area remaining of the intersectionA ∩ B.

The ZoneA ∩ B is therefore present in this diagram.

Definition 2.1 (Obscuration) A zoneZ formed from the intersection of contoursc1...cj

is said to be obscured by a collection of contourso1...ok when

⋂

i∈1...j
Interior(ci) ⊂

⋃

i∈1...k
Interior(oi)

2.2 Zone Missing Example

Consider the potential zoneC ∩ B. This would have an included setIN = {B, C}

and an excluded setEN = {A, D}. It can be seen that subtracting the interior formed
by A ∪ D from the interor formed byB ∩ C as an area operation; leaves nothing. The
zoneB ∩ C is therefore considered missing in this diagram.

2.3 The General Case : Proving a Zone is Present

The total number of contours in the diagram, will be referredto asNC.
For some diagram elements the contours will not interact andtherefore searching

for zones can be applied within subsets of contours. These subsets are defined later
in the paper. The variable, Interacting contours count,ICCn represents the number
of contours within these subsets. It will always be less thanor equal to the number of
contours in the diagram.

ICCn ≤ NC (1)

A zone can be defined by two disjoint contour sets, includedIn and excludedEn,
wheren is the zone under investigation.

First of all we determine the concrete area formed by the intersection setIn. This
involves taking the intersections of all the interiors of the sets inIn, as area operations.

AreaIntersectionn =
⋂

x∈In

Interior(x) (2)

The result of these intersection area operations could be a NULL area, indicating
that there is no intersection. If the intersection does exist we then need to ensure that it
is not covered up by any of the contour interiors formed by thesetEn.

In order to check for obscuration,we must find the area formedby all other sets that
could cover it. This is done by taking the union of all the excluded contours, as an area
operation.

AreaExclusionn =
⋃

x∈En

Interior(x) (3)
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TheAreaIntersectionn may now have theAreaExclusionn subtracted from it,
as an area operation. This is an area subtraction and area is only subtracted where it
overlaps. If the result has non zero area, then the zone is considered present.

RemainingIntersectionn =
AreaIntersectionn − AreaExclusionn

(4)

Finally the setsIn andEn must contain all contours for the the Euler diagram under
investigation.

InteractingContours = In ∪ En (5)

For reference a table of all possible zones, showing which are present in the four
contour diagram (figure 1(a)), is shown below.

Inside outside
Included setI ExcludedsetE Present
{ } { D C B A } Y
{ A } { D C B} Y
{ B } { D C A } Y
{ B A} { D C} Y
{ C} { D B A } N
{ C A } { D B } N
{ C B} { D A } N
{ C B A } { D } N
{ D } { C B A } Y
{ D A } { C B} N
{ D B } { C A } Y
{ D B A} { C} N
{ D C} { B A } Y
{ D C A } { B } N
{ D C B} { A } Y
{ D C B A } { } N

3 Relationships that can be obtained from an Euler Di-
agram

Intersection areas in the concrete diagram can be formed in two ways. By enclos-
ing another contour, or by overlapping a part of another contour. These two types of
intersection are clearly mutually exclusive.

The intersections that do not involve enclosure have been termed ‘pure intersec-
tions’.

The algorithm developed in this paper applies two initial searches to the diagram.
The first looks for enclosure relationships and the second for pure intersections. These
searches are applied to the cross products of all contours inthe diagram.

Definition 3.1 (Enclosure) we say that contour A encloses contour B if
Interior(A) ⊃ Interior(B)

Enclosure for a given pair of contours is expressed in the boolean equation 6.

enc(a, b) = (Interior(a) ⊃ Interior(b)) (6)

Definition 3.2 (Pure Intersection) we say that there is a pure intersection ofa, b,
where there is an intersectiona ∩ b buta does not encloseb, andb does not enclosea.

Pure intersection for a given pair of contours is expressed in the boolean equation 7
using the definition of enclosure above.

pi(a, b) = ((Interior(a)∩Interior(b) 6= ∅))∧¬enc(a, b)∧¬enc(b, a)∧a 6= b (7)

Because the definition of pure intersection expressly forbids enclosure, we have
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(a) Euler Diagram (b) Graph of diagram

Figure 2: Pure Intersection Chain with Enclosure

Lemma 3.1 (Mutually exclusive) Pure intersection and Enclosure are mutually ex-
clusive.

3.1 Relationship Properties

By applying the equations 6 and 7 to the cross product of all contours in the concrete
diagram, we have two lists of relationships, the pure intersections and the enclosures.

From the diagram in figure 2(a), we obtain the following relationships.

3.1.1 Pure intersections relations

Pure Intersection relationships for the diagram in figure 2(a) are :-

A
pi
−→ B, B

pi
−→ A, B

pi
−→ C, C

pi
−→ B, D

pi
−→ C, C

pi
−→ D, E

pi
−→ C, C

pi
−→ E

3.1.2 Enclosure Relations

Relationships for the diagram in figure 2(a) include one enclosure within a pure inter-
section chain.

E
enc
−→ D

Examining these relations, we can classify them.

3.2 Transitive

For pure intersection relationships, it does not follow that (looking at figure 2(a)) be-
cause A purely intersects with B, and B with C that A purely intersects with C.

A
pi
−→ B ∧ B

pi
−→ C 6⇒ A

pi
−→ C

.
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Figure 3: Enclosure within Enclosure : A transitive relationship

Pure Intersection is therefore not a transitive relationship.
Figure 3 demonstrates the transitive nature of enclosure relationships. For the con-

tours in the diagram{x, y, z} it can be seen that because x encloses y, and y encloses
z, x encloses z. Enclosure is based on a relationship of proper subsets of areas, and is
therefore a transitive relationship.

x
enc
−→ y ∧ y

enc
−→ z ⇒ x

enc
−→ z (8)

3.3 Reflexive

A reflexive relationship is one where an element can be related to itself [4]. Clearly
enclosure and pure intersection are anti-reflexive (i.e. nopure intersection or enclosure
can be reflexive) because they require interactions betweencontours.

3.4 Symmetric

A symmetric relation is one such thata → b ⇒ b → a [4]. Clearly enclosure cannot
be symmetric. Because pure intersection is defined by sharing an intersection (see
eqn 7, i.e.without enclosure), pure intersection relations are always symmetric. The
relationships defined for the pure intersections above (3.1.1), can now be expressed
thus.

A
pi
↔ B, B

pi
↔ C, D

pi
↔ C, C

pi
↔ E

3.5 Pure Intersection Relationship Properties

Pure intersection relationships are

• Not Reflexive

• Symmetric

Note that by following pure intersection relationships, sets of contours connected
by pure intersections can be determined. These are referredto as ‘pure intersec-
tion chains’.

Contours in the pure intersection chain may obscure other members in the same
chain (see figure 2(a)). Formally a ‘pure intersection chain’ is defined thus
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Definition 3.3 (Pure Intersection Chain) Let d be an Euler diagram : a pure inter-
section chain is a maximal set of contoursC in d such that for any pair of contours in
C there exists a sequence of contours such that

ci
pi
−→ cn for i = 1, ..., n − 1

3.6 Enclosure Relationship Properties

Enclosure relationships are

• Not Reflexive

• Not Symmetric

• Transitive

4 Methods for finding Present Zones

Firstly we can consider the diagram in terms of pure intersection relationships. The
effects of enclosure and obscuration are dealt with later.

Lemma 4.1 (pure intersection cases)When analysing an Euler diagram from pure
intersection relations, there are only three possible cases that can be presented. Lone con-
tours, lone purely intersected contours and pure intersection chains.

4.1 3 cases for zone identification

The three cases are described in greater detail below.

4.1.1 Lone Contours

Definition 4.1 (Lone Contour) A Lone Contour is a countour not intersected by any
other.

A lone contour will always represent one present zone, whichmay include enclos-
ing contours (if any). The contours in figure 3, are all lone contours, and analysing
these determines the following present zones.

Lemma 4.2 (Lone Contour Single Zone)A lone contour will always produce one
present zone in an Euler diagram.

lone contour Included Set Excluded Set
under investigation In En

{z} {xyz} { }

{y} {xz} {y}

{x} {x} {yz}

4.1.2 Lone Pure Intersection Pairs

Definition 4.2 (Lone Pure Intersection Pair) A Lone Pure Intersection is a pair of
intersecting contours, not belonging to a pure intersection chain.
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The pure intersections in figure 6(a) are all lone pure intersections.
Lone pure intersections may be enclosed by other contours (see eqn 8). Three

present zones will always be found upon analysing a lone pureintersection. Enclosing
contours (if any) are added to the intersection setsIn.

Lemma 4.3 (Lone Pure Intersection 3 zones)A lone pure intersection will always
produce three present zones in an Euler diagram.

4.1.3 Pure Intersection Chains

Pure intersections can contain zones formed by multiple intersections, they can have
contours within the chain that obscure zones, and they may contain enclosure within
the chain.

In describing the process for finding the present zones within a pure intersection
chain it helps to graph them, with the contours becoming vertices, enclosures forming
directed edges and pure intersections forming undirected edges.

Circuits of undirected edges indicate the possibility of multiple intersections within
the chain. The graphs and their meanings are dealt with in thenext section.

Pure intersection chains within a diagram can be viewed as separate groups within
the Euler diagram. That is to say, they may be analysed in isolation with the enclosure
rules being applied afterward. This means that a diagram canbe broken down into
smaller more manageable chunks and this significantly reduces the number of area
operations to perform (see eqn 1). The reasons for this are described in the section 4.4.
(i.e. area operations need only be performed within pure intersection chains). Thus the
number of contours in the diagramNC, comprises of smaller sets of contours (of size
ICCn) that can be analysed separately. See eqn 1.

Contours may enclose pure intersection chains. Where this is the case all enclosing
contours (see eqn 8) are added to the intersection setsIn of all zones discovered within
the pure intersection chain.

4.2 Graphing Pure Intersection and Enclosure Relationships

By representing contours as vertices, enclosure relationships as directed edges (be-
cause they are transitive) and pure intersections as undirected edges (because they are
symmetric), the diagram in figure 2(a) can be represented by the graph in figure 2(b).

4.3 Graphs with Circuits

(a) Triple zone (b) No Triple Zone (c) Graph

Figure 4: Graph with Circuit
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Ignoring enclosure for the time being, consider the Euler diagrams in figures 4(a)
and 4(b) .

These both produce the same graph representation see figure 4(c).
Note that the existence of a circuit of undirected edges (i.e. pure intersections)

indicates the possibility of a multiple intersection. If the area operations in equations
2, 3, 4 and 5 are satisfied the multiple area is ’present’.

Note the corollary of this,if no circuit exists then no multiple intersection can. The
principle strength of the algorithm hinges on this. By targeting the searching to only
zones that ‘may’ be present, all those that cannot are by-passed.

Note that the circuits within the pure intersection chain can be investigated, and
then the enclosures can be added afterward. This is because ‘pure intersection’ and
‘enclosure’ are mutually exclusive. Also the transitive relationship established for en-
closure, means that we simply have to add enclosure intersections to the included set
IN (see eqn 8).

Lemma 4.4 (Venn N circuit) For a Venn N zone to exist there must be a circuit in the
corresponding graph of pure intersections with N vertices,where each vertex corre-
sponds to a contour in the Venn N intersection.

Lemma 4.5 (Venn N pure intersection chain)For a circuit of pure intersections to
exist, they must be all members of the same pure intersectionchain.

4.4 Non connected graphs

Consider the Euler diagram in figure 5(a).

(a) Separate Pure Intersection Chain (b) Graph of Separate pure int.chains

Figure 5: Non-Connected Graphs

There are three separate pure intersection chains in this diagram. They are{A, B, C},
{D, E, F} and{G, H, I}. Note that present zones found from the pure intersection
chains{A, B, C} and{D, E, F} all include an intersection with contourG.
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By finding present zones within the pure intersection chains, and adding any en-
closing contours (see eqn 8) to the intersection setIN the present zones germane to the
pure intersection chain are discovered.

A more complicated scenario is when enclosure occurs withina pure intersection
chain, see figure 2(a). In analysing the IntersectionC ∩ D it will not be recognised as
an present zone, because the enclosure relationshipE

enc
−→ D will be applied and the

intersection becomesC ∩ D ∩ E : after passing obscuration testing (area subtraction
of A ∪ B), the zone withIN = {C, D, E} andEN = {A, B} will be registered as a
’present’

4.5 Algorithm Design

The aim of this algorithm is to avoid the burdensome2NC complexity order of check-
ing for all possible zones in an Euler diagram withNC contours.

By breaking the diagram into a number of smaller sets of contours, which can be
checked in isolation, the number of checks is significantly reduced.

The smallest possible sets that can be analysed in isolationare the ‘lone contour’,
the ‘lone pure intersection’ and the ‘pure intersection chain’. A ‘lone contour’ will
always produce one present zone (see lemma 4.2). A ‘lone pureintersection’ will
always produce 3 (see lemma 4.3).

A ‘pure intersection chain’ can potentially produce2ICCn present zones (where
ICCn is the number of contours in the chain).

One could check for all2ICCn possible zones within the ‘pure intersection chain’.
However, the ‘pure intersection chain’ is handled more effeciently than this by only
applying checks to circuits of pure intersections within the chain (see lemma 4.4).

By applying the enclosure relations to the present zones discovered in each of the
three cases, all present zones in the diagram are discovered.

The correctness of the algorithm rests on the lemmas 3.1, 4.1, 4.2, 4.3 and 4.4.

4.6 Algorithm Pseudo Code

In high level pseudo code, the algorithm works thus:

BEGIN
Determine all Enclosure relationships.
Determine all Pure intersections
Search through pure intersection relationships and obtain pure
intersection chains.

For all contours in the diagram where contour is not a member
of a pure intersection chain; add all enclosing contours;
register as an present zone;

For all pure intersections in the diagram where pure
intersection is not a member of a pure intersection chain;
add all enclosing contours to intersections register as an
present zone;

For all pure intersection chains
for each pair intersection within chain add any enclosing
contours and determine if the intersection is present using
area operations; if present then; register as a present zone;
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obtain all circuits within the pure intersection chain;
for all circuits within the pure intersection chain;

add any enclosing contours and check obscuration using
area operations;
if the zone indicated is present; then register as an
present zone;

END

4.7 Checking for all Possible zones - Brute force/Binary Count

The number of potential zones in an Euler diagram containingNC contours is2NC .
In a diagram withNC contours, each zone under investigation will comprise of

the setIn and the setEn. The number of area operations to get the intersection area,
and the number to get the obscuration check area, will alwaysadd up toNC, using the
‘brute force’ method.

For instance were a diagram to contain 32 contours, to brute force check for the
existence of all contours would take all possible combinations of 32 objects. This
corresponds to a binary count and thus232 possible zones to check for. A diagram
with 32 contours would contain a potential of over 4 billion zones. Multiply that by
the 32 area operations (with varying proportions of intersection (In) and obscuration
(En) tests - but always adding up to 32) required and we reach an astronomical number
(32.232).

In general then the brute force zone search, with intersection area operations, and
obscuration testing (on averageNC

2
+ NC

2
), takes

NC.2NC (9)

4.8 Number of Area Operations using Pure intersection and En-
closure Relationships

The number of area operations applied by this algorithm depends upon the complexity
of the diagram, and the sizes of the pure intersection chains. Were the worst case to
apply, i.e.V ennNC this algorithm is less efficient by2.NC2 i.e. for a Venn N diagram,
the number of area compares for the FZD algorithm is

2.NC2 + NC.2NC (10)

Most diagrams written by human beings will be far less complicated thanV ennN .
In the domain of safety critical circuit/system analysis, the diagrams will be comprised
typically of a number of separate pure intersection chains,and the searches need only
be applied within them. TheICCN value for interacting contours will be equal to
the number of contours in each pure intersection chain. Alsobecause the graphs are
traversed,most contour combinations will be determined impossible bythe fact that no
circuit exists in the undirected edges.

5 Case Studies

To compare the algorithms performance against the ‘brute force’ method, I have taken
two diagrams of a typical complexity level that is drawn fromthe failure mode[1]
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(a) Simple Pure Intersection Pairs (b) Two Enclosed Venn 3

Figure 6: Performance Comparison

applications.
The number of area operations necessary to find all zones has been analysed and

a numerical formula based onNC, has been derived using techniques from [5]. This
formula can now be plotted to compare the performance of the algorithm for the two
test patterns. The examples shown in figures 6(a) and 6(b), use 8 contours per diagram.
Using the Brute force method these would requireNC.2NC or 2048 area compares
to determine all visible zones. By duplicating the structures, values can be calculated
for generalNC number contour diagrams of the same family. The algorithm parses
the relations built in the first two passes to eliminate unnecessary searches. These
relationships are held in Java data structures in RAM and aretherefore considered
to have minimal impact on processing time. For this reason, only the java Area[3]
operations are considered in comparing the performance of the algorithm against the
‘brute force’ method.

5.1 Simple pairs of contours

The simple diagram, shown in figure 6(a), consists of four overlapping pairs of con-
tours. To determine the enclosure and pure intersection relations, two cross products
of contour area searches are required. Thus2 NC2, i.e. 128 searches. Zones derived
from lone contours and lone pure intersections do not need tobe checked for existence
or obscuration. The total number of area compares/operations is therefore2.64 = 128.
Were one to add more lone pure intersections to this diagram,the diagram would be-
come larger, but would have the same pattern. Five lone pure intersections would take
2.128 = 256 area operations to find all present zones.

As a general case, for extrapolating larger diagrams of the same pattern, whereN
is the number of contours

AreaOperationsRequired = 2.NC2 (11)

5.2 Two Venn 3 totally Enclosed Once : a more Complex Diagram

The second diagram, see figure 6(b), contains two Venn 3 configurations each enclosed
by a contour. Breaking this down, we have two single zones (from the contours G and
H). Examining the two Venn3 structures, these require an existence check for the triple
intersection (3 area operations). As the number of contoursto check for obscuration
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(a) 0 to 8 contours (b) 8 to 64 contours

Figure 7: Performance Comparison

against it is 0, they do not require obscuration testing. Within each Venn3 each of the
double intersection zones must be checked for obscuration.Thus 2 area operations
to construct the shape of the zone, and 1 area operation to test for obscuration, thus
3 per pair. The three single zones in the pure intersection require 1 area operation to
construct the shape of the contour, and two to test for obscuration. Thus 3 per pair.
This diagram therefore requires128 + 2.(9 + 9) = 146 area compares. As a general
equation for the number of the number of area operations required can be calculated,
thus:

AreaOperationsRequired = 2.NC2 +
NC

4
.(18) (12)

5.3 Extrapolating for N Contour Diagrams

Duplicating the structures in the diagrams in figures 6(b) and 6(a), and using the general
case equations (11 and 12), a plot of area searches required against diagram complexity
can be drawn.

These graphs were produced in Gnuplot[6] (which uses a Fortran [7] like syntax
for formulas), with the following equations:

GnuplotSyntax LineColour Arithmetic

x ∗ 2 ∗ ∗x Green NC.2
NC

2 ∗ x ∗ ∗2 + x/4 ∗ 18 Blue 2.NC
2

+
NC

4
.18

2 ∗ x ∗ ∗2 Red 2.NC
2

These graphs clearly shows that the FZD method efficiency increases with the num-
ber of contours in a diagram.

6 Conclusion

6.1 Practical Implementation

An algorithm has been implemented in Java, which finds present zones in an efficient
and quick way, in a spider diagram editor application. It hasbeen checked against a
‘brute force’ algorithm, by inspection, with Venn4, Venn5 and a variety of test dia-
grams.
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6.2 Future Enhancements

Because Surface Areas are calculated as a side effect of the Java[3] area class, some
well formed-ness[8] criteria can be checked for.

Further efficiency may be possible by analysing the structure of the graphs pro-
duced from the pure intersection chains, and determining rules to further reduce the
number of Java area operations to prove a zone present.
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Abstract
Description logics (DLs) are a well-understood family of knowledge represen-

tation (KR) languages. The notation of DLs has the flavour of a variable-free first
order predicate logic. In this paper, a diagrammatic representation of the DLALC,
based on Peirce’s existential graphs, is presented, and a set of transformation rules
on these graphs is provided. It is proven that these rules form a sound and complete
diagrammatic calculus for ALC.

Keywords: Existential graphs, relation graphs, description logics, diagrammatic rea-
soning, calculus, soundness, completeness

1 Introduction
Description logics (DLs) are a well-understood family of knowledge representation
(KR) languages tailored to express knowledge about concepts and concept hierarchies
that have gained widespread use. The basic building blocks of DLs are concepts, roles
and sometimes individuals, which can be composed by language constructs such as
intersection, union, value or number restrictions and more to build more complex well-
formed formulas that themselves represent more complex concepts and roles. For ex-
ample, if MAN, FEMALE, MALE, RICH, HAPPY are concepts and if HASCHILD is a
role, we can define

HM ≡ MAN u ∃HASCHILD.FEMALE u ∃HASCHILD.MALE

u∀HASCHILD.(RICH t HAPPY)

which defines the concept of men who have both male and female children, and where
all children are rich or happy (HM abbreviates HAPPYMAN).

The formal notation of DLs has the flavour of a variable-free first order predicate
logic (FOL). In fact, DLs correspond to decidable fragments of FOL. Like FOL, DLs
have a well-defined, formal syntax and Tarski-style semantics, and they provide sound
and complete inference facilities. The variable-free notation of DLs makes them easier
to comprehend than the common FOL formulas that include variables. Nevertheless,
without training, the symbolic notation of FOL can be hard to learn and comprehend.

It has been argued that diagrams are useful for KR systems [9, 12, 13], a fact that
has been acknowledged by the DLs authors (see introduction of [1]). Therefore one
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alternative to DLs symbolic notation is the development of a diagrammatic represen-
tation. A first attempt can be found in [9], where a graph-based representation for the
textual DL CLASSIC is elaborated. In [3], a specific DL is mapped to the diagram-
matic system of conceptual graphs [17]. In [2], a UML-based representation for a DL
is provided. In these approaches, the focus is on a graphical representation of DL,
however, as emphasized in many works on DL, reasoning is a distinguishing feature
of DL. Correspondences between graphical representation of the DL and the DL rea-
soning system are therefore important inclusions in any graphical representation but to
date they have remain largely unelaborated.

This paper presents a diagrammatic representation of the DL ALC in the style
of Peirce’s existential graphs (EGs) [18, 15, 16, 6] (the reasons for choosing Peirce’s
graphs as a diagrammatic framework for DL are presented [8]). An adequate diagram-
matic calculus for ALC, based on Peirce’s calculus for his graphs, is provided.

Reasoning with DLs is usually carried out by means of tableau algorithms. The
calculus of this paper differs significantly from this approach in two respects. First, the
rules of the calculus are deep-inference rules, as they modify deep nested subformulas,
whereas tableau algorithms (similar to other common calculi) only modify formulas
at their top-level (some interesting aspects of Peirce’s rules in terms of proof-theory
are investigated in [7]). More importantly for this workshop, the rules can be best
understood to modify the diagrammatic Peirce-style representations of ALC, i.e., the
calculus is a diagrammatic calculus.

The paper is structured as follows. We assume that the reader has some familiarity
with the system of EGs. In Section 1.1, only a very short introduction is provided.
Thorough introductions can be found in [18, 15, 16, 6]. In Section 2 the syntax and
semantics of the DL ALC as we use it in this paper is introduced. In Section 3, the
diagrammatic calculus for ALC is presented, and its soundness and completeness is
proven. The final section provides a discussion of this research.

1.1 Existential Graphs
Existential graphs [10] are a diagrammatic logic invented by C.S. Peirce (1839-1914)
in the last two decades of his life. Existential graphs are divided into three parts called
Alpha, Beta and Gamma. The three parts build on one another, Beta builds upon Alpha,
and Gamma builds on both Alpha and Beta. Alpha corresponds to propositional logic,
Beta corresponds to FOL (to be precise: first order logic with predicates and equality,
but without functions or constants). Gamma encompasses features of higher order
logic, including modal logic, self-reference and more. In contrast to Alpha and Beta,
Gamma was never finished by Peirce, and even now, only fragments of Gamma (mainly
the modal logic part) are elaborated to contemporary mathematical standards. In this
section, only Beta is introduced.

The EGs of Beta consist of predicate names of arbitrary arities, of heavily drawn
lines which are both used to express existential quantification and identity, and of
closed, doublepoint-free curves which are called CUTS (or sometimes SEPS) and used
to negate the enclosed subgraph. We start with a very simple graph expressing ‘a cat is
on a mat’. Below, three different diagrams of the graph are depicted.

on
cat

mat

1 2
oncat mat
21

on

mat

cat

2

1
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Each diagram contains two heavily drawn lines. In this case, they do not cross cuts
or do not have branching points (see below for an explanation of cuts and branching
points). This simplest form of a heavily drawn line is called LINE OF IDENTITY. The
two lines of identity denote two (not necessarily different) objects. The first line of
identity is attached to the unary predicate ‘cat’, hence the first object denotes a cat.
Analogously, the second line of identity denotes a mat. Both lines are attached to the
dyadic predicate ‘on’, i.e. the first object (the cat) stands in the relation ‘on’ to the
second object (the mat). The meaning of the graph is therefore ‘there is a cat and a mat
such that the cat is on the mat’, or in short: A cat is on a mat.

The three different diagrams are different representations of the same EG. In order
to distinguish graphs from their diagrams, Peirce coined the term graph and graph
replica, i.e., the above diagrams are different graph replicas of the same EG. Similar
distinctions are made between types and tokens, known from philosophy, or abstract
and concrete syntax, used widely in Computer Science. As discussed in [11, 4], for a
formally precise elaboration of any logic by means of diagrams, this distinction is vital.
This approach is adopted in this paper as well. In Section 2, a fragment of Peirce’s
graphs is used as a diagrammatic system for the DL ALC. In this section, the syntax
of this fragment is defined on a abstract level which prescinds from the topological
properties of the diagrammatic representations.

In the next graphs, the cuts which are used to express negation are introduced.

man man man

The meaning of the first graph is ‘there is a man’. The second graph is built from the
first graph by drawing a cut around it, i.e. the first graph is denied. Hence the meaning
of the second graph is ‘it is not true that there is a man’, i.e. ‘there is no man’. In
the third graph, the heavily drawn line (which is not a line of identity, as it crosses a
cut) begins on the sheet of assertion. Hence, the existence of the object is asserted, not
denied. For this reason the meaning of the third graph is ‘there is something which is
not a man’.

Peirce writes in [10], in 4.116 (we adopt the usual convention to refer to his col-
lected papers), a “line of identity is [. . .] a heavy line with two ends and without other
topical singularity (such as a point of branching or a node), not in contact with any other
sign except at its extremities.” So lines of identity do not have any branching points,
nor are they are allowed to cross cuts. However, by connecting them at their endpoints,
we can obtain networks of lines of identity, which are termed LIGATURES. Peirce al-
lows only two or three lines of identity to be connected. If three lines of identity are
connected, the point where they meet is called a BRANCHING POINT. Moreover, it is
possible to connect lines of identity connect directly on a cut. Due to this possibility,
ligatures are permitted which cross a cut.

Let us now consider the three EGs of Fig. 1, where ligatures are used.
In the first graph, the ligature consists of three lines of identity, which meet in

a branching point, in the second graph, the ligature consists of two lines of identity
meeting on the cut, and the ligature in the third graph is composed of seven lines of
identity. Nonetheless, in all these graphs, a ligature can, similar to a line of identity,
be understood to denote a single object. The meaning of the graphs of Figure 1 ‘there
exists a male, human african’, ‘there exists a man who will not die’, and ‘it is not
true that there is a pet cat such that it is not true that it is not lonely and owned by
somebody’, i.e., ‘every pet cat is owned by someone and is not lonely’.
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cat
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21

Figure 1: Four Peirce graphs with ligatures which do not traverse cuts

Nonetheless, other examples show that this interpretation of ligatures is not so sim-
ple in every case: namely a ligature may stand for more than one object. Let us consider
the three EGs of Figure 2. These graphs have the meanings ‘there are at least two suns’,
‘there are (not necessarily distinct) objects which are blue, red, large and small, respec-
tively’, and ‘the blue and large or the red and small object are distinct’, and ‘there are
objects o1, o2, o3 with the properties S, P , and T resp, and these objects are not all
identical’ (i.e., o1 = o2 = o3 does not hold). In every graphs, there is not a single
ligature that can be understood to denote a single object.

is sun is sun
large
small

blue
red

S

TP

Figure 2: Three Peirce graphs with ligatures which traverse cuts

In every graph in Figure 2 a part of a ligature traverses a cut (i.e., there is a cut c
and a heavily drawn line l which is part of the ligature such that both endpoints of l
are placed on c and the remainder of l is enclosed by c). Such a device denotes non-
identity of the endpoints of l. A complete discussion of ligatures in existential graphs
goes beyond the scope of this paper, see [5] for a more detailed discussion. It will turn
out that in the EGs we have to deal with in this paper, no ligature traverses a cut, so we
will not run into problems caused by the kind of ligatures of we see in Figure 2.

We now have all the necessary elements to express existential quantification, predi-
cates of arbitrary arities, conjunction and negation. As such we see that the Beta part of
EGs corresponds to FOL (without object names and without function names). More-
over, Peirce equipped EGs with a set of five sound and complete inference rules. We
do not address these rules in this section. For the ALC-fragment of EGs, they will be
introduced in Section 3.

2 The Description Logic ALC
The vocabulary (A,R) of a DL consists of a set A of (ATOMIC) CONCEPTS, which
denote sets of individuals, and a setR (ATOMIC) ROLES, which denote binary relation-
ships between individuals. Moreover, we usually consider vocabularies that include the
universal concept >. From these atomic items, more complex concepts and roles are
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built with constructs such as intersection, union, value and number restrictions, etc. For
example, if C, C1, C2 are concepts, then so are C1 uC2, ¬C, ∀R.C, and ∃R.C (these
constructors are called conjunction, negation, value restriction, and exists restriction).

In this paper, we focus on the description logic ALC, which is the smallest propo-
sitionally closed description logic. For our purpose, we consider ALC to be composed
of conjunction, negation and existential restriction. In contrast to the usual approach,
in this paper the concepts of ALC are introduced as labelled trees. This is more con-
venient for defining the rules of the calculus, and the trees are already close to Peirce’s
notion of graphs.

An INTERPRETATION is a pair (∆I , I), consisting of an nonempty DOMAIN OF
THE INTERPRETATION ∆I and INTERPRETATION FUNCTION I which assigns to every
A ∈ A a set AI ⊆ ∆I and to role R ∈ R a relation RI ⊆ ∆I × ∆I . We require
>I = ∆I .

Trees can be formalized either as rooted and acyclic graphs, or as special posets.
We adopt the second approach, i.e., a tree is a poset (T,≥), where s ≥ t can be
understood as ‘s is an ancestor of t’. A LABELLED TREE is a structure T := (T,≤, ν),
where (T,≤) is a tree and ν : T → L is a mapping from the set of nodes to some set
L of labels. The greatest element of T is the ROOT of the tree. As usual, each node v
gives rise to a SUBTREE Tv (formally, Tv = (Tv,≥

∣∣
Tv×Tv

, ν|Tv
) with Tv := {w ∈

T | v ≥ w}). We write T′ ⊆ T, if T′ is a subtree of T. Isomorphic labelled trees are
implicitly identified.

Next we introduce some operations to inductively construct labelled trees. These
operations will be used to define the syntax and semantics of ALC based on labelled
trees. We assume to have a set L of labels.
Chain: Let l1, . . . , ln ∈ L. With l1 l2 . . . ln we denote the labelled tree T := (T,≥, ν)
with T := {v1, . . . , vn}, v1 > v2 > . . . > vn and ν(v1) = l1, . . . , ν(vn) = ln.
That is, l1 l2 . . . ln denotes a CHAIN, where the nodes are labelled with l1, l2, . . . , ln,
respectively. We extent this notation by allowing the last element to be a labelled tree:
If l1 l2 . . . ln ∈ L and if T′ is a labelled tree, then l1 l2 . . . lnT′ denotes the labelled
tree T := (T,≥, ν) with T := T ′ ∪ {v1, . . . , vn}, v1 > v2 > . . . > vn and vi > v
for each i = 1, . . . , n and v ∈ T ′, and ν := ν′ ∪ {(v1, l1), . . . , (vn, ln)}. That is, T is
obtained by placing the chain l1 l2 . . . ln above T′.
Subsitution: Let T1,T2 be labelled trees and S := (S,≥s, νs) a subtree of T1. Then
T := T1[T2 /S ] denotes the labelled tree obtained from T1 when S is substituted by
T2. Formally, we set T := (T,≥, ν) with T := (T1 − S) ∪ T2, ≥:=≥1

∣∣
T1−S

∪ ≥2

∪{(w1, w2) | w1 > v, w1 ∈ T1 − S, w2 ∈ T2}, and ν := ν1

∣∣
(T1−S)

∪ ν2.
Composition: Let l ∈ L be a label and T1,T2 be labelled trees. Then l(T1,T2)
denotes the labelled tree T := (T,≥, ν) , where we have T := T1 ∪ T2 ∪ {v} for a
fresh node v,≥:=≥1 ∪ ≥2 ∪({v}× (T1∪T2)), and ν := ν1∪ν2∪{(v, l)}. That is, T
is the tree having a root labelled with l and which has T1 and T2 as (direct) subtrees.

Strictly speaking, in the above operations we have sometimes to consider trees with
disjoint sets of nodes (for example, we have to assume in T1[T2 /S ] that T1 and T2

are disjoint). As we consider trees only up to isomorphism, this can always easily be
achieved and is usually not explicitely mentioned.

Using these operations, we can now define the tree-style syntax for ALC.

Definition 2.1 Let a vocabulary (A,R) be given with > ∈ A. Let ‘u’ and ‘¬’ be
two further signs, denoting conjunction and negation. Let (∆I , I) be a interpretation
for the vocabulary (A,R). We inductively define the elements of ALCTree as labelled
trees T := (T,≥, ν), as well as the interpretation I(T) of T in (∆I , I).

59



Atomic Trees: For each A ∈ A, the labelled tree A (i.e. the tree with one node
labelled with A), as well as > are in ALCTree. According to the interpretation of
names in interpretations, we set I(A) = AI and I(>) = ∆I .
Negation: Let T ∈ ALCTree. Then the tree T′ := ¬T is in ALCTree. We set
I(T′) = ∆I − I(T).
Conjunction: Let T1,T2 ∈ ALCTree. Then the tree T := u(T1,T2) is in ALCTree.
We set I(T) = I(T1) ∩ I(T2).
Exists Restriction: Let T ∈ ALCTree, let R be a role name. Then T′ := RT is in
ALCTree. We set I(T′) = {x ∈ ∆I | ∃y ∈ ∆I : xRIy ∧ y ∈ I(T)}.

The labelled trees of ALCTree are called ALC-TREES. Let T := (T,≥, ν) ∈
ALCTree. An element v ∈ T respectively the corresponding subtree Tv is said to be
EVENLY ENCLOSED, iff |{w ∈ T | w > v and ν(w) = ¬}| is even. The notation of
ODDLY ENCLOSED is defined accordingly.

Of course, ALC-trees correspond to the formulas of ALC, as they are defined
in the usual linear fashion. For this reason, we will sometimes mix the notation of
ALC-formulas and ALC-trees. Particularly, we sometimes write T1 u T2 instead of
u(T1,T2). Moreover, the conjunction of trees can be extended to an arbitrary number
of conjuncts, i.e.: If T1, . . . ,Tn are ALC-trees, we are free to write T1 u . . . u Tn.
We agree that for n = 0, we set T1 u . . . uTn := >.

Next a diagrammatic representation of ALC-trees in the style of Peirce’s EGs is
provided. EGs as such correspond to closed FOL-formulas: They are evaluated to true
or false. Nonetheless, they can be easily extended to RELATION GRAPHS [14, 6] which
are evaluated to relations instead. This is done by adding a syntactical device to EGs
which corresponds to free variables. The diagrammatic rendering of free variables can
be done via numbered question markers, which are attached to the lines of identity of
EGs. As ALC-concepts correspond to FOL-formulas with exactly one free variable,
we we assign to each ALC-tree T a corresponding relation graph Ψ(T) with exactly
one (now unnumbered) query marker. Let A be an atomic concept, R be a role name,
let T, T1, T2 be ALC-trees where we already have defined Ψ(T) = ? G ,
Ψ(T1) = G? 1, and Ψ(T2) = G? 2, respectively. Now Ψ is defined inductively
as follows:

Ψ(>) := ? Ψ(A) := ? A Ψ(RT) := R? G

Ψ(T1 uT2) :=
G2

G1? Ψ(¬T) := ? G

Considering our HAPPYMAN-example given in the introduction, the corresponding
ALC-tree, and a corresponding Peirce graph, is provided in Fig. 3. Due to our choice
of constructors, we replaced ∀f by ¬∃¬f and f ∨ g by ¬(¬f ∧ ¬g) (for DL-concepts
f, g). The rules of the forthcoming calculus can be best understood to be carried out
on the Peirce graphs. The ongoing formal proofs with ALC-trees will be depicted this
way.

Finally we define semantic entailment between ALC-trees.

Definition 2.2 Let {Ti | i ∈ I} be a set of ALC-Trees and let T be an ALC-Tree. We
set

{Ti | i ∈ I} |= T :⇐⇒
⋂
i∈I

I(Ti) ⊆ I(T) for each interpretation (∆I , I)
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Figure 3: The ALC-tree, and a corresponding Peirce graph for HAPPYMAN

For I = ∅, we set
⋂

i∈I I(Ti) := ∆I for the respective model, and write |= T. For
|I| = 1, we write T′ |= T.

3 The Calculus for ALCTree

Peirce provided a set of five rules for the system of EGs, termed erasure, insertion,
iteration, deiteration, double cut. These rules are formally elaborated and their sound-
ness and completeness is proven in [6]. Moreover, it is discussed in [6] how these rules
have to be extended for the system of relation graphs.

The class of relation graphs corresponding to ALC is a fragment of the full system
of relation graphs. Of course, the rules for relation graphs are still sound rules for
the ALC-fragment. But it is not clear whether these rules are still complete. For two
graphs G1, G2 of the ALC-fragment with G1 |= G2, we have a proof for G1 ` G2

within the full system of relation graphs, i.e., a sequence of graphs starting with G1,
ending with G2, where each graph in the sequence is derived from its predecessor by
one of Peirce’s five rules. However it may happen that we do not have a proof which
consists only of graphs of the ALC-fragment. In fact, in the calculus we provide, we
need more than Peirce’s five rules. Besides some trivial rules, like rules which capture
the associativity of conjunction, we need special rules for handling of roles. The rules
iteration of roles into even and deiteration of roles from odd (see below) are the most
important example for this.

Next, the Peirce style rules for ALCTree are provided. These rules transform a
given ALC-tree into a new ALC-tree. In order to make the calculus more understand-
able, we provide within the rule definitions some examples and diagrams that illustrate
them. For each rule name, we provide an abbreviation which will be used in the proofs.

Definition 3.1 The calculus for ALC-Trees over a given vocabulary (A,R) consists
of the following rules:
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Addition and Removal of > (>-add. and >-rem.): Let T := (T,≥, ν) be an ALC-
tree, let S ⊆ T be a subtree. For T′ := T[u(S,>)) /S ] we set T a` T′ (T a` T′

abbreviates T ` T′ and T′ ` T). We say that T′ is derived from T by ADDING A
>-NODE, and T is derived from T′ by REMOVING A >-NODE. For the Peirce graphs,
this rule corresponds to adding a branch to a heavily drawn line, or removing it. A
simple example is given below.

? R C
>-add
` ? R C

>-rem
` ? R C

These rules are ”technical ’helper’ rules that will be often combine with other rules
that add or remove subtrees. Examples will be given below.
Addition and Removal of Roles (R-add. and R-rem.): Let T be an ALC-tree having
> as a subtree. Let R be a role name. Then for T[¬R¬> /> ] we set T a` T′. We
say that T′ is derived from T by ADDING THE ROLE R, and T is derived from T′ by
REMOVING THE ROLE R. A simple example for this rule with Peirce graphs is given
below. Due to the symmetry of the rules, the inverse direction of this proof is a proof as
well.

? C >-add
`

? C R-add
`

? C

R

Associativity of Conjunction (conj.): Let T be anALC-tree with a subtree S1 u (S2 u
S3). For T′ := T[ (S1 u S2) u S3 /S1 u (S2 u S3) ] we set T a` T′. We say that
T′ is derived from T resp. T is derived from T′ by USING THE ASSOCIATIVITY OF
CONJUNCTION.
Addition and Removal of a Double Negation (dn): Let T := (T,≥, ν) be an ALC-
tree, let S ⊆ T be a subtree. Then for T′ := T[¬¬S /S ] we set T a` T′. We say
that T′ is derived from T by ADDING A DOUBLE NEGATION and T is derived from T′

by REMOVING A DOUBLE NEGATION.
Erasure from even, Insertion into odd (era. and ins.): Let T := be an ALC-tree with
a positively enclosed subtree S ⊆ T. Then for T′ := T[> /S ] we set T ` T′. We
say that T′ is derived from T by ERASING S FROM EVEN. Vice versa, let T = be an
ALC-tree with an negatively enclosed subtree > ⊆ T. Let S ∈ ALCTree. Then for
T′ := T[S /> ] we set T ` T′. We say that T′ is derived from T by INSERTING S
INTO ODD.

This is another set of rules which often go together with the addition and removal
of >. Examples will be given later.
Iteration and Deiteration (it. and deit.): Let T := (T,≥, ν) be anALC-tree with with
a subtree S := (S,≥S , νS) ⊆ T. Let s be the greatest element of S, let t be the parent
node of s in T. Let ν(t) = u (i.e. t is labelled with ‘u’), let v ∈ T be a node with
v < t, v /∈ S, ν(v) = >, such that for each node w with t > w > v we have ν(w) = ¬
or ν(w) = u. Then for T′ := T[S /> ] we set T a` T′.1 We say that T′ is derived
from T by ITERATING S and T is derived from T′ by DEITERATING S.

Iteration and Deiteration often combine with the addition and removal of >, and
they are probably the most complex rules. To exemplify them, we consider the following
six Peirce graphs. The second and the third graph can be derived from the first graph

1More precisely and according to our convention, we set T′ := T[S′ /> ], where S′ is an isomorphic
copy of S, having only fresh nodes.
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by iterating the subgraph R1 C1? (preceeded by the >-addition rule).

R1 C1

R2 C2

? R1 C1

R2 C2

R1 C1

? R1 C1

R2 C2

R1 C1

?

The next three graphs are not results from the iteration rule. In the fourth graph, the
condition that ν(w) = ¬ or ν(w) = u holds for each node w with t > w > v is
violated. The fifth graph violates the condition v < t, and the sixth graph violates the
condition v /∈ S.

R1 C1

C2R2

R1 C1

? R1 C1

R2 C2
R1

C1

?

R1 C1

R1 C1

R2 C2

?

Iteration of Roles into even, Deiteration of Roles from odd (R-it. and R-deit.): Let
T be an ALC-tree. Let Sa,Sb,S1,S2 be ALC-trees with Sa := u(RS1,¬RS2) and
Sb := R u (S1,¬S2). Then, if Sa ⊆ T is a positively enclosed subtree, for T′ :=
T[Sb /Sa ] we set T ` T′, and we say that T′ is derived from T by DEITERATING
THE ROLE R FROM ODD. Vice versa, if Sb ⊆ T is a negatively enclosed subtree, for
T′ := T[Sa /Sb ] we set T ` T′, and we say that T′ is derived from T by ITERATING
THE ROLE R INTO EVEN.

Below, a simple example for the rule with Peirce’s graphs is provided.

R

R

? 1C

C2

R-deit
`

R? 1

C

C

2

Based on these rules, we can now define formal proofs.

Definition 3.2 Let Ta,Tb be two ALC-Trees. A PROOF FOR Ta ` Tb is a finite
sequence (T1,T2, . . . ,Tn) with Ta = T1, Tb = Tn, where each Ti+1 is obtained
from Ti by applying one of the rules of the calculus.

Now let {Ti | i ∈ I} be a set of ALC-Trees and let T be an ALC-Tree. We set

{Ti | i ∈ I} ` T :⇐⇒ there are ALC-Trees T1, . . . ,Tn ∈ {Ti | i ∈ I}
with T1 u . . . uTn ` T

Before the soundness and completeness of the calculus is proven, we first present
an example of a proof, using the Peirce-style diagrams, and then derive some useful
metarules. The example and the metarules will give some insights in how the calculus
works.

A popular toy example for ALC.reasoning is the mad cow ontology. Consider the
following ALC-definitions:

Cow ≡ Animal u V egetarian Sheep ≡ Animal u hasWool
V egetarian ≡ ∀eats.¬Animal MadCow ≡ Cow u ∃eats.Sheep
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The question to answer is whether this ontology is consistent. This question can
be reduced to rewriting the ontology to a single concept MadCow ≡ Animal u
∀eats.¬Animalu∃eats.(AnimaluhasWool) and to investigate whether this concept
is satisfiable, i.e., whether there exists as least one interpretation where this concept is
interpreted by a non-empty set. We will show that this is not the case by proving with
our calculus that the concept entails the absurd concept. The proof is given below.

eats Animal
hasWool

eats Animal

Animal?
2× era
` eats Animal

?

eats Animal

2×>−rem
`

eats Animal

eats

?

Animal

deit
`

eats

?

Animal

era
` ?

>−rem
` ?

We started with the Peirce graph for the given concept and derived the absurd concept,
thus the ontology is not satisfiable.

Next, we provide the above mentioned metarules, some of them will be used in the
completeness proof.

Each rule of the calculus is basically the substitution of a subtree of a given ALC-
tree by another subtree. Each rule can be applied to arbitrarily deeply nested subtrees.
Moreover, if we have a rule which can be applied to positively enclosed subtrees, then
we always have a rule in the converse direction which can be applied to negatively
enclosed subtrees (and visa versa). Due to these structural properties of rules, we
immediately obtain the following helpful lemma (it is adopted from [17]).

Lemma 3.1 Let S1,S2 be two ALC-trees with S1 ` S2. Let T be an ALC-tree. Then
if S1 ⊆ T is a positively enclosed subtree of T, we have T ` T[S2 /S1 ]. Visa versa,
if S2 ⊆ T is a negatively enclosed subtree of T, we have T ` T[S1 /S2 ].

The next lemma corresponds to the equivalence of the ALC-concepts ∀R.(C uD)
and ∀R.C u ∀R.D.

Lemma 3.2 (Splitting Roles) Let S1,S2 be ALC-trees, let R ∈ R be a role name.
Then:

The trees 1S
2S

? R and

1S

2S

?

R

R
are equivalent.

Proof: We show the directions ‘⇒’ and ‘⇐’ separately. As we have already seen,
the deiteration-rule and the erasure rule are usually followed by the >-removal rule,
and visa versa, the iteration rule and the insertion rule are usually preceeded by the >-
addition rule. In the proof, these two steps are combined without explicitely mentioning
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the >-removal/addition rule. Now ‘⇒’ is proven as follows:

1S
2S

? R
it
`

1S
2SR

1S
2SR

?
era
` 1S

2SR

1SR

?
era
`

1S

2S

?

R

R

The other direction is as follows:

1S

2S

?

R

R

ins
`

1S

2S

2S

R

R

?
it
`

1S
2S

2S

2S

R

R

?
dn
`

1S

2S

2S

2SR

R

?

R-it
`

1S

2S

2S

2S

R

R

R

?
deit
`

2S

1S
2S

R

R

?
era
` 1S

2S
? R 2

For ALC, the full deduction theorem holds.

Theorem 3.1 (Deduction Theorem) Let T be a set of ALC-trees, let T1,T2 be two
ALC-trees. Then we have: T ∪ {T1} ` T2 ⇐⇒ T ` ¬(T1 u ¬T2)

Proof: Again applications of the>-removal/addition rule are not explicitly mentioned.
‘⇒’: Let S1, . . . ,Sn ∈ T with S1 u . . . u Sn uT1 ` T2. We have:

T ` ?
1 nS S dn

` ?
1 nS S ins

` ?
1 n 1Tn1S S S S

it
` ?

1 n 1 n 1 n 11S S S S T SS T Lem. 3.1
` ?

1 n 1 n 1 2S S S S T T

deit
` ?

1 n 1 2S S T T era
` ?

1 2T T

‘⇐’: From T ` ¬(T1 u ¬T2) and T ∪ {T1} ` T1 we get T ∪ {T1} ` T1 u
¬(T1 u ¬T2). We proceed as follows:

T ` ?
1 21T T T deit

` ?
1 2T T dn

` ?
1 2T T era

` ? T2 2

The next lemma corresponds to the rule of neccessitation in modal logics.
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Lemma 3.3 If T is an ALC-tree with ` T, then we have ` ¬R¬T as well.

Proof: All rules of the calculus modify subtrees S of a given ALC-tree T, and their
application depends only on whether S is positively or negatively enclosed. So if
(T1,T2, . . . ,Tn) with T1 = > and Tn = T is a proof for T, then (>,¬R¬T1,
¬R¬T2, . . . ,¬R¬Tn) is a proof for ` ¬R¬T. The additional first step is an applica-
tion of the rule ‘addition of roles’. 2

Please note that for this lemma, it is vital that T is derived from the empty set
(the empty sheet of assertion in Peirce’s terminology). The proof of the lemma does
not work if T is derived from some set T, and it can easily be seen that we generally
cannot conclude T ` ¬R¬T from T ` T.

In the following, the soundness and completeness of the calculus is proven. In
contrast to rules of most common calculi, the rules presented here are ‘deep’ rules, as
they modify deeply nested subtrees. For this reason, the following lemma is helpful for
proving the soundness of the rules.

Lemma 3.4 Let T1, T2, S1, S2 be ALC-trees with T2 = T1[S2 /S1 ].

1. If S1 |= S2 and the substitution takes place in an even, then T1 |= T2.

2. If S2 |= S1 and the substitution takes place in an odd, then T1 |= T2.

3. If S1 and S2 are semantically equivalent, then so are T1 and T2.

Proof: The proof of this lemma is a straight-forward induction on ALC-trees.
We are now prepared to prove the soundness of the calculus.

Theorem 3.2 If (∆I , I) is a model and if T′ is obtained from T by one of the rules,
we have I(T) ⊆ I(T′).

Proof: The ALC-trees S and u(S,>) are obviously equivalent. So the soundness of
the rule ‘Addition or Removal of >’ follows immediately from Lemma 3.4(iii). The
rules ‘Addition or Removal of Roles’, ‘Associativity of Conjunction’ and ‘Addition or
Removal of a Double Negation’ are handled similarly.

Next, as we have T |= >, Lemma 3.4(i) yields the soundness of the erasure of a
a positively enclosed subtree, and Lemma 3.4(ii) yields the soundness of the insertion
negatively enclosed subtree.

Next we consider the iteration and deiteration of roles. Let Sa,Sb be defined as
in the rule. We will show Sa |= Sb. Let a ∈ I(Sa). Then it follows a ∈ I(RS1)
and a ∈ I(¬RS2). Therefore there exists b ∈ ∆I with aRb and b ∈ I(S1), but there
exists no c ∈ ∆I with aRc and c ∈ I(S2). Particularly we have b /∈ I(S2). We
conclude b ∈ I(¬S2), so we have b ∈ I(u(S1,¬S2)) as well. Due to aRb, we finally
obtain a ∈ I(Sb). As we now have Sa |= Sb, Lemma 3.4(i) yields the soundness of
deiterating a role R from an odd, and Lemma 3.4(ii) yields the soundness of iterating
a role into an even.

Finally, we have to prove the soundness of the iteration and deiteration rule. First
note the iteration rule removes v from T and adds the fresh nodes of S′ to T , i.e., we
have T − {v} ⊆ T ′. To ease the technical presentation, let us assume that the greatest
element of S′ is v (instead of a fresh node), so that we have T ⊆ T ′.

For a node w ∈ T , let Tw be the corresponding subtree of T, and let T′
w be the

corresponding subtree of T′ (particularly, due to our assumption, we have Tv = > and
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T′
v = S′). We will prove that Tt and T′

t are semantically equivalent. So let a ∈ ∆I .
We have to show that,

a ∈ I(Tw) ⇐⇒ a ∈ I(T′
w) (1)

holds for w = t. We have T′ = T[T′
t /Tt ], so once Eqn. (1) is proven for w = t, we

can now apply Lemma 3.4(iii) and obtain that T and T′ are semantically equivalent,
which yields the soundness of the iteration and deiteration rule. So it remains to show
Eqn. (1).

In either T and T′, the node t has two branches, one of which is S. If we have
a /∈ I(S), we have a /∈ I(Tt) and a /∈ I(T′

t) as well, so Eqn. (1) holds. Now let us
assume the alternate case, that we have a ∈ I(S). We will prove that Eqn. (1) holds
for each w with t ≥ w ≥ v by induction.

We have Tv = >, T′
v = S, a ∈ I(>) and a ∈ I(S′), so Eqn. (1) holds for w = v.

This proves the induction start.
For the induction step, let w be such that the induction hypothesis is proven for the

child u of w with u ≥ v. There are two cases to consider: ν(w) = ¬ or ν(w) = u.
For ν(w) = ¬, we have Tw = ¬Tu and T′

w = ¬T′
u. As we have a ∈ I(Tu) ⇔

a ∈ I(T′
u) due to the induction hypothesis, we obtain that Eqn. (1) holds for w.

For ν(w) = u, the node w has two children, one of them being u. Let u′ be the
child of w which is different from u. Then we have Tw = u(Tu,Tu′) and T′

w =
u(T′

u,T′
u′). Moreover, we have Tu′ = T′

u′ , and a ∈ I(Tu) ⇔ a ∈ I(T′
u) holds due

to the induction hypothesis. From this we conclude that Eqn. (1) holds.
This finishes the induction, so we conclude Eqn. (1) for w = t, which in turn

finishes the proof for the soundness of the iteration and deiteration rule. 2

We are now prepared to prove the completeness of the calculus.

Theorem 3.3 Let T := {Ti | i ∈ I} be a set ofALC-Trees and let T be anALC-Tree.
Then we have:

{Ti | i ∈ I} |= T =⇒ {Ti | i ∈ I} ` T

Proof: We assume that there is no derivation of T from T, and we show that T 6|= T.
We call a set S of ALC-Trees INCONSISTENT, if we have S ` ¬>. Due to the

deduction theorem, S is inconsistent if and only if there are S1, . . . ,Sn ∈ S with
` ¬(S1 u . . . u Sn). We assume that there is no proof of T from T. Then T ∪ {¬T}
is consistent.

For a set S of ALC-Trees and a role name R, let SR := {S | ¬R¬S ∈ S}. We
first prove the following property:

If S is consistent, where R¬S ∈ S, then SR ∪ {¬S} is also consistent. (2)

It is easier to show the contraposition of Eqn. (2), so we assume that SR ∪{¬S} is not
consistent. Then there exists finitely many elements S1, . . . ,Sn of SR such that there
is a proof of ¬(S1 u . . .Sn u ¬S) (from the empty set). Now Lemma 3.3 yields that
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we have a proof of ¬R¬¬(S1 u . . .Sn u ¬S) as well. We proceed as follows:

? `
1

? R
nSS S dn

`
R?

1 nS S S

dn
` n1

R?

S S
S R-it

`

RR

?

n1S S
S Lem. 3.2

`

R

1

R

n

?

S S

R

S

So S is also T-inconsistent, thus Eqn. (2) holds.
Now, using a standard argument based on the axiom of choice, every consistent

set can be extended to a maximal consistent set, i.e., a consistent set which cannot be
properly extended to another consistent set.

Next, for a maximal consistent set Sm, we have

S ∈ Sm ⇐⇒ ¬S /∈ Sm (3)
S u S′ ∈ Sm ⇐⇒ S ∈ Sm and S′ ∈ Sm (4)

for arbitrary ALC-Trees S,S′. We only prove Eqn. (3), the proof of Eqn. (4) is done
similarly.

Due to Su¬S
deit
` Su¬>

era
` >u¬>

>-rem
` ¬>, and as we can infer any tree from

¬>, we cannot have both S ∈ Sm and ¬S ∈ Sm. On the other hand, let us suppose we
have ¬S /∈ Sm. Then we have Sm 6` ¬S. Assume Sm ∪ {S} is inconsistent. Then we
have S1, . . . ,Sn ∈ Sm with ` ¬(S1u. . .uSnuS). Thm. 3.1 yields S1u. . .uSn ` ¬S,
i.e., we have Sm ` ¬S. This contradicts Sm 6` ¬S. So if ¬S /∈ Sm, then Sm ∪ {S} is
consistent, thus S ∈ Sm due to the maximality of Sm. Hence Equation (3) is proven.

Now let (∆I , I) be defined as ∆I := {Sm | Sm is maximal consistent}, I(A) :=
{Sm | TA ∈ Sm} and I(R) := {(Sm,Tm) | SR

m ⊆ Tm}. We prove by induction
over the construction of ALC-trees that for S ∈ ALCTree and Sm ∈ ∆I we have

Sm ∈ I(S) ⇐⇒ S ∈ Sm (5)

For a concept name A, Eqn. (5) holds by the definition of the model. For a tree ¬S, we

have Sm ∈ I(¬S) Def. I⇐⇒ Sm /∈ I(S) I.H.⇐⇒ S /∈ Sm
Eqn. (3)⇐⇒ ¬S ∈ Sm. For a tree SuS′,

Eqn. (5) is similarly proven using Eqn. (4). It remains to consider role names.
Let R ∈ R. We first prove Eqn. (5) for ALC-trees S′ := ¬R¬S (instead of

S′ := RS). Due to our induction, we can assume that Eqn. (5) is proven for all ALC-
trees which have less occurrences of R than S′. Def. 2.1 yields

Sm ∈ I(¬R¬S) ⇐⇒ for all Tm with (Sm,Tm) ∈ I(R) we have Tm ∈ I(S)
(6)

Suppose first we have S′ ∈ Sm. If Tm ∈ ∆I is arbitrary with (Sm,Tm) ∈ I(R),
then S ∈ Tm by the definition of the model. The induction hypothesis yields Tm ∈
I(S), so Eqn. (6) yields Sm ∈ I(S′). Next suppose S′ /∈ Sm. Eqn. (3) yields R¬S ∈
Sm. Let T′ := SR

m ∪ {¬S}. Then T′ is consistent due to Eqn. (2). Let Tm ⊇ T′ be a
maximal consistent set. Then Tm ∈ ∆I , and (Sm,Tm) ∈ I(R). Since ¬S ∈ T′ ⊆ Tm,
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we have S /∈ Tm. The induction hypothesis yields Tm /∈ I(S), thus Sm /∈ I(S′) due
to Eqn. (6). Hence Eqn. (5) is proven for S′ = ¬R¬S.

To finish the proof of Eqn. (5), let us finally observe that forALC-trees of the form
RS, we have Sm ∈ I(RS) ⇐⇒ Sm /∈ I(¬R¬¬S) s.a.⇐⇒ ¬R¬¬S /∈ Sm ⇐⇒ RS ∈
Sm. So Eqn. (5) is proven.

Now let Sm ∈ ∆I . We have: Sm ∈
⋂

S∈T I(S) ⇐⇒ Sm ∈ I(S) for all S ∈
T

Eqn. (5)⇐⇒ S ∈ Sm for all S ∈ T ⇐⇒ T ⊆ Sm. This yields
⋂

S∈T I(S) = {Sm ∈
∆I | Sm ⊇ T}. As T ∪ {¬T} is consistent, there exist a maximal consistent set
T0

m ⊇ T∪{¬T}. On the one hand, we now have T0
m ∈

⋂
S∈T I(S). On the other hand,

we have T /∈ T0
m, thus T0

m /∈ I(T) by Eqn. (5). So we obtain
⋂

S∈T I(S) 6⊆ I(T),
which means T 6|= T. 2

4 Conclusion and Further Research
This paper provides the first steps toward a diagrammatic representation of DLs, in-
cluding diagrammatic inference mechanisms. To the best of our knowledge, this is
the first attempt to providing diagrammatic reasoning facilities for DLs. The results
presented in this paper show promise in investigating relation graphs further as dia-
grammatic versions of corresponding DLs.

The approach can to be extended to other variants of DL as well. For instance,
a major task is to incorporate nominals, or number restrictions (either unqualified or
qualified). Similarly, constructors on roles, like inverse roles or role intersection, have
also to be investigated.

In the long term, our research advocates developing a major subset of DL as a
mathematically precise diagrammatic reasoning system. While the intention is to ren-
der DL more user-friendly through a diagrammatic correspondence, such systems will
need to be evaluated against the traditional textual form of DL in order to measure any
readability improvement. Cognition experiments with such a evaluation are planned as
future work.
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Abstract

Striving toward the vision of Model Driven development (MDD), we face
many open questions connected to the elementary tasks involved in working with
models. Probably the most basic task is querying models for properties, elements,
and submodels. Current tools and interfaces for model querying are either re-
stricted in their expressiveness or require a high level of expertise in the underlying
metamodels and/or query languages. As the application of MDD is gaining more
widespread acceptance and more and more developers are involved with MDD ef-
forts, this state is becoming a bottleneck. In this paper, we propose a Prolog-based
model representation and query interface for models to overcome this bottleneck.

Keywords: Model Driven Development (MDD), Query-View- Transformation (QVT),
Knowledge Based Software Engineering (KBSE), Industrial Applications

1 Introduction
The MoMaT approach has been developed over the last years, partially in an academic
setting, and partially in two very large scale industrial projects with German federal and
state agencies. In these projects, very large models have been created and demand for
advanced model operations soon became pressing. We have thus turned to MDD/MDA
technology.

Model Driven Development/Architecture (MDD/MDA, [6, 17]) has been proposed
as a measure to raise the level of abstraction in software development, and thus to
increase developer productivity. In a MDA setting, models are programs, thus mod-
eling languages are programming languages (cf. [20]). Today, there are many dif-
ferent practically relevant modeling languages, most of which are predominantly vi-
sual modeling languages. Examples are the Unified Modeling Language (UML, [16]),
Entity-Relationship-Diagrams (ERD, [4]), Event Process Chains (EPCs, [5]), Integra-
tion Definition for Function Modeling (IDEF, [13]), or Use Case Maps (UCM, [3]).
In principle, such models may be used for a multitude of purposes, such as reporting,
model transformations, model consistency checking, formal analysis, code generation,
pattern detection, versioning, size measurement and so on. See Figure 1 for a synopsis
of model operations.

However, one of the basic tasks in an MDD setting is querying models for proper-
ties, elements, and submodels. This task is executed, on the one hand, by developers
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Figure 1: Classes of model operations (potentially) relevant to industrial modeling

working on the models. It is, on the other hand, also a basic building block under-
lying most other more complex functionalities like model transformations and model
measurements. However, current tools and interfaces for model querying are either
restricted in their expressiveness or require a high level of expertise in the underly-
ing metamodels and/or query languages, both of which reduce their versatility. As the
application of MDD is gaining more widespread acceptance and more and more devel-
opers are involved with MDD efforts, accessing models in an effective way is becoming
a bottleneck.

Over the last years, we have created a system called the Model Manipulation
Toolkit (MoMaT) which allows us to experiment with models in general. In MoMaT,
models are imported into a Prolog-based model repository by a set of transformers
for several modeling languages like UML, ARIS/EPC, and Use Case Maps (in this
paper, we will only focus on UML models, though). Figure 2 provides an overview
of MoMaT. In other papers, we have reported on using MoMaT for model version
management operations (see [23, 24]).
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Int
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me(class-42, [name-'A', ...]).

Figure 2: Schematic overview of MoMaT.
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Our approach is derived from our experiences in two very large scale industrial
projects with the German federal Tax Authority and the German Public Pension Au-
thority. In these projects, very large models have been created and it soon turned out
that without adequate query facilities they turn into “black holes” swallowing informa-
tion but not giving it away again.

1.1 Related work
The related work may be subdivided into textual and visual query languages, and ap-
proaches that are specific to certain languages and/or tools or generally applicable (see
the following schema).

textual query language visual query language
schema specific query interfaces/ APIs,

OCL [15]
QVT [19] Implementations like ATL, UMT [14],
MOLA [9]), Porres’ toolkit [18]

general SQL, QBE, XPATH,
SHORE [12]

Visual OCL [2], Constraint Diagrams [10],
Query Models [22]

Most CASE tools provide APIs or predefined queries to allow users access to the
models. Valuable as such facilities may be for the working software engineer, they
are restricted to the specific settings in which they are implemented; application to
other languages, tools, or data structures is difficult if not impossible. The OCL [15]
is somewhat more general in that, theoretically, it should fit to any UML model/tool
combination. In practical settings, this is not true, however. Also, OCL is extremely
difficult to read and write1 and there is very scarce tool support.

The OMG’s Query-View-Transformations standard (QVT, [19]) has been created
with similar goals as MoMaT. There are several implementations of QVT like the Atlas
Transformation Language (ATL, http://www.eclipse.org/m2m/atl/), the
UML Model Transformation Tool (UMT, see http://umt-qvt.sourceforge.
net/ and [14]), and the Model Transformation Language and tool MOLA, see [9]).
All QVT implementations are based on the UML metamodel as their underlying data
structure, which effectively excludes their application to non-UML languages. It also
ties the respective tools to a particular version of the UML. The framework proposed in
[18]) is a non-QVT system based on Tcl which the authors themselves deem applicable
only for small and medium sized systems. None of these approaches are implemented
in and using the facilities of Prolog. Also, to the best of our knowledge, none of them
has been used successfully over a longer term in industrial applications.

When models are stored in a relational database, traditional relational query lan-
guages like SQL or QBE may be use to access them.2 For XML data structures or
databases, XPATH and similar approaches provide APIs with query facilities. The
SHORE system (see [12]) is an approach to storing software design documents in a
XML database using Prolog as the query language.

Visual OCL [2], Constraint Diagrams [10], and Query Models [22] each use a
modeling language to specify queries for this language. By analogy, these approaches
may thus used for other modeling languages. It is not clear, however, how such queries
might be executed, much less, if used for a different language. While this paper does
not yet fill this gap, it outlines a path toward this goal.

Besides this comparison scheme, Gruhn and Laue [7] present an approach where
Prolog is used to access and query software engineering models, but also to represent
them: they encode EPCs (in a rather ad hoc way) into Prolog facts which they then use

1A more detailed comparison between SQL, OCL, and MoMaT has to be deferred until we have intro-
duced MoMaT.
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to check some consistency conditions. This approach is limited to EPCs, unfortunately.
There are also several approaches to encode programming language code in Prolog, e.
g. for the Java language (cf. [21]), then define particular properties as Prolog rules and
then check these properties by evaluating respective goals.

2 Model Representation
In MoMaT, models are represented as Prolog facts. More or less, every individual
model element is represented as a single fact. The encoding into this representation is
done in two steps (see Figure 2).

CD MoMaT Meta-Metamodel (M3)

ModelElement Value

BasicValue Set

List

{ordered}
*

*

Int

Model
1id: int tag: string

Char

Bool

{unique}

Reference

id: int

ModelProperties

View

1

*

Figure 3: A Meta-metamodel as a normal form for arbitrary modeling languages.

First, specific formats are converted into a common format in order to accommodate
different tools, languages, and formats. For instance, many modeling tools are capable
of creating models in different languages, or of exporting models in different file format
versions. Also, most tools will interpret standards in significantly different ways, will
contain different specific bugs and so on, such that providing specific converters is
inevitable for different tools. The common format is described in terms of a minimal,
unifying meta-metamodel called the MoMaT meta-metamodel, or M3 for short (see
Figure 3). It can be seen as a least common denominator for a wide range of modeling
languages.

For UML, the mapping into M3 is simple indeed, since UML comes with a meta-
model. All UML metaclasses are mapped to ModelElement. All meta-attributes and
meta-associations a are mapped to tags, their types are mapped to the corresponding
subclasses of Value (Reference for object types). The top level package of a UML
model is mapped to Model.

The second step now simply interprets models in M3 format as Prolog facts (see
Figure 4). In MoMaT, each model element—that is, each instance of the class Mod-
elElement of M3—is represented as a Prolog clause of the form

me(type-id, [tag-value, ...]).

where type is the metaclass in the source language (such as “Feature” or “Class” in the
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me(class-42, [name-'A', ...]).
Each model element 
is represented by 
a Prolog fact me.

The element properties are 
described as a list of tag-value pairs.

tag: an arbitrary Prolog atom

value: an arbitrary Prolog atom or term

separator: an uninterpreted binary infix functor

an arbitrary Prolog atom: unique id

an arbitrary Prolog atom or term: type

an uninterpreted binary infix functor: separator

Type and name of the element together are 
used as the (typed) element identifier.

Figure 4: Representing model elements in Prolog

UML metamodel), id is an arbitrary unique identifier, tag is any atom representing
a property of the model element, and value is the value for this tag. For instance, an
abstract class with object identifier 42 and name “x” would be represented as

me(class-42, [name-x, isAbstract-true]).

This encoding is visualised in Figure 4. The value of an attribute may be an arbitrary
Prolog-term.

A model is then simply a named container for a set of model elements. We use
Prolog’s built in module mechanism to represent models. In Prolog, modules may be
defined just as well at compile time or at run time. Additional information pertaining
to the model as such may be represented by a model/2 clause. Similarly, views may
be defined inside models with view/2 clauses. The arguments of view and model
are similar to those of me.

Figure 5 shows an example. Here, a model m1 is defined. It is an analysis level
model authored by user stoerrle and has reached the quality assurance status approved.
It contains ten model elements and one view named m1. The view presents all model
elements of the model.

By using the Prolog module mechanism for representing models, all features of
modules may be used for models as well, including nesting models, importing and
exporting models, dynamic and static (i. e. compile time and run time) definition of
models and so on.

3 Model queries
Simple queries select one or more model elements or their attributes based on basic
selection criteria like identifier, name, or a complex combination of features. Based
on the representation defined above, this may be achieved by Prolog queries like the
following.2

1 ?- m1:me(METACLASS-0, VAL).
METACLASS = class
VAL = [name-’Person’, attributes-ids([1,2,3]), operations-id(4)]

2This is actually a transcript of the SWI-Prolog top level slightly edited for readability. It is executed on
the model described in Fig. 5. Recall that in Prolog, identifiers starting with an upper case letter are variables.
The underscore is the don’t-care-variable. Lists are enclosed in square brackets, In SWI-Prolog, ?- is the
top-level prompt. The Prolog idiom me/3 declares that the predicate me is binary (and of course similar for
all other attributes and arities).
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CD m1

Person

name: string
age: int

*

get_job(Occupation) : void

Occupation

required_education: string

1

:-module(m1, [me/2, view/2, model/2]).
   model(m1,  [level-analysis, author-stoerrle, qa-approved]).
   view(cd-1, [type-class_diagram, name-'Sample model',language-'UML 2',
               version-'2.1.1',elements-ids([0,1,2,3,4,5,6,7,8,9])]).
   me(class-0,           [name-'Person',attributes-ids([1,2,3,14]),
                          operations-id(4)]).
   me(feature-1,         [name-name, type-string]).
   me(feature-2,         [name-age, type-int]).
   me(feature-3,         [multiplicity-1, type-id(6)]).
   me(operation-4,       [name-'get_job', parameters-ids([5]), result-void]).
   me(parameter-5,       [type-id(6)]).
   me(class-6,           [name-'Occupation', attributes-ids([7, 8])]).
   me(feature-7,         [name-'required_education', type-string, default-""]).
   me(feature-8,         [type-id(0),multiplicity-'*']).
   me(association-9,     [ends-ids([3, 8])]).
   me(class-10,          [name-'Organisation', attributes-ids([13])]).
   me(class-11,          [name-'Department']).
   me(class-12,          [name-'SmallDepartment']).
   me(feature-13,        [multiplicity-1, type-id(0)]).
   me(feature-14,        [multiplicity-1, type-id(10)]).
   me(generalization-15, [from-id(11), to-id(10)]).
   me(generalization-16, [from-id(12), to-id(11)]).
   me(association-17,    [ends-ids([14, 15])]).

model properties
author: stoerrle
qa:  approved
level:  analysis

1 1Organisation

SmallDepartment

Department

10 6

11

12

0

14

17

13

15

16

1

2

3

4

5

7

8

9

Figure 5: A sample transformation from a model containing a UML class diagram
(top) into a Prolog module with clauses for each model element (bottom). The extra
numbers in the class diagram refer to the identifiers of the Prolog code.
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2 ?- findall(ID, m1:me(class-ID,_), IDS).
IDS = [0,6,10,11,12]

3 ?- findall(ID-VAL, m1:me(class-ID,VAL), RES).
RES = [0-[name-’Person’, attributes-ids([1,2,3]), operations-id(4)],

6-[name-’Occupation’, attributes-ids([7,8])]]

The first query identifies the type and property set of element 0 inside model m0. The
second query identifies all elements of type class using Prolog’s built-in findall/3
to obtain all solutions to the second argument with a single call. The third query selects
all classes of model m1.

For the remaining examples, we need to introduce the predicates get me/4,
part of/4, and get neighbours/4, which are typical examples for predicates
of the query-API of MoMaT.3

get_me(Model, Tag-Val, METACLASS-ID, VAL):- % matches all elements of
Model:me(METACLASS-ID, VAL), % model containing the
memberchk(Tag-Val,VAL). % Tag-Val pair

Using these predicates, the fourth query identifies the class named Occupation in
m1. The fifth query identifies all features of type string in m1.

4 ?- get_me(m1, name-’Occupation’, METACLASS-ID, _).
METACLASS = class
ID = 6

5 ?- findall(ID, get_me(m1,type-string,feature-ID,VAL), RES).
RES = [1,7] ;

Query no. six identifies all elements related directly to element 6 by relationships of
type association. There are very similar predicates for other relationships like
containment, association, or generalization.

6 ?- get_neighbours(m1, association, 6, N).
N = [0]

The predicate get neighbours/4 computes all neighbours of a given element that
are related to this element by a particular kind of relationship as follows.

part_of(Model, Kind, SUPER, SUB):- % gets ids of Kind-parts
get_me(Model, Kind-ids(Parts), _-SUPER, _), % of SUPER as SUB
member(SUB, Parts).

get_neighbours(Model, Kind, Element, Neighbours):-
get_me(Model, ends-ids(Features), Kind-_, _),
get_me(Model, attributes-ids(ATTRS), class-Element, _),
intersection(ATTRS, Features, [_|_]),!,
maplist(part_of(m1,attributes),Containers,Features),
select(Element, Containers, Neighbours).

Query no. 7 counts the number of dynamic and static features in a model, providing an
example of how complex queries may be defined ad hoc on the command line.

7 ?- findall(OP, get_me(m1,operations-ids(OP),class-_,_), _OPs),
findall(AT, get_me(m1,attributes-ids(AT),class-_,_), _ATs),
count([_OPs, _ATs], Number_of_Features).

Number_of_Features = 6

3The remaining MoMaT predicates are defined in the appendix. All other predicates are standard Prolog
library predicates.
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Of course, the queries presented so far have been rather straightforward. How-
ever, using Prolog we may execute also much more complex queries like “Identify all
superclasses of a given class (transitively)” (see query 8 below).

8 ?- pre_closure(rels(m1,generalization),[12],[],C).
C = [10, 11]

Similar queries may be used to identify all elements (transitively) related to a given
element by a certain kind of relationships such as associations (query 9) and depen-
dencies, e. g. in order to determine change impacts. A different query using similar
techniques may select the shortest path of associations in a set of of classes, or the
shortest path of DataFlowEdges between actions in an activity diagram. For lack of
space, we cannot present the latter two queries in detail here.

9 ?- pre_closure(get_neighbours(m1, association),[6], [], N).
N = [0, 10]

An interesting class of complex query are queries concerning more than one model.
Our first example is the detection of design patterns, which can be implemented simply
by a sub-model operation (query 10): all detectable patterns must be described struc-
turally, in exactly the same way as our example is described. In this case, there is no
occurrence of the composite pattern. Another frequent query is to determine all ref-
erences from (elements of) one model to (elements of) another model (query 11), in
order to trace change impacts across model boundaries.

10 ?- submodel(m1, patterns:composite, Mapping).
Mapping = []

11 ?- findall(ID, Model:me(ID-_,_), IDS), references(m1, REFS),
subtract(REFS, IDS, EXT).

REFS =[]
IDS = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17]
EXT = []

As our last example, consider query 12, where a sequence of models is scanned for the
first model in which a given element is defined. Such a query might be used to track
the introduction of errors related to some model element.

12 ?- sublist(exists(M_ID, 14),[m0, m1, m2], Exists),
head(Exists,First).

Exists = [m1, m2]
First = m1

The predefined predicate sublist/3 returns in its third parameter the sublist of the
second parameter such that all the sublist’s elements satisfy the predicate provided as
the first parameter. Since the ordering of the original list is maintained, the first element
of the resulting list is the first model in which model element 14 appears. exists/2
is defined as exists(ME_ID, M_ID):- M_ID:me(_-ME_ID,_)..

4 SQL and OCL as alternative query languages
One may argue that the Prolog code necessary for implementing the queries proposed
above is not very readable, and, in fact, Prolog as a language is too uncommon to
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be considered for practical applications. There are mainly three alternatives for query
languages: tool-specific predefined queries, APIs, SQL, and OCL.

Many commercial tools provide selections of predefined queries (e. g. Telelogic
Tau, BOC Adonis). While sufficient in many situations, this approach is not (easily)
extensible. Query APIs, on the other hand, are proprietary and may thus not be used in
other tools.

SQL [4] is much more popular and widespread than Prolog. In fact, it is the
paradigmatic query language. Thus, many tools storing models in (object-) relational
database tables provide SQL-like facilities for querying (e. g. Aonix StP, BOC Ado-
nis). Most of the queries we have presented above may be expressed in SQL3 (cf. [11]),
but many database products do not implement this standard completely and faithfully.
So, the following SQL-query is equivalent to query 8 above, but will not terminate on
IBMs DB/2 or Oracle 11.

WITH RECURSIVE CLOSURE(ClassId, GeneralClassId ) AS
( SELECT
FROM CLASSES
WHERE ClassId = ’1’
UNION ALL
SELECT cla.GeneralClassId, clos.ClassId
FROM CLOSURE clos, CLASSES cla
WHERE clos.GeneralClassId = cla.ClassId )

SELECT DISTINCT ClassId
FROM CLOSURE;

Another obvious alternative model query language is Object Constraint Language
(OCL, [15]). However, even simple OCL queries tend to be even more convoluted and
less readable than Prolog code. See the following OCL equivalents of queries 2, 7, and
8.

2) package uml context Package
def: getAllClasses() : Set(Class) =

self.packagedElement->asSet()->select ( t |t.oclIsKindOf(Class))
.oclAsType(Class)->asSet()

endpackage

7) package uml context Package
def: getAllGeneralizations() : Set(Element) =

self.getAllClasses().ownedElement.oclAsType(Element)
->asSet() -- Property (Association, Attribute), Generalization

endpackage

8) package uml context Class
def: DITantiCycle(list:Set(Class)) : Set(Class) =

if self.hasGeneralization()
then

if list->includes(self)
then list
else self.generalization.general.oclAsType(Class).

DITantiCycle( list->union(Set{self}) )
->asSet()->asOrderedSet()->at(1))

endif
else Set{}
endif

endpackage

The most compelling advantage Prolog has over OCL is of course the much better tool
support available for Prolog, including a range of IDEs, debuggers, visualisation tools,
efficient compilers and so on. For OCL, there are just a few tools like [8, 1].
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5 Evaluation

5.1 Applicability and usability
While the roots of MoMaT lie in academia, it has been applied successfully in indus-
trial settings (though only by expert modelers in touch with the author). The main
benefit of our approach is in its technical simplicity and the high-level declarative style
of programming in an interactive environment that supports an explorative mode of
work.

We have applied MoMaT in a number of different settings concerning languages,
formats, and tools:

• a large UML 2 subset (class, object, activity, assembly, and use case models)
using ADONIS with proprietary ADL and XML formats;

• class and use case models using Fujaba and MagicDraw with different XMI for-
mats;

• EPCs using ADONIS with the proprietary ADL format.

Models from all these sources may be processed using MoMaT, and we are very con-
fident that we will have no problems processing any other type or format of models
similarly. In fact, our approach seems to be unique in that it is applicable also to visual
languages other than UML.

MoMaT is targeted at expert modelers and has been used by such people in indus-
trial contexts successfully. First feedback by said users indicated that OCL would have
been too complicated to be used. Of course, such subjective reports by people person-
ally acquainted to the author are not representative. Proper evaluations comparing the
usability of MoMaT with competing approaches are an open issue.

5.2 Performance comparison
Although we can not provide a complete evaluation of our approach im comparison
to all other approaches mentioned in section 1.1, we have some inital measurements.
A competing research group from our department is implementing an Eclipse/EMF-
based OCL interpreter. In a model query shootout with them, we agreed on a set
of eight simple queries4, created a range of synthetic class models, and executed the
queries on the models in both tools.

Classes 10 100 1,000 10,000
Model Elements 325 3,431 29,250 312,584
XMI file size of model [Mbyte] 0.06 0.61 5.42 56.5

The class models contained between 10 and 10,000 classes, each of which had a
number of attributes (ranging randomly from one to nine). Over the whole range of
models and queries, MoMaT had a consistent performance advantage of about factor
ten. A detailed study into this rather unexpected finding has not yet been conducted.
In particular, we have not yet evaluated memory consumption in detail. However,
it seems that current OCL tools and Java’s XML-libraries generally require significant

4The queries were: determine number of model elements, depth of inheritance tree, ratio of abstract
classes, set of classes participating in exactly two associations, existence of a class with a specified name,
number of instances of a given class, number of associations a given class participaates in, and number of
neighbours associated to a given class.
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resources. We have not yet compared MoMaT with with other OCL tools on the market
but would be surprised to find significantly different results.

6 Conclusions
MoMaT provides a powerfull textual query facility for models expressed in arbitrary
languages, provided there is a mapping from the languages conceptual design to the
M3. While MoMaT is textual in nature, it opens up a path to defining visual queries
as well: as soon as there are is a facility of transforming a (incomplete) model from
any given modeling tool into the MoMaT format, such model fragments may be used
to find matching submodels using MoMaT. Thus, models may be used as queries in
MoMaT, so if there is a tool to create models, there is also a tool to create queries. Of
course, for practical appications we would need an integrated work bench, but that is
just an implementation task.
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gesteuerten Prozessketten (EPK 2006), volume 224 of CEUR Workshop Proceed-
ings, pages 69–85, Bonn, December 2006. Gesellschaft für Informatik.

[8] Christian Hein, Tom Ritter, and Michael Wagner. Open source Library for OCL
(OSLO). http://oslo-project.berlios.de/.

[9] Audris Kalnins, Janis Barzdins, and Edgars Celms. Model Transformation Lan-
guage MOLA. In Uwe Aßmann, editor, Proc. 2nd Working Conf. Model Driven
Architecture: Foundations and Applications (MDAFA 2004), pages 12–26, 2004.
available at www.ida.liu.se/˜henla/mdafa2004.

81



[10] Stuart Kent. Constraint Diagrams: Visualizing Invariants in Object-Oriented
Models. In Proc. Intl. Conf. Object-Oriented Programming Object Oriented Pro-
gramming, Systems, and Languages 1997 (OOPSLA’97), pages 327–341. ACM
Press, 1997.

[11] Jim Melton. Advanced SQL 1999: Understanding Object-Relational, and Other
Advanced Features. Elsevier Science Inc., New York, NY, USA, 2002.

[12] Michael Meyer and Helge Schulz. SHORE: Ein Werkzeug für übergreifende Ver-
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A Selection of MoMaT library predicates
closure(P, X, Closure):-
pre_closure(P, [X], [], Closure1),!,
union([X], Closure1, Closure2),
sort(Closure2,Closure).

pre_closure(_, [], SoFar, SoFar):-!.
pre_closure(P, Args, SoFar, Closure):-!,

maplist(P, Args, P_of_Args1),
flatten(P_of_Args1, P_of_Args),
subtract(P_of_Args, SoFar, New),
append(New, SoFar, Next),
pre_closure(P, New, Next, Closure).

external_references(Model, EXTERNALS):-
findall(ID, Model:me(ID-_,_), IDS),
references(m1, REFS),
subtract(REFS, IDS, EXTERNALS).

references(Model, EID, REFS):-
Model:me(_-EID,VAL),
maplist(collect_ids, VAL, REFS0),
flatten(REFS0, REFS1),
list_to_set(REFS1, REFS).

references(Model, REFS):-
findall(REF, refs(Model, REF), REF_LIST),
flatten(REF_LIST,REFS).

refs(Model, REF):-
Model:me(_-_,VAL),
maplist(collect_ids, VAL, REF).

collect_ids([],[]):-!.
collect_ids([_-id(ID)|Rest], [ID|RID]):-

collect_ids(Rest, RID).
collect_ids([_-ids(IDS)|Rest], ALL_IDS):-

collect_ids(Rest, RID),
append(IDS, RID, ALL_IDS).

rel(Model, Kind, From, To):-
get_me(Model, from-id(From), Kind-_, VAL),
memberchk(to-id(To), VAL).

rels(Model, Kind, From, Targets):-
findall(To, rel(Model, Kind, From, To), Targets).
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Abstract

Styling has become a widespread technique with the advent of the Web and of
the markup language XML. With XML, application data can be modeled after the
application logic regardless of the intended rendering. Rendering of XML docu-
ments is specified using style sheet languages like CSS. Provided the styling lan-
guage offers the necessary capabilities, style sheets can similarly specify a visual
rendering of modeling and programming languages. The approach described in
this article considers visual languages that can be defined as a 1-to-1 visualization
of (an abstract syntax of) a textual language. Though the approach is obviously
limited by the employed style sheet language, its advantages are manifold: (a) vi-
sualization is achieved in a systematic manner from a textual counterpart which
allows the same paradigms to be used in several languages and ensures a close
conceptual relation between textual and visual rendering of a language; (b) visual
languages are much easier to develop than in ad-hoc manners; (c) the capability
for adaptive styling (based on user preference such as disabilities or usage context
such as mobile devices) is inherited from Web style sheet languages such as CSS.

To make CSS amenable to visual rendering of a large range of data model-
ing and programming languages, this article first introduces limited, yet powerful
extensions to CSS. Then, it demonstrates the approach on a use case, the logic-
based Web query and transformation language Xcerpt. Finally, it is argued that the
approach is particularly well-suited to logic-based languages in general.

1 Introduction
Styling has become a widespread technique with the advent of the Web and of the
markup language XML. The success of style sheet languages such as CSS is based on
the ability to separate the conceptual or logical structure of Web data (be it in HTML or
XML format) from the visual presentation of that data. Such a separation is convenient
for adaptive presentation of content based on user preferences or usage context (in
particular, for human as well as machine users such as search engine bots), for agile
management and rapid development of Web sites, and for separating the concerns of
content and presentation.
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Many of the reasons why styling has succeeded for visualizing data apply also to the
visualization of programs (i.e., of data modeling and programming languages), though
interactive features become possibly even more important. The advantages of styling
for data are inherited: easy conception of new visual languages; adaptive styling al-
lowing different presentations based on user, device, etc.; systematic relation between
abstract concepts, visual, and textual rendering of the language limiting impedance
mismatch when switching between different renderings of a language. A further ad-
vantage is that the approach inherently permits “round-trips”: A program developed so
far as text (visually, resp.) can be further developed visually (as text, resp.).

Obviously, this approach is limited by the capabilities of the style sheet language
employed. We choose in this article CSS for its widespread use and impressive visu-
alization abilities: recent developments in the area of Web design and rich interfaces
for the Web as well as the development of CSS 3.0 demonstrate the versatility of CSS-
based visualization. The days of strictly hierarchical visualization are over with fea-
tures such as absolute positioning supported by all mainstream browsers. The only
remaining limitations of CSS are the rather rigid box model (which makes, e.g., ad-hoc
curves impossible) and the limited interactivity features. The first limitation is start-
ing to get addressed by recent proposals to add free-style drawing to HTML and CSS
(cf. canvas element). The resulting flexibility in visualization is demonstrated by
applications such as Yahoo! Pipes1.

A first step to address the limitations to interactivity is proposed in this article:
a limited, yet far reaching extension to the style sheet language CSS that makes it
better suited for the rendering of not only data but also programs where interactive
behavior becomes even more central. This extension (as well as the entire approach)
is demonstrated on a use case, the logic-based Web query and transformation language
Xcerpt.

The visualization considered in this article is deliberately simple, so as to be real-
izable with a rather limited extension, called here CSSNG, of the dominant Web style
sheet language CSS. The generality of the approach should, nonetheless, become ev-
ident: Instead of CSS or CSSNG a style-sheet language offering other visualizations
could be used.

XML source Presentation

1 <bib>
2 <book year="1994" id="42">
3 <title>
4 TCP/IP Illustrated
5 </title>
6 <author>

Figure 1: XML document (left side) and rendering using CSSNG (right side).

CSSNG is a novel extension of CSS 3, the latest version of CSS, introducing just a
few novel constructs for interactive or dynamic rendering and for markup visualization.
This limited extension of CSS 3 turns out to enable rather advanced visualization of
programs. Even though CSSNG is a limited and conservative extension of CSS, it adds
considerably to the power of CSS allowing (a) to specify many forms of (interactive or)
dynamic styling; (b) to generalize markup visualization; (c) to integrate the keyboard as
input device (where CSS 3 mostly treats only a pointer input device such as a mouse).

1http://pipes.yahoo.com/pipes/
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Thus, CSSNG allows for a declarative, concise, and simple specification of dynamic
document rendering in particular, when compared to current state-of-the-art techniques
such as ECMA Script [10]. The same applies for markup visualization where currently
far more complex technologies such as XSLT [13] must be employed.

2 CSS in a Nutshell
CSS 3 and its predecessors have been developed to simplify changes of the content as
well as of the presentation of HTML and XML documents by separating content from
presentation. It specifies formatting using rather simple guarded rules with formatting
instructions. The following rule demonstrates a well-known static styling feature:

a { text-decoration: underline; }

Intuitively, the rule reads as “if an element matches a, then format it by underlining
its contained text”. The left-hand, or selector, of the CSS rule selects HTML anchors
(denoted as a elements). The declaration on the right-hand side assigns the styling
parameter to XML elements matched by the selector of the rule.

Also, some dynamic styling features are offered in CSS 3. For instance, the back-
ground color of an HTML anchor can be switched to yellow while the mouse cursor is
hovering (:hover) over it:

a:hover { background-color: yellow; }

Markup especially in XML documents often conveys application relevant infor-
mation (e.g., the role of a person associated with a book—author, editor, publisher,
reviewer, etc.). Therefore, it might be useful to visualize it. However, CSS 2.1 and
CSS 3 offer quite limited means for markup visualization which, in current Web appli-
cation, often forces the use of other, less declarative technology to complement CSS
such as ECMA script or server-side scripting languages. The following subsections 2.1
to 2.3 briefly introduce novel static CSSNG rules mainly aiming at visualizing XML
markup. Finally Section 2.4 introduces the rule-based interface for dynamic document
styling. Full details on how CSSNG extends CSS 3 can be found in [14].

2.1 Markup Insertion
CSS 3 allows the insertion of plain text specified in a CSS style sheet. The CSS
emphpseudo-elements ::before and ::after cause insertion of text before and
after a selected XML or HTML element.

CSSNG extends these pseudo-elements of CSS 3. In addition to inserting plain
text in CSS 3, the CSSNG functions element(NAME,ATTRIBUTES, VALUE) and
attribute(NAME,VALUE) provide in addition means for inserting XML elements
and attributes before and after XML elements. The following example inserts a ele-
ments with a title-attribute of value “Tab” and content “element” before each element
in an XML document. See Figure 3 how this can then be employed to visualize these
new elements as “tabs” for hiding or unhiding information.

*::before { content: element("a",
attribute("title","Tab"),
"element") }
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2.2 Markup Querying
CSS 3 provides the function attr(X) for querying the content of a known XML
attribute X of an XML element. The name of an XML element and its XML attributes
can not be queried. Implementing markup visualization as in Figure 1, i.e., where the
name of an element is used as content of a newly created element to make the markup
visible, without generalized markup querying means one rule for every XML element
type like the XML bib element in Fig. 1.

CSSNG adds the function element-name() yielding the name of the currently
selected XML element. Furthermore, one XML element can host several XML at-
tributes. Therefore, CSSNG offers attribute rules selecting XML attributes instead of
XML elements. The CSSNG functions attribute-name() and -value() query
XML attribute names and values in the context of a selected XML element. The ex-
ample in Figure 2 implements a tab in front of each XML element listing the XML
element name and all of the XML elements’ attributes including their values as shown
in Figure 1.

XML source (see Figure 1)

1 ... <book year ="1994" id ="42"> ... </book> ...

CSSNG style sheet
1 *::before { content:
2 element("span", element("span", element-name())

3 * { element("span", attribute-name() " "

4 attribute-value() )
5 } )
6 }

Resulting XML tree
1 ... <span>
2 <span>book<span>

3 <span> year 1994</span>

4 <span> id 42</span>

5 </span>
6 <book year="1994" id="42"> ... </book> ...

Figure 2: Generation of tabs. The presentation in Figure 1 is obtained by rendering the
resulting XML tree using further CSS 3 means.

2.3 Depth-dependent Styling
Styling depending on breadth (i.e., on position among siblings) is planned in CSS 3
[7]. Tables, for instance, can be styled using alternating background colors for each
line. CSSNG additionally offers styling depending on the depth (i.e., position among
ancestors) of an XML element in an XML document: :nth-descendant(an+b)
restricts selections to XML elements having an + b ancestors.

Figure 3 demonstrates the visualization of a highly nested XML document with
colors repeating on every third level. On the left side this rendering is realized using
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CSSNG and alternatively using CSS 3. Thanks to its depth-dependent styling features,
the upper CSSNG style sheet needs only three rules. The CSS 3 style sheet below needs
one rule for every level. Hence, styling in CSS 3 is possible up to a certain depth only
as shown on the right side of Figure 3 using the CSS 3 style sheet on the lower right
side of Figure 3. Such a styling is also useful for applications such as the visualization
of threads in a discussion forum.

CSSNG Presentation using CSS 3
1 *:nth-descendant(3n+1) { background-color: A; }
2 *:nth-descendant(3n+2) { background-color: B; }
3 *:nth-descendant(3n+3) { background-color: C; }

CSS 3
1 * { background-color: A; }
2 * * { background-color: B; }
3 * * * { background-color: C; }
4 * * * * { background-color: A; }
5 * * * * * { background-color: B; }
6 * * * * * * { background-color: C; }
7
8 * * * * * * * { background-color: A; }
9 * * * * * * * * { background-color: B; }

10 ...

Figure 3: Comparing Depth-dependent Styling using CSSNG and CSS 3.

2.4 Dynamic Styling Generalized
Dynamic styling is necessary to support (basic) interactivity, i.e., to change formatting
(position, color, font, etc.) based on user input such as mouse clicks or move. CSS 3 is
limited to the dynamic pseudo-class :hover. This construct allows dynamic styling
in the local context of the mouse cursor only as demonstrated in Section 2. This is
not sufficient to implement a behavior like folding a tab as demonstrated in Section 5:
when the mouse cursor moves away, the cursor does no longer hover over the selected
XML element, and its tab would be automatically unfolded.

CSSNG introduces dynamic pseudo-classes for all HTML intrinsic events [1] such
as onclick or onkeypress (see [14] for sample applications). Instead of using
HTML intrinsic event attributes like for scripting languages, CSSNG allows a stan-
dalone specification of dynamic styling in separate CSSNG files that can be applied for
multiple documents. The following example in Figure 4 shows a rather simple dynamic
CSSNG rule.

a:onclick(10) { background-color: green; }

Figure 4: Dynamic Styling of an adaptive hyperlink (CSSNG).

The rule in Figure 4 implements an adaptive hyperlink. After 10 clicks on the
hyperlink the background color changes to green meaning that the hyperlink on the
Web page is often visited by a specific user.

This extension makes it possible to apply dynamic styling on different sections of
an XML document at the same time. For instance if two hyperlinks were clicked ten
times in a Web page, both will be presented with different background colors.
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Similar extensions using HTML intrinsic events have been already proposed by the
W3C [8]. The following paragraphs introduce the novel capabilities of CSSNG:

Recurrence Patterns. All CSSNG dynamic pseudo classes support recurrence pat-
terns, an+b, as parameters. For instance the CSSNG selector *:onclick(3n+1)
detects the first, the fourth, the seventh, etc. click on an arbitrary XML element. More
generally, a CSSNG selector fires, if an + b events occurred before.

On one hand such recurrence patterns allow to reuse CSSNG rules for folding and
unfolding as demonstrated in the following paragraph. On the other hand recurrence
patterns allow to “delay” the application of rules up until a number of events, for in-
stance clicks, as demonstrated in the previous Section (see adaptive hyperlink above).

Dynamic Styling Combined. A noticeable feature of the (novel) dynamic pseudo-
classes of CSSNG is their compatibility with CSS 3 combinators, which allow to specify
tree patterns.

Figure 5: Folded visualization of an XML element title. The corresponding un-
folded example is shown in Figure 1.

A CSS 3 selector is an alternating sequence of so-called simple selectors (already
informally introduced in Section 2) and combinators. For instance, the combinator +
means that the simple selector on its left side must be a preceding sibling of the simple
selector on the righthand side. The CSS declaration (in curly braces) is only applied to
the XML element matched by the matching simple selector.

The following example (see Figure 6) implements alternating folding and unfold-
ing for the visualization of arbitrary (simple selector *) XML elements (see Figure 5).
A click on a tab of a visualized XML element like title folds its visualization.
Another click on a tab unfolds it (see title in Figure 1):

1 tab:onclick(2n+1) + * {display:none} Fold on odd number of clicks.
2 tab:onclick(2n+2) + * {display:block} Unfold on even number of clicks.

Figure 6: Combined dynamic styling in CSSNG (rendering in Figure 5).

In the example above, the lefthand selector of the first CSSNG rule above is com-
posed of the two simple selectors tab:onclick(2n+1) and * combined with the
CSS 3 combinator, +. The visualization of an XML element matched by the simple
selector * disappears, if a mouse click was performed on its preceding sibling XML
element, while its tab stays visible.
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Structure-Independent Styling. A static CSS 3 styling rule is applied to all XML
elements matching its selector. A dynamic CSS 3 styling rule is applied only to XML
elements being in the context of an input device such as an XML element lying under
the mouse cursor. CSSNG abolishes this restriction and allows (novel) so-called mono-
rama and panorama selections as demonstrated in Figure 7: The Author element
on the left side is highlighted, while the mouse cursor is hovering over the Author
element on the right side.

1 Author { background-color: black; }
2 Author:hover ? Author { background-color: white; }

Figure 7: Highlighting of Xcerpt variables.

The CSS 3 rule in line 1 defines the standard background black for XML Author
elements. In line 2 the CSSNG combinator ?, called if, is applied as follows: If an
XML Author element is hovered in an XML document, set the background color of
all XML Author elements to white.

A proof-of-concept prototypical implementation of CSSNG was implemented as
part of a diploma thesis [14] and presented [8].

3 Styling of Logic Languages
The approach described in the previous section to conceive a visual language as a ren-
dering, or styling, of a textual language seems for the following two reasons especially
convenient for logic languages:

• Logic languages are declarative, i.e. they focus on both the structural and con-
ceptual organization of the data.

• Logic languages are often “answer closed” in the sense of query languages:
queries or conditions resemble data and data (i.e., answers) can be used in place
of queries. This makes style sheet languages developed for data visualization
easily adaptable for program visualization since they are already able to visual-
ize the data.

• Logic languages are often referentially transparent allowing mostly context-in-
dependent visualization of language constructs. In particular, this allows visual
aids such as highlighting of related parts in a program or rule (e.g., variable
occurrences or predicate symbols).

• Logic languages come in families that share traits, like e.g. modal languages,
rule-based languages, logic programming languages, frame logic languages. With
the approach proposed, “visualizations” can be rather easily developed and ap-
plied to various languages of a same language family.

For these reasons, it is the firm belief of the authors that the approach proposed in
this article has the potential to boost the development and testing of visual languages,
especially of visual logic languages.
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4 visXcerpt — the Visual Twin Sibling of Xcerpt
As an example of the visualization of a textual language using the presented approach
and CSSNG, the Web query and transformation language Xcerpt [12] and its visual
counterpart visXcerpt [3] are presented. Xcerpt is a rule based deductive language in
the spirit of SQL or Datalog but for semi-structured data. As a textual language, it
comes in two syntax flavors — an abbreviated syntax and an XML syntax. Rules con-
sist of a head, also called construct pattern and a body consisting of logically connected
query patterns. Query and construction share values by means of shared variables, rules
query each other heads employing forward or backward chaining. Construct patterns
may contain special grouping constructs to collect multiple variable bindings in one re-
sult, queries may consist of incomplete query patterns with incompleteness in breadth
and/or depth and/or order, reflecting the incertitude about size and structure of doc-
uments on the web. Patterns are hence like “examples” of web data searched for in
given documents.

The central part of visXcerpt, the visual rendering of Xcerpt, is the visualization
of Web data, of XML documents. As Xcerpt itself comes in XML syntax, half the
job is done by visualizing XML.2 Further aspects, like partiality, grouping constructs
and variables are then added to get a full featured visualization of query and construct
patterns. Rules are just represented as horizontal aligned head and body, related by an
arrow, though more involved visualizations (e.g., grouping by related root labels) can
be realized with CSSNG.

Term Visualization. Web data and patterns are considered to have a term like struc-
ture. Terms are rendered as boxes with their name as a tab on the top, the box contains
all tabbed boxes of the subterms in the order they occur. The rendering is conceived to
be suitable for most web browsers, considering that they are a wide spread technology
with high adaptability to various screen sizes and resolutions. Order is given by a left-
to-right and top-to-bottom flow layout, but the layout directions should be adapted to
local writing habits of the user’s culture. Width is given by the width of the display or
browser employed. Nested boxes are further distinguished using colors, hence colors
represent nesting depth. To be able to make a reasonable selection of well assorted, dis-
tinguishable and pleasant color themes, colors of upper levels are recycled for deeper
nestings.

Graph Visualization On the Web, graph structures also need to be represented, e.g.
RDF [11] data representing graph shaped structures or hyperlink structure. In textual
representations of graph structures, references are used along a spanning tree of the
graph. The presented approach of visualizing such graph structures is to model the
references as hyperlinks in a web browser. This way, even very large graph structures
can be represented and access to any references item is achieved by user interaction
with constant complexity – a click on a hyperlink. While browsers often provide some
means of navigating back along edges represented by hyperlinks, it is arguably useful
to explicitly give hyperlinks for reverse traversal of edges, as hence the user is not
restricted in his backward movement along edges he just visited.

2To some extent, this applies to any language as we can always consider for styling the XML serialization
of the abstract syntax tree of a program.
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Information focusing For large documents, it is of vital necessity to give users the
ability to hide temporarily unneeded information or to focus on relevant data. This is
achieved by means of folding in or out terms behind their name tagged tabs. While
elements are aligned vertically, tabs are first aligned horizontally and then vertically,
saving even more space. The concept is strongly inspired by tree browser visualization
as e.g. seen on the well known Windows file browser.

At this level, pure static visualization starts to merge with user interaction. A vi-
sualization with adequate support of user interaction, especially of editing, is indeed
much more useful than a static visualisation.

Textual Xcerpt Program, and visXcerpt rendering of it.
1 CONSTRUCT
2 results[
3 all result[
4 var Title,
5 var Author
6 ] ]
7 FROM
8 in(resource="file:bib.xml")
9 proceedings04[[

10 papers[[
11 paper[[
12 var Title as title[[]] ,
13 var Author as author[[]]
14 ]]
15 ]]
16 ]]
17 END

Figure 8: A single rule Xcerpt program (in abbreviated textual syntax) along with its
visXcerpt rendering — the query part exploits a partial pattern (indicated by dotted
lines in the visualization) to search for papers in a proceedings database, constructing
title/author pairs all grouped in a list of results. All Title variables are highlighted as
the mouse is hovering above one of them in visXcerpt.

A Special Purpose Editor Model For textual languages, copy-and-paste and text
typing based editors are wide spread. Central to textual editing, is a cursor concept,
that usually is a separator of the one dimensional program. For the presented visual
approach, a separator seemed not intuitive, hence a context metaphor is used for edit-
ing: each box is a context, it is possible to cut, copy or delete it with or without its
sub boxes, it is possible to paste the content of the cut/copy buffer into, before, after or
around a context and hence term. The rich copy and paste model is accompanied by a
template concept, giving access to all program constructs and possibly example terms
or structures that can be altered, reduced or extended.

5 Realizing CSSNG: CSS & XSLT
As a proof-of-concept, we chose to implement CSSNG by a combination of XSLT
transformations and reductions to standard XHTML and CSS to allow for maximum
portability and fast implementation.
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All data formats and transformations except CSSNG Parser are based on W3C
standards. Except for the CSS and CSSNG parsers, all other program transformations
are implemented in XSLT [13]. The XSLT transformations essentially evaluate the
(static) rules in the CSSNG stylesheet statically and adorn the XHTML elements to
allow the use of standard CSS (and ECMA Script for the dynamic styling). The Styler
is the heart of the system. It processes all XHTML elements in the document tree of
an (Un)styled Document recursively. Each XHTML element passes through one test
for each CSSNG rule in a CSSNG style sheet. If a test succeeds, the XHTML style
attribute of the current XHTML element is modified. The tests are implemented in
XPath [9]. Since tests are executed from the perspective of each XML element, CSSNG

selectors need to be translated to XPath selecting XML elements in reverse direction
as demonstrated in the following example (see Figure 9):

CSSNG XPath

div :onclick(2n+1) + * self:: * /preceding-sibling:: div [

span[@class=’onclick’] mod 2 = 1 ]

Figure 9: Translation of CSS Selectors in XPath (CSSNG).

6 Outlook and Conclusion
The presented approach — obtaining a visual language by mere rendering or styling of
a textual language — has been explored with the textual query language Xcerpt. To the
largest extend, this has been achieved using standard CSS, for the most salient features
however an extension of CSS has been conceived.

6.1 Conclusion
visXcerpt has been prototypically implemented and successfully applied for the presen-
tation of Xcerpt [6] [5], widely easing the comprehension of the concepts of Xcerpt.
visXcerpt’s editor model turned out to be convenient for Xcerpt programming tasks
from the area of HTML content extraction, creation and wrapping, over XML data
transformation to Semantic Web and hybrid Web and Semantic Web reasoning [4].

CSSNG as an extension of CSS turned out to be easily realizable without heavy
computational overhead compared to CSS 2 and CSS 3. It proved itself to be not only a
tool for the implementation of visXcerpt, but especially for sophisticated visualization
of XML data with easily realizable domain specific behavior.

The approach of conceiving a visual language based on a textual back-end turned
out convenient in both cases, for the creator of the visual language as well as for the
programmer using the language — creating a visual language as a rendering of a textual
one was reasonably easy, and programmers using it where pleased to be able to switch
between textual and visual representation.

To the best of the knowledge of the authors similar generic approaches of devel-
oping visual languages as mere rendering using CSS and extensions have not been
proposed so far.
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6.2 Outlook
Further interesting research in the area of Xcerpt/visXcerpt is to investigate about type
support, not only in the textual language for checking and validation of programs [2],
but also in the editing process. This could help novice users to by just providing edit-
ing features that lead from one valid program to another, as well as providing a type
based template approach over the example based approach. In the area of generic
visualization of textual languages, it is needed to systematically investigate further fea-
tures/functionalities that would be desirable for visual languages and what existing
styling languages would be a convenient basis for adding these features. It would be
interesting to develop a few style-sheet languages which could render various textual
modeling and/or programming languages as visual languages after various visualiza-
tion paradigms. The Semantic Web logic languages RDF, OWL and the new Rule
Interchange Format (RIF) would be promising candidates for such investigations.
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Abstract

This paper offers general guidelines for the development ofeffectivevisual
languages. That is, languages for constructing diagrams that can be easily and
readily interpreted and manipulated by the human reader. Weuse these guidelines
first to examine classical AND/OR trees as a representation of logical proofs, and
second to design and evaluate a visual language for representing proofs inLofA: a
Logic of Dependability Arguments, for which we provide a brief motivation and
overview.

1 Introduction

Throughout the histories of both mathematics and engineering, diagrams have been
used to model and reason about systems, whether physical or conceptual – such as
logic. Both historical and more recent work in this area has given rise to a plethora of
diagrammatic languages, often based upon a simple core language, such as “graphs”
consisting of nodes with edges linking them. Graphs have theadvantage of a very sim-
ple syntax and thus are easy to read (modulo good layout), yetare rather inexpressive
and so, like many diagrammatic languages, are typically extended and embellished sig-
nificantly. Such extensions often risk swamping the simplicity of the underlying graphs
with overloaded symbolism and a confusion of textual annotations (for example, Fig. 1
versus Fig. 2). Ideally we would wish to know how, and how far,we might extend such
attractively simple languages without losing their “salience”. That is, their ability to be
easily and correctly interpreted and manipulated by the human reader.

Assessing the salience of diagrams requires a theory of diagrammatic languages
that explains how meaning can be attached to the components of a language both natu-
rally (by exploiting intrinsic graphical properties) and intuitively (taking consideration
of human cognition). The outlines of such a theory, constructed by analogy to theo-
ries of natural languages as studied in computational linguistics, were first introduced
in [3, 4] and later drawn upon to offer guidelines for designing maximally salient dia-
grams and diagrammatic languages in [2]. This approach, dubbed “Computational Di-
agrammatics”1, separates and clarifies issues of diagram morphology, syntax, seman-
tics, pragmatics etc, facilitating the design of diagrammatic languages that maximise
expressiveness without sacrificing readability.

1The author is indebted to Professor Michael A. Gilbert for first proposing this term.
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There are typically many means by which a diagram, or diagrammatic language,
may capture structure in a diagram. Naturally, when designing a new diagram or new
diagrammatic language we would wish to determine which of the options available
would be the most effective means of matching structure to content. That is, ensuring
that the inherent structure in a diagram closely matches that of its semantic interpreta-
tion in a manner which is readily accessible to the reader.

This paper presents an overview of the visual language design guidelines proposed
in [2] and an original analysis of the classical representation of logical AND/OR trees
in the light of these guidelines, highlighting two significant issues. In Section 3 we
present a specialised logic of argumentation first introduced in [1]. In section 4 we il-
lustrate the application of our guidelines by developing anoriginal visual representation
language for this logic and discuss broader implications for for developing effective vi-
sualisations of more general logical arguments/proofs.

2 Effectiveness of Visual Representations

We may describe the syntactic components of a visual language as being comprised of
basic graphical primitives and compound shapes. Graphicalproperties may be applied
to the primitives. A part of what gives visual languages their power is the ability of: (i)
categorizations of certain primitives, and (ii) the graphical properties; to carry semantic
information.

Basic graphical primitives are shapes and lines. Compound graphical objects can
be constructed from these primitives, two notable compoundshapes being arrowed-
lines (composed of a line and a shape – the arrow-head – at either end) and bordered
shapes (composed of a shape and a line which traces the boundary of that shape). The
latter type compound graphical object permits us to consider shapes with, for example,
thick, textured and/or coloured borders.

2.1 Properties of Graphical Primitives

The primary properties of graphical objects, a variation ofthat suggested in [5], are:
value (e.g. greyscale shading); orientation; texture (e.g. patterns); colour; and size.
These are applied to lines and shapes as in Table 1. Examiningthese properties, we

Valu Orie Text Colo Size
Line lim

√ √ √

Shape
√ √ √ √ √

Table 1: Properties of Graphical Objects

note thatvalueandtextureare not clearly distinguishable when applied to lines. Lines
may be of variable weight (e.g. dotted, dashed or solid) which we deem to bevalue.
However, texture may only be applied if all lines are of significant width, in which case
they should be considered as shapes rather than lines. We considersizeapplied to lines
primarily to indicate their width, although we note that it may also be applied to their
length. Finally, orientation is a property over which some care must be taken. Certain
tokens deemed of different shapes are in fact the same shape in a different orientation,
for example squares and diamonds.

We make the following observations of the characteristics of these properties:
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Value (greyscale shading) is discrete and ordered. For lines we consider value to
equate to dotted, dashed or solid; and thus its use is somewhat limited (“lim”).
For shapes we note that the combination of (any pair of) value, texture and colour
is non-trivial.

Orientation is continuous and ordered. As noted above, some care must be taken with
orientation and its usage should be minimal for points.

Texture is discrete and nominal (non-ordered).

Colour in theory, the colour spectrum is continuous and ordered. However, this is not
intuitive in human perception. Hence, as graphic designersare aware, colour is
best used as set of easily discernible values which are thus interpreted as discrete
and nominal.

Size is continuous and ordered. However, in many cases – particularly for lines, where
size=thickness – the most perceptually effective use of size is with some small
number (typically 3-7) of discrete, easily discriminable values. Furthermore, we
consider here that points have only a minimal (“min”) variation in size, as too
great a variation would suggest that they are shapes rather than points.

2.2 Guidelines for Visual Language Design

An effective visual representation is one in which the desired content is readily ac-
cessible to the reader and in which desired reasoning tasks are as simple and straight-
forward as possible. As indicated above, a significant benefit of visual languages is
that elements of their syntax can intrinsically carry semantic information. Hence we
may define a visual language that iswell-matched, meaning that its syntax is defined to
maximise the desired semantic information that it carries.However, there are a variety
of elements of visual language design, over and above the syntax, which may convey
semantic information. A summary of these, and a set of guidelines is introduced in [2]
as follows:

1. Morphology as types: define a clear partitioning of basic diagram shapes into
meaningful, and readily apparent, categories according tosemantic type.

2. Properties of graphical elements: utilise graphical properties such as colour,
size and texture to further partition diagram elements intoa more refined type
structure.

3. Matching semantics to syntax: select diagrammatic relations to represent se-
mantic relations for which they have matching intrinsic properties.

4. Extrinsic imposition of structure: Impose constraints, or add enhancements or
augmentations, to account for those cases where no direct matching of syntactic
and semantic elements can be found. However, do this with care to ensure that
salience is not unacceptably diminished.

5. Pragmatics for diagrams: Utilise, and allow diagram developers the freedom
to utilise, any and all as yet unused diagrammatic morphology, properties and
syntax to embody further structure in diagrams.
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Clearly, there will often be cases where a choice of options exist for matching the
semantics of a language. Furthermore, certain choices willconflict with others; as with
the combination of any pair of colour, texture and value indicated earlier. To assist in
resolving some of these choices, when constructing a visualrepresentation (or, more
generally, a visual language) that we wish to be effective, we must consider:

1. The audience: who are the intend readers/users of the diagram? In particular,
are they commonly from some domain with existing visual languages and hence
have prior conceptions of the meanings of certain symbols orother elements of
diagrammatic syntax?

2. The task: what content needs to be identified in a diagram, and what reasoning
tasks is the diagram intended to support?

Note however, that as certain graphical properties and syntactic relations may inter-
fere, often a balance or trade-off is required when selecting the most appropriate syntac-
tic match for some semantic aspect. Experience in graphic design (e.g [6, 7]) suggests
a rule of thumb thattaskconcerns outweighsemanticconcerns; that is – where a trade-
off is required, the preference should be whichever option supports greater salience of
task-specific features. For example, in certain electronicor logical circuit diagrams
it is often considered acceptable to duplicate the representation of some node if this
improves the layout by reducing the complexity and/or number of connections to that
node. In this case a semantic consideration – that each node is uniquely represented
in the diagram – is over-ridden by the desire to simplify the task of identifying and
tracking connections.

Finally we note that typically, for any non-trivial semantic domain and intended
tasks, not all information may be captured directly throughdiagram syntax. Conse-
quently the use oflabelling languagesfor labels which may potentially contain sig-
nificant semantic information is necessary for most practical diagrammatic languages.
However, in an effort to increase the expressiveness, the unprincipled use of sophisti-
cated labelling languages can perturb the directness of a diagrammatic language. Ex-
amples are legion of languages which are diagrammatic at core, but have had their
expressiveness so enhanced through sophisticated labelling languages that any benefit
to readers’ interpretation of the “diagrammatic aspects” is negated. Hence we issue the
warning: treat labels with care.

2.3 Issues in Visualising Logical Proof

To illustrate issues raised through the application of the above guidelines in the visu-
alisation of logic, consider a typical AND/OR tree for visualising a logical proof, such
as the example of Figure 3 which represents the proof tree forthe propositionA in the
propositional theory:

A ⇐ B ∨ C.
B ⇐ D ∧ E.
C ⇐ F ∨ G.
D ⇐ True, E ⇐ True, F ⇐ True, G ⇐ True.

Note that for brevity the tree has been simplified by omittingtheTrue leaf nodes.
With respect to the above guidelines for effective visual language design, there are

two notable issues with this classical representation. Thefirst is that the significant se-
mantic distinction between AND and OR nodes in the tree is represented only with the
relatively minor syntactic distinction of having a horizontal bar across the lines leading
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Figure 4: Disjunctive Proofs

to the children of an AND node – as with theB ∧ E node in Figure 3. The second
issue becomes apparent when considering the task of identifying the propositions that
are active in any particular proof of the propositionA.

There are, in fact, three alternative proofs of the propositionA wrt the above theory.
Visual languages are notably highly specific and generally do not lend themselves nat-
urally to displaying such disjunctive information. Typically we have two options when
displaying disjunction, either (i) we display multiple diagrams, one for each disjunct
(as in Figure 4); or (ii) we introduce some new part of the notation which represents
a semanticabstractionover the disjunctive information. As an example of this lat-
ter form, we might for example introduce a system of colour codings – where each
disjunct is assigned a distinctive colour and each node and branch may be assigned
multiple colours as appropriate. However, such an approachintroduces further issues
that make it undesirable for our purposes here.

In the example of Figure 4 we have chosen to represent disjunctive information (the
alternative proofs) with multiple instances of the tree of Figure 3, each representing one
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of the proofs. To assist the task of identifying which propositions are active in a single
proof, we have used bothvalue– that is, greyscale shading – to highlight the relevant
nodes; andsize– that is, thickness of line – to highlight the relevant branches in the
trees.

3 LofA: A Logic of (Dependability) Arguments

Many classes of highly dependable systems, both computer-based and otherwise, are
required to construct an argument to satisfy some, typically independent, third party
that the system achieves some minimum specification or standard measure of depend-
ability. That is, an argument that the system can be justifiably said to meet some spec-
ified level of – for example – security, reliability, qualityor safety. A system devel-
oper’s motivation for providing a dependability argument may be the desire to attain
some internationally recognised quality standard for a business, a process or a prod-
uct. Alternatively, as is often the case with safety- and security-related systems, there
may be a mandatory regulatory requirement both to attain some specified standard,
and to provide a dependability argument that argues the casefor the attainment of that
standard.

The logicLofA: A Logic of Arguments, introduced in [1], was developed to as-
sist in the representation, evaluation and negotiation of dependability arguments. At
heart,LofA is a relatively simple propositional logic using a Horn Clause representa-
tion, which is augmented with a number of non-logical warrants (derived from ideas in
the Philosophy of Argumentation [8]) and an extensible set of feature values. An argu-
ment is a proof inLofA. Two key non-logical warrants are: (i) Argument by Authority;
and (ii) Multi-Legged Argument. The most notable feature which can be utilised in a
LofA theory is an expression ofconfidencein the argument. Typically, one imagines
the author of an argument will assign confidence values to anyevidence (leaf-nodes in
a proof) and the confidence of a parent node in the argument (LofA proof) is automat-
ically derived from its children. Further available features include temporal and nu-
merical values (resulting in relatively simple propositional temporal and many-valued
logics respectively) and also completeness values (usefulfor representing partially-
constructed arguments).

The full expressiveness ofLofA was first introduced in [1]. However, for the pur-
poses of this exposition we shall consider only the simplestvariant of the language,
denotedLofA0, in which propositional, definite Horn Clauses are supplemented with
the above two non-logical warrants and the single featureconfidence. For convenience
we represent a propositional atomA and its associated confidence valuec (a numerical
value in the range 0–1) as the unary predicate atomA(c). Thus aLofA0 theory is a
collection of clauses of the form:A ⇐ B1 ∧ . . . ∧ Bn whereA is a unary predicate
atom, as above, which we refer to as theheadof an argument, and each ofB1, . . . , Bn

is awarrant. A warrant is any one of:

1. A unary predicate atom, such asP (c)

2. Auth(s, e, c): representing an ‘Argument by Authority’, wheres is an authori-
tative statement by (presumed) experte, andc its confidence.

3. Multi(L): representing a ‘Multi-Legged Argument’, whereL is a list
M1, . . . , Mn of warrants, supposedly offering alternative warrants forthe propo-
sition which this multi-legged argument itself warrants (in LofA0 these sub-
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warrants are simply assumed to be independent, while more sophisticated vari-
ants ofLofA insist on a supplementary argument to justify some measurable de-
gree of independence of the sub-warrants).

4. Ev(P, c): An item of evidence, whereP is the predicate name of an atom repre-
senting some piece of evidence used to warrant an argument, andc the associated
confidence value of this evidence.

Clearly, leaf nodes in aLofA0 argument are eitherAuthnodes orEv nodes. The latter
“Evidence” form of warrant is, in fact, a simple syntactic sugar. Rather than have
evidence (i.e. an item that needs no further warrant) represented as:

P (C) ⇐ true – whereC is some constant
we have replaced, in the body of each clause, each occurrenceof the atomP (x) with
the warrantEv(P, C). That is, we have simplified the clauses by application of a single
resolution step.

The confidence value of propositionA in a clauseA ⇐ B1∧. . .∧Bn is c1∗. . .∗cn,
wherec1, . . . , cn are the confidence values ofB1, . . . , Bn respectively. The confidence
valuecn of a multi-legged argument of legsM1, . . . , Mn with confidence values of
l1, . . . , ln respectively, is defined recursively asci = ci−1 +(1− ci−1)∗ li andC0 = 0.
For example, a multi-legged argument with three legs havingrespective confidence
values0.5, 0.8 and0.6, will have derived confidence value0.5+ (1− 0.5) ∗ 0.8+ (1−
(0.5 + (1 − 0.5) ∗ 0.8)) ∗ 0.6 = 0.5 + 0.4 + 0.06 = 0.96.

To illustrate the above, consider the following argument that LofA is a valuable
argumentation tool:

LofA is a valuable argumentation tool, as it is: (i) a relatively sim-
ple language; (ii) sufficiently expressive for the representation of depend-
ability arguments; and (iii) has also shown itself to be “fit for purpose”.
Proposition (i) we consider self-evident; proposition (ii) is asserted as be-
ing true by the author; while proposition (iii) is justified both by the fact
that a range of key dependability arguments have already been represented
in LofA, and by the fact thatLofAhas proved an effective educational tool
in the teaching of dependability argumentation.

Simplifying the above propositions for brevity, and ignoring confidence values for the
moment, we may encode these inLofA0 as the following three clauses:

LofA valuable⇐ Ev(Simple) ∧ Sufficient∧ Fit for purpose.
Sufficient⇐ Auth(“I say so”, ‘C Gurr’ ).
Fit for purpose⇐

Multi([Ev(Representedkeyarguments), Ev(Effectiveteachingtool)] ).

Suppose that we assert confidence values for the evidence andauthority warrants
as follows: Simple= 1, “I say so” = 0.9, Representedkeyarguments= 0.5, Effec-
tive teachingtool = 0.8; Then the derived confidence values of intermediary proposi-
tions will be:Sufficient= 0.9,Fit for purpose= 0.5 + (1-0.5)*0.8 = 0.5 + 0.4 = 0.9 and
the derived confidence value forLofA valuableis 1*0.9*0.9 = 0.81.

4 Visualizing LofA Arguments

In Section 2.3 we noted two issues with the classical representation of AND/OR proof
trees: (i) that the visual distinction between AND/OR nodeswas too weak; and (ii)
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that disjunctive proofs could not be represented in a singlevisualisation without intro-
ducing extra syntactic abstractions. Adopting the guidelines for visual language design
summarised earlier, we have addressed these two issues in the visualisation ofLofA
arguments, as illustrated by Figure 5, as follows.

Firstly, to make clear the categorical distinction betweendiffering node types, we
adopt the convention of using categorically different nodeshapesto clearly distinguish
the types. Hence, leaf nodes (Evidence and Authority nodes)are depicted as boxes with
rounded corners, while non-leaf nodes (AND nodes and Multi nodes) are depicted by
boxes with square corners. Furthermore, non-logical warrants (Authority and Multi
nodes) are depicted as a compound shape, consisting of the appropriate box with a
named box inset in the top-right corner. Finally, where a node has multiple children,
the top of the branches leading to the children are clearly labelled with one of two
shapes depending on whether they are an AND node or a Multi node – the latter be-
ing, effectively, a variant of a logical OR node. These two labelling AND- and OR-
shapes are adopted from the classic representation of equivalent nodes in logical cir-
cuits. These have been chosen specifically to match the domain knowledge of the most
likely readers ofLofA arguments, who are typically familiar with this specific repre-
sentation of AND and OR nodes from either logical or electrical circuits, or Fault Tree
Diagrams, each of which are common in the assessment of highly dependable systems.
Note also the somewhat more subtle variation in the representation of branches be-
tween AND and Multi nodes, that branches below AND nodes are drawn as (angled)
straight lines with no bends, in contrast to those below Multi nodes. Thus we have
usedorientationto some effect here. In addition, for both AND and Multi nodesthe
branches below such nodes issue from a single point – and are subsequently split in the
case of Multi nodes – rather than issuing from multiple points as is permitted in logical
circuit diagrams. This is a further subtle, yet deliberate,indicator of the equally subtle
point that the validity – as opposed to the confidence – of the argument represented by
an AND or Multi node is equally dependent upon the validity ofeach of its children.

The second issue raised with AND/OR trees – that disjunctivearguments cannot
be readily represented in a single diagram – is avoided in this visualisation ofLofA
arguments through the simple fact that such disjunctive arguments (where only a subset
of propositions contribute to a given proof) do not arise inLofA. TheLofAequivalent of
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the OR node is the Multi node, where sub-warrants each offer an alternative argument
for the node, yet these are considered as acollectiveeffort to increase confidence, rather
than independent alternative justifications.

Having constructed this visual language forLofA, we may next explore how any
currently unused graphical attributes – notably properties applied to graphical primi-
tives – may be used to enhance the language wrt making certaintasks especially easy
to perform. For example, consider the confidence values suggested above for our illus-
trativeLofA argument. An assessor of this argument would wish to be able to readily
identify both (i) what confidence is derived for the top-level argument, and (ii) how
do subsidiary nodes contribute to this derived value? We maymake such information
readily visible in our language through application of an appropriate graphical property
to the nodes. For example, usingvalue(greyscale shading), where darker nodes indi-
cate greater confidence, we may visually annotate the argument of Figure 5 to produce
that of Figure 6. The choice of value to represent confidence in Figure 6 is appropriate
as the primary semantic characteristics of confidence (thatit is discrete and ordered) are
well-matched by our choice of graphical property to represent it. Thus, for example,
identifying which nodes in the argument of Figure 6 have greater or lesser confidence
is an almost immediate process for the reader. Having made such a representational
choice, however, constrains our further choices should we wish to extend the visual
language.

Consider, for example, the feature ofcompletenesswith which we may extend
LofA0. In its simplest form, completeness is a binary value (complete/incomplete)
applied to any leaf node in an argument. All leaf nodes in an argument are incom-
plete until determined to be complete by the argument’s developer. A non-leaf node is
complete iff all of its children are complete. This permits the argument developer to
construct apartial argument. That is, one for which the structure of the argument is
known, but for which not all evidence has been fully assembled and/or assessed. Ex-
tending the above illustrativeLofA0 argument, we could assert that the evidence node
Representedkeyargumentsis currently incomplete, and hence that its parent Multi
node and the top-level argument are similarly incomplete.

We have a number of means available to add such completeness information into
the argument representation of Figure 6 with a well-matchedvisual representation.
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We might adopt a categorical colour coding, such as green forcomplete and red for
incomplete. However, this choice may be problemmatic, as wehave noted. Not least
because colour can interfere with value, which we have already used, but there are
also issues with the accessibility of colour to the human reader – both due to printing
issues (this article is intended to be able to be reproduced in black and white) and
concerns that not all human readers can discern all colours.Consequently we choose
instead to adopttexture(that is, patterning) in nodes to represent incompleteness. In the
argument tree of Figure 7 a value ofincompletefor a node is indicated through a dashed
patterning of the relevant node. Hence it is an easy matter for the reader to identify both
which evidence nodes are incomplete, and how this impacts the (in)completeness of the
remainder of the argument.

Finally, we consider briefly what further annotations couldbe made to argument
trees such as that of Figure 7. We have applied no graphical properties to the branch-
lines connecting nodes (other than limited use of orientation), so colour or size could
be applied meaningfully there. Clearly, the use of colour innodes also is a possibility –
although as mentioned above this could only be used in certain situations and with the
greatest of care. Making the orientation of nodes semantically meaningful would not
seem wise, although we might make their size meaningful. However, care would be
needed here also as employing significant variations in sizeof node would likely lead
to issues with layout. Were the nodes to be considered compound shapes consisting of
both the shaped node and its bordering line, we might apply further visual annotations
to these borders – potentially both colour and size (thickness) – which would again
permit us to represent further, well-matched, properties in a visually salient manner.
Only last of all should we consider addingtextualannotations to this representation;
for example if we wished to depict the absolute (numerical) confidence values and not
merely their relative values as currently displayed. As noted previously, adding increas-
ingly semantically sophisticated textual labels is a very strong temptation to all visual
language designers, but one which can very rapidly negate the intrinsic advantages of
a visualrepresentation.
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5 Conclusions and Future Work

The study of dependability argumentation is both a rich and interesting area. Depend-
ability arguments are often complex in nature, combining disparate forms and sources
of evidence in detailed arguments, which must then be reviewed by, and negotiated
with, a broad audience exhibiting diverse competencies andinterests. The issue ofrep-
resentingdependability arguments is a pressing one, and current approaches – while
often expressive – generally lack sufficient semantics or depth to provide the necessary
support for the analysis and evaluation of arguments.

Adopting a formal approach to representing dependability arguments has many ad-
vantages, most notably in the precision and exactness that such an approach brings
to questions of the meaning and validity of an argument. However, given the relative
sophistication and detail contained in a typical dependability argument, the expres-
siveness required of any language for representing such arguments goes significantly
beyond what typical formal logics presently offer. Ongoingwork in reviewing practical
dependability arguments illustrates what is required of a representation for it both to
be sufficiently expressive, and to support the variety of evaluations and manipulations
demanded in dependability domains. Studies of the representation of dependability ar-
guments have much to learn from philosophical students of argumentation theory, an
illustrative example being issues of validity and plausibility with regard to appeals to
authority – a major aspect of many dependability cases.

Diagrams and new diagrammatic languages are frequently cited as being “natural”
and “intuitive” notations, permitting “easy” and “accurate” communication of complex
structures and concepts. Indeed, such claims have been readily applied to the many
graph-based notations popular in dependability argumentation. However, the veracity
of these claims is seldom tested and often the design of such diagrammatic languages
follows no clear or obvious principles of usability, readability or effectiveness for the
human user. We intend to continue to develop and evaluate oureffective diagrammatic
languages for representing dependability arguments. After all, it is clear that ultimate
responsibility for acceptance or rejection of any dependability argument will always
rest with a human agent or agency. As such, it is both in our interests and within our
responsibility to ensure that such agents are presented with the most comprehensive,
comprehensible and accessible representations of dependability arguments that it is
within our power to provide.
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