
Visualizing a Logic of Dependability Arguments

C Gurr
School of Systems Engineering

The University of Reading
Reading, UK

Email: C.A.Gurr@reading.ac.uk

Abstract

This paper offers general guidelines for the development ofeffectivevisual
languages. That is, languages for constructing diagrams that can be easily and
readily interpreted and manipulated by the human reader. Weuse these guidelines
first to examine classical AND/OR trees as a representation of logical proofs, and
second to design and evaluate a visual language for representing proofs inLofA: a
Logic of Dependability Arguments, for which we provide a brief motivation and
overview.

1 Introduction

Throughout the histories of both mathematics and engineering, diagrams have been
used to model and reason about systems, whether physical or conceptual – such as
logic. Both historical and more recent work in this area has given rise to a plethora of
diagrammatic languages, often based upon a simple core language, such as “graphs”
consisting of nodes with edges linking them. Graphs have theadvantage of a very sim-
ple syntax and thus are easy to read (modulo good layout), yetare rather inexpressive
and so, like many diagrammatic languages, are typically extended and embellished sig-
nificantly. Such extensions often risk swamping the simplicity of the underlying graphs
with overloaded symbolism and a confusion of textual annotations (for example, Fig. 1
versus Fig. 2). Ideally we would wish to know how, and how far,we might extend such
attractively simple languages without losing their “salience”. That is, their ability to be
easily and correctly interpreted and manipulated by the human reader.

Assessing the salience of diagrams requires a theory of diagrammatic languages
that explains how meaning can be attached to the components of a language both natu-
rally (by exploiting intrinsic graphical properties) and intuitively (taking consideration
of human cognition). The outlines of such a theory, constructed by analogy to theo-
ries of natural languages as studied in computational linguistics, were first introduced
in [3, 4] and later drawn upon to offer guidelines for designing maximally salient dia-
grams and diagrammatic languages in [2]. This approach, dubbed “Computational Di-
agrammatics”1, separates and clarifies issues of diagram morphology, syntax, seman-
tics, pragmatics etc, facilitating the design of diagrammatic languages that maximise
expressiveness without sacrificing readability.

1The author is indebted to Professor Michael A. Gilbert for first proposing this term.

97

Summary Account

interface

inherits from

Account Entry

Detail Account

Order Order lineline item Order input

entries

Figure 1: Simple UML Class diagram

<<alternative fix>>

/balance : Money

Account

amount : Money

Entry

Summary Account

components

0..1 1..*

*/entries

{balance = sum of amounts of entries}

Detail Account

dispatch()

close()

prepare()

DataInput

amount : number

Order inputOrder

Product

1

line item
0..1 due : Date

Order line

Figure 2: Enhanced UML Class diagram

98

There are typically many means by which a diagram, or diagrammatic language,
may capture structure in a diagram. Naturally, when designing a new diagram or new
diagrammatic language we would wish to determine which of the options available
would be the most effective means of matching structure to content. That is, ensuring
that the inherent structure in a diagram closely matches that of its semantic interpreta-
tion in a manner which is readily accessible to the reader.

This paper presents an overview of the visual language design guidelines proposed
in [2] and an original analysis of the classical representation of logical AND/OR trees
in the light of these guidelines, highlighting two significant issues. In Section 3 we
present a specialised logic of argumentation first introduced in [1]. In section 4 we il-
lustrate the application of our guidelines by developing anoriginal visual representation
language for this logic and discuss broader implications for for developing effective vi-
sualisations of more general logical arguments/proofs.

2 Effectiveness of Visual Representations

We may describe the syntactic components of a visual language as being comprised of
basic graphical primitives and compound shapes. Graphicalproperties may be applied
to the primitives. A part of what gives visual languages their power is the ability of: (i)
categorizations of certain primitives, and (ii) the graphical properties; to carry semantic
information.

Basic graphical primitives are shapes and lines. Compound graphical objects can
be constructed from these primitives, two notable compoundshapes being arrowed-
lines (composed of a line and a shape – the arrow-head – at either end) and bordered
shapes (composed of a shape and a line which traces the boundary of that shape). The
latter type compound graphical object permits us to consider shapes with, for example,
thick, textured and/or coloured borders.

2.1 Properties of Graphical Primitives

The primary properties of graphical objects, a variation ofthat suggested in [5], are:
value (e.g. greyscale shading); orientation; texture (e.g. patterns); colour; and size.
These are applied to lines and shapes as in Table 1. Examiningthese properties, we

Valu Orie Text Colo Size
Line lim

√ √ √

Shape
√ √ √ √ √

Table 1: Properties of Graphical Objects

note thatvalueandtextureare not clearly distinguishable when applied to lines. Lines
may be of variable weight (e.g. dotted, dashed or solid) which we deem to bevalue.
However, texture may only be applied if all lines are of significant width, in which case
they should be considered as shapes rather than lines. We considersizeapplied to lines
primarily to indicate their width, although we note that it may also be applied to their
length. Finally, orientation is a property over which some care must be taken. Certain
tokens deemed of different shapes are in fact the same shape in a different orientation,
for example squares and diamonds.

We make the following observations of the characteristics of these properties:

99

Value (greyscale shading) is discrete and ordered. For lines we consider value to
equate to dotted, dashed or solid; and thus its use is somewhat limited (“lim”).
For shapes we note that the combination of (any pair of) value, texture and colour
is non-trivial.

Orientation is continuous and ordered. As noted above, some care must be taken with
orientation and its usage should be minimal for points.

Texture is discrete and nominal (non-ordered).

Colour in theory, the colour spectrum is continuous and ordered. However, this is not
intuitive in human perception. Hence, as graphic designersare aware, colour is
best used as set of easily discernible values which are thus interpreted as discrete
and nominal.

Size is continuous and ordered. However, in many cases – particularly for lines, where
size=thickness – the most perceptually effective use of size is with some small
number (typically 3-7) of discrete, easily discriminable values. Furthermore, we
consider here that points have only a minimal (“min”) variation in size, as too
great a variation would suggest that they are shapes rather than points.

2.2 Guidelines for Visual Language Design

An effective visual representation is one in which the desired content is readily ac-
cessible to the reader and in which desired reasoning tasks are as simple and straight-
forward as possible. As indicated above, a significant benefit of visual languages is
that elements of their syntax can intrinsically carry semantic information. Hence we
may define a visual language that iswell-matched, meaning that its syntax is defined to
maximise the desired semantic information that it carries.However, there are a variety
of elements of visual language design, over and above the syntax, which may convey
semantic information. A summary of these, and a set of guidelines is introduced in [2]
as follows:

1. Morphology as types: define a clear partitioning of basic diagram shapes into
meaningful, and readily apparent, categories according tosemantic type.

2. Properties of graphical elements: utilise graphical properties such as colour,
size and texture to further partition diagram elements intoa more refined type
structure.

3. Matching semantics to syntax: select diagrammatic relations to represent se-
mantic relations for which they have matching intrinsic properties.

4. Extrinsic imposition of structure: Impose constraints, or add enhancements or
augmentations, to account for those cases where no direct matching of syntactic
and semantic elements can be found. However, do this with care to ensure that
salience is not unacceptably diminished.

5. Pragmatics for diagrams: Utilise, and allow diagram developers the freedom
to utilise, any and all as yet unused diagrammatic morphology, properties and
syntax to embody further structure in diagrams.

100

Clearly, there will often be cases where a choice of options exist for matching the
semantics of a language. Furthermore, certain choices willconflict with others; as with
the combination of any pair of colour, texture and value indicated earlier. To assist in
resolving some of these choices, when constructing a visualrepresentation (or, more
generally, a visual language) that we wish to be effective, we must consider:

1. The audience: who are the intend readers/users of the diagram? In particular,
are they commonly from some domain with existing visual languages and hence
have prior conceptions of the meanings of certain symbols orother elements of
diagrammatic syntax?

2. The task: what content needs to be identified in a diagram, and what reasoning
tasks is the diagram intended to support?

Note however, that as certain graphical properties and syntactic relations may inter-
fere, often a balance or trade-off is required when selecting the most appropriate syntac-
tic match for some semantic aspect. Experience in graphic design (e.g [6, 7]) suggests
a rule of thumb thattaskconcerns outweighsemanticconcerns; that is – where a trade-
off is required, the preference should be whichever option supports greater salience of
task-specific features. For example, in certain electronicor logical circuit diagrams
it is often considered acceptable to duplicate the representation of some node if this
improves the layout by reducing the complexity and/or number of connections to that
node. In this case a semantic consideration – that each node is uniquely represented
in the diagram – is over-ridden by the desire to simplify the task of identifying and
tracking connections.

Finally we note that typically, for any non-trivial semantic domain and intended
tasks, not all information may be captured directly throughdiagram syntax. Conse-
quently the use oflabelling languagesfor labels which may potentially contain sig-
nificant semantic information is necessary for most practical diagrammatic languages.
However, in an effort to increase the expressiveness, the unprincipled use of sophisti-
cated labelling languages can perturb the directness of a diagrammatic language. Ex-
amples are legion of languages which are diagrammatic at core, but have had their
expressiveness so enhanced through sophisticated labelling languages that any benefit
to readers’ interpretation of the “diagrammatic aspects” is negated. Hence we issue the
warning: treat labels with care.

2.3 Issues in Visualising Logical Proof

To illustrate issues raised through the application of the above guidelines in the visu-
alisation of logic, consider a typical AND/OR tree for visualising a logical proof, such
as the example of Figure 3 which represents the proof tree forthe propositionA in the
propositional theory:

A ⇐ B ∨ C.

B ⇐ D ∧ E.

C ⇐ F ∨ G.

D ⇐ True, E ⇐ True, F ⇐ True, G ⇐ True.

Note that for brevity the tree has been simplified by omittingtheTrue leaf nodes.
With respect to the above guidelines for effective visual language design, there are

two notable issues with this classical representation. Thefirst is that the significant se-
mantic distinction between AND and OR nodes in the tree is represented only with the
relatively minor syntactic distinction of having a horizontal bar across the lines leading

101

B

F G

A

ED

C

Figure 3: AND/OR Proof Tree

F

A

B

BB

E GFD

C

C

D E

A

F G

C

D E

A

G

Figure 4: Disjunctive Proofs

to the children of an AND node – as with theB ∧ E node in Figure 3. The second
issue becomes apparent when considering the task of identifying the propositions that
are active in any particular proof of the propositionA.

There are, in fact, three alternative proofs of the propositionA wrt the above theory.
Visual languages are notably highly specific and generally do not lend themselves nat-
urally to displaying such disjunctive information. Typically we have two options when
displaying disjunction, either (i) we display multiple diagrams, one for each disjunct
(as in Figure 4); or (ii) we introduce some new part of the notation which represents
a semanticabstractionover the disjunctive information. As an example of this lat-
ter form, we might for example introduce a system of colour codings – where each
disjunct is assigned a distinctive colour and each node and branch may be assigned
multiple colours as appropriate. However, such an approachintroduces further issues
that make it undesirable for our purposes here.

In the example of Figure 4 we have chosen to represent disjunctive information (the
alternative proofs) with multiple instances of the tree of Figure 3, each representing one

102

of the proofs. To assist the task of identifying which propositions are active in a single
proof, we have used bothvalue– that is, greyscale shading – to highlight the relevant
nodes; andsize– that is, thickness of line – to highlight the relevant branches in the
trees.

3 LofA: A Logic of (Dependability) Arguments

Many classes of highly dependable systems, both computer-based and otherwise, are
required to construct an argument to satisfy some, typically independent, third party
that the system achieves some minimum specification or standard measure of depend-
ability. That is, an argument that the system can be justifiably said to meet some spec-
ified level of – for example – security, reliability, qualityor safety. A system devel-
oper’s motivation for providing a dependability argument may be the desire to attain
some internationally recognised quality standard for a business, a process or a prod-
uct. Alternatively, as is often the case with safety- and security-related systems, there
may be a mandatory regulatory requirement both to attain some specified standard,
and to provide a dependability argument that argues the casefor the attainment of that
standard.

The logicLofA: A Logic of Arguments, introduced in [1], was developed to as-
sist in the representation, evaluation and negotiation of dependability arguments. At
heart,LofA is a relatively simple propositional logic using a Horn Clause representa-
tion, which is augmented with a number of non-logical warrants (derived from ideas in
the Philosophy of Argumentation [8]) and an extensible set of feature values. An argu-
ment is a proof inLofA. Two key non-logical warrants are: (i) Argument by Authority;
and (ii) Multi-Legged Argument. The most notable feature which can be utilised in a
LofA theory is an expression ofconfidencein the argument. Typically, one imagines
the author of an argument will assign confidence values to anyevidence (leaf-nodes in
a proof) and the confidence of a parent node in the argument (LofA proof) is automat-
ically derived from its children. Further available features include temporal and nu-
merical values (resulting in relatively simple propositional temporal and many-valued
logics respectively) and also completeness values (usefulfor representing partially-
constructed arguments).

The full expressiveness ofLofA was first introduced in [1]. However, for the pur-
poses of this exposition we shall consider only the simplestvariant of the language,
denotedLofA0, in which propositional, definite Horn Clauses are supplemented with
the above two non-logical warrants and the single featureconfidence. For convenience
we represent a propositional atomA and its associated confidence valuec (a numerical
value in the range 0–1) as the unary predicate atomA(c). Thus aLofA0 theory is a
collection of clauses of the form:A ⇐ B1 ∧ . . . ∧ Bn whereA is a unary predicate
atom, as above, which we refer to as theheadof an argument, and each ofB1, . . . , Bn

is awarrant. A warrant is any one of:

1. A unary predicate atom, such asP (c)

2. Auth(s, e, c): representing an ‘Argument by Authority’, wheres is an authori-
tative statement by (presumed) experte, andc its confidence.

3. Multi(L): representing a ‘Multi-Legged Argument’, whereL is a list
M1, . . . , Mn of warrants, supposedly offering alternative warrants forthe propo-
sition which this multi-legged argument itself warrants (in LofA0 these sub-

103

warrants are simply assumed to be independent, while more sophisticated vari-
ants ofLofA insist on a supplementary argument to justify some measurable de-
gree of independence of the sub-warrants).

4. Ev(P, c): An item of evidence, whereP is the predicate name of an atom repre-
senting some piece of evidence used to warrant an argument, andc the associated
confidence value of this evidence.

Clearly, leaf nodes in aLofA0 argument are eitherAuthnodes orEv nodes. The latter
“Evidence” form of warrant is, in fact, a simple syntactic sugar. Rather than have
evidence (i.e. an item that needs no further warrant) represented as:

P (C) ⇐ true – whereC is some constant
we have replaced, in the body of each clause, each occurrenceof the atomP (x) with
the warrantEv(P, C). That is, we have simplified the clauses by application of a single
resolution step.

The confidence value of propositionA in a clauseA ⇐ B1∧. . .∧Bn is c1∗. . .∗cn,
wherec1, . . . , cn are the confidence values ofB1, . . . , Bn respectively. The confidence
valuecn of a multi-legged argument of legsM1, . . . , Mn with confidence values of
l1, . . . , ln respectively, is defined recursively asci = ci−1 +(1− ci−1)∗ li andC0 = 0.
For example, a multi-legged argument with three legs havingrespective confidence
values0.5, 0.8 and0.6, will have derived confidence value0.5+ (1− 0.5) ∗ 0.8+ (1−
(0.5 + (1 − 0.5) ∗ 0.8)) ∗ 0.6 = 0.5 + 0.4 + 0.06 = 0.96.

To illustrate the above, consider the following argument that LofA is a valuable
argumentation tool:

LofA is a valuable argumentation tool, as it is: (i) a relatively sim-
ple language; (ii) sufficiently expressive for the representation of depend-
ability arguments; and (iii) has also shown itself to be “fit for purpose”.
Proposition (i) we consider self-evident; proposition (ii) is asserted as be-
ing true by the author; while proposition (iii) is justified both by the fact
that a range of key dependability arguments have already been represented
in LofA, and by the fact thatLofAhas proved an effective educational tool
in the teaching of dependability argumentation.

Simplifying the above propositions for brevity, and ignoring confidence values for the
moment, we may encode these inLofA0 as the following three clauses:

LofA valuable⇐ Ev(Simple) ∧ Sufficient∧ Fit for purpose.
Sufficient⇐ Auth(“I say so”, ‘C Gurr’).
Fit for purpose⇐

Multi([Ev(Representedkeyarguments), Ev(Effectiveteachingtool)]).

Suppose that we assert confidence values for the evidence andauthority warrants
as follows: Simple= 1, “I say so” = 0.9, Representedkeyarguments= 0.5, Effec-
tive teachingtool = 0.8; Then the derived confidence values of intermediary proposi-
tions will be:Sufficient= 0.9,Fit for purpose= 0.5 + (1-0.5)*0.8 = 0.5 + 0.4 = 0.9 and
the derived confidence value forLofA valuableis 1*0.9*0.9 = 0.81.

4 Visualizing LofA Arguments

In Section 2.3 we noted two issues with the classical representation of AND/OR proof
trees: (i) that the visual distinction between AND/OR nodeswas too weak; and (ii)

104

Auth

Multi

SufficientSimple

"I say so"
 _tool _key_args

Represented Effective_teaching

Fit_for_purpose

LofA_valuable

Figure 5:LofaArgument Tree

that disjunctive proofs could not be represented in a singlevisualisation without intro-
ducing extra syntactic abstractions. Adopting the guidelines for visual language design
summarised earlier, we have addressed these two issues in the visualisation ofLofA
arguments, as illustrated by Figure 5, as follows.

Firstly, to make clear the categorical distinction betweendiffering node types, we
adopt the convention of using categorically different nodeshapesto clearly distinguish
the types. Hence, leaf nodes (Evidence and Authority nodes)are depicted as boxes with
rounded corners, while non-leaf nodes (AND nodes and Multi nodes) are depicted by
boxes with square corners. Furthermore, non-logical warrants (Authority and Multi
nodes) are depicted as a compound shape, consisting of the appropriate box with a
named box inset in the top-right corner. Finally, where a node has multiple children,
the top of the branches leading to the children are clearly labelled with one of two
shapes depending on whether they are an AND node or a Multi node – the latter be-
ing, effectively, a variant of a logical OR node. These two labelling AND- and OR-
shapes are adopted from the classic representation of equivalent nodes in logical cir-
cuits. These have been chosen specifically to match the domain knowledge of the most
likely readers ofLofA arguments, who are typically familiar with this specific repre-
sentation of AND and OR nodes from either logical or electrical circuits, or Fault Tree
Diagrams, each of which are common in the assessment of highly dependable systems.
Note also the somewhat more subtle variation in the representation of branches be-
tween AND and Multi nodes, that branches below AND nodes are drawn as (angled)
straight lines with no bends, in contrast to those below Multi nodes. Thus we have
usedorientationto some effect here. In addition, for both AND and Multi nodesthe
branches below such nodes issue from a single point – and are subsequently split in the
case of Multi nodes – rather than issuing from multiple points as is permitted in logical
circuit diagrams. This is a further subtle, yet deliberate,indicator of the equally subtle
point that the validity – as opposed to the confidence – of the argument represented by
an AND or Multi node is equally dependent upon the validity ofeach of its children.

The second issue raised with AND/OR trees – that disjunctivearguments cannot
be readily represented in a single diagram – is avoided in this visualisation ofLofA
arguments through the simple fact that such disjunctive arguments (where only a subset
of propositions contribute to a given proof) do not arise inLofA. TheLofAequivalent of

105

Auth

Multi

Fit_for_purpose

Represented Effective_teaching
 _key_args _tool

Sufficient

LofA_valuable

Simple

"I say so"

Figure 6: Visually annotatedLofaArgument Tree

the OR node is the Multi node, where sub-warrants each offer an alternative argument
for the node, yet these are considered as acollectiveeffort to increase confidence, rather
than independent alternative justifications.

Having constructed this visual language forLofA, we may next explore how any
currently unused graphical attributes – notably properties applied to graphical primi-
tives – may be used to enhance the language wrt making certaintasks especially easy
to perform. For example, consider the confidence values suggested above for our illus-
trativeLofA argument. An assessor of this argument would wish to be able to readily
identify both (i) what confidence is derived for the top-level argument, and (ii) how
do subsidiary nodes contribute to this derived value? We maymake such information
readily visible in our language through application of an appropriate graphical property
to the nodes. For example, usingvalue(greyscale shading), where darker nodes indi-
cate greater confidence, we may visually annotate the argument of Figure 5 to produce
that of Figure 6. The choice of value to represent confidence in Figure 6 is appropriate
as the primary semantic characteristics of confidence (thatit is discrete and ordered) are
well-matched by our choice of graphical property to represent it. Thus, for example,
identifying which nodes in the argument of Figure 6 have greater or lesser confidence
is an almost immediate process for the reader. Having made such a representational
choice, however, constrains our further choices should we wish to extend the visual
language.

Consider, for example, the feature ofcompletenesswith which we may extend
LofA0. In its simplest form, completeness is a binary value (complete/incomplete)
applied to any leaf node in an argument. All leaf nodes in an argument are incom-
plete until determined to be complete by the argument’s developer. A non-leaf node is
complete iff all of its children are complete. This permits the argument developer to
construct apartial argument. That is, one for which the structure of the argument is
known, but for which not all evidence has been fully assembled and/or assessed. Ex-
tending the above illustrativeLofA0 argument, we could assert that the evidence node
Representedkeyargumentsis currently incomplete, and hence that its parent Multi
node and the top-level argument are similarly incomplete.

We have a number of means available to add such completeness information into
the argument representation of Figure 6 with a well-matchedvisual representation.

106

Multi

Auth

"I say so"

LofA_valuable

Sufficient

 _tool _key_args
Effective_teachingRepresented

Fit_for_purposeSimple

Figure 7: Further annotatedLofaArgument Tree

We might adopt a categorical colour coding, such as green forcomplete and red for
incomplete. However, this choice may be problemmatic, as wehave noted. Not least
because colour can interfere with value, which we have already used, but there are
also issues with the accessibility of colour to the human reader – both due to printing
issues (this article is intended to be able to be reproduced in black and white) and
concerns that not all human readers can discern all colours.Consequently we choose
instead to adopttexture(that is, patterning) in nodes to represent incompleteness. In the
argument tree of Figure 7 a value ofincompletefor a node is indicated through a dashed
patterning of the relevant node. Hence it is an easy matter for the reader to identify both
which evidence nodes are incomplete, and how this impacts the (in)completeness of the
remainder of the argument.

Finally, we consider briefly what further annotations couldbe made to argument
trees such as that of Figure 7. We have applied no graphical properties to the branch-
lines connecting nodes (other than limited use of orientation), so colour or size could
be applied meaningfully there. Clearly, the use of colour innodes also is a possibility –
although as mentioned above this could only be used in certain situations and with the
greatest of care. Making the orientation of nodes semantically meaningful would not
seem wise, although we might make their size meaningful. However, care would be
needed here also as employing significant variations in sizeof node would likely lead
to issues with layout. Were the nodes to be considered compound shapes consisting of
both the shaped node and its bordering line, we might apply further visual annotations
to these borders – potentially both colour and size (thickness) – which would again
permit us to represent further, well-matched, properties in a visually salient manner.
Only last of all should we consider addingtextualannotations to this representation;
for example if we wished to depict the absolute (numerical) confidence values and not
merely their relative values as currently displayed. As noted previously, adding increas-
ingly semantically sophisticated textual labels is a very strong temptation to all visual
language designers, but one which can very rapidly negate the intrinsic advantages of
a visualrepresentation.

107

5 Conclusions and Future Work

The study of dependability argumentation is both a rich and interesting area. Depend-
ability arguments are often complex in nature, combining disparate forms and sources
of evidence in detailed arguments, which must then be reviewed by, and negotiated
with, a broad audience exhibiting diverse competencies andinterests. The issue ofrep-
resentingdependability arguments is a pressing one, and current approaches – while
often expressive – generally lack sufficient semantics or depth to provide the necessary
support for the analysis and evaluation of arguments.

Adopting a formal approach to representing dependability arguments has many ad-
vantages, most notably in the precision and exactness that such an approach brings
to questions of the meaning and validity of an argument. However, given the relative
sophistication and detail contained in a typical dependability argument, the expres-
siveness required of any language for representing such arguments goes significantly
beyond what typical formal logics presently offer. Ongoingwork in reviewing practical
dependability arguments illustrates what is required of a representation for it both to
be sufficiently expressive, and to support the variety of evaluations and manipulations
demanded in dependability domains. Studies of the representation of dependability ar-
guments have much to learn from philosophical students of argumentation theory, an
illustrative example being issues of validity and plausibility with regard to appeals to
authority – a major aspect of many dependability cases.

Diagrams and new diagrammatic languages are frequently cited as being “natural”
and “intuitive” notations, permitting “easy” and “accurate” communication of complex
structures and concepts. Indeed, such claims have been readily applied to the many
graph-based notations popular in dependability argumentation. However, the veracity
of these claims is seldom tested and often the design of such diagrammatic languages
follows no clear or obvious principles of usability, readability or effectiveness for the
human user. We intend to continue to develop and evaluate oureffective diagrammatic
languages for representing dependability arguments. After all, it is clear that ultimate
responsibility for acceptance or rejection of any dependability argument will always
rest with a human agent or agency. As such, it is both in our interests and within our
responsibility to ensure that such agents are presented with the most comprehensive,
comprehensible and accessible representations of dependability arguments that it is
within our power to provide.

References

[1] C Gurr. Argument representation for dependable computer-based systems.Infor-
mal Logic, 22(3):293–321, 2002.

[2] C Gurr. Computational diagrammatics: diagrams and structure. In D Besnard,
C Gacek, and C.B. Jones, editors,Structure for Dependability: Computer-Based
Systems from an Interdisciplinary Perspective, pages 143–168. Springer, 2005.

[3] C Gurr, J Lee, and K Stenning. Theories of diagrammatic reasoning: distinguishing
component problems.Mind and Machines, 8(4):533–557, December 1998.

[4] C A Gurr. Effective diagrammatic communication: Syntactic, semantic and prag-
matic issues.Journal of Visual Languages and Computing, 10(4):317–342, August
1999.

108

[5] R E Horn. Visual Language: Global Communication for the 21st Century.
MacroVU Press, Bainbridge Island, WA, 1998.

[6] E R Tufte. The Visual Display of Quantitative Information. Graphics Press,
Cheshire CT, 1983.

[7] E R Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

[8] D Walton. Informal Logic. Cambridge University Press, New York, 1989.

109

