Visualizing a Logic of Dependability Arguments

C Gurr
School of Systems Engineering
The University of Reading
Reading, UK
Email: C. A. Gurr @ eadi ng. ac. uk

Abstract

This paper offers general guidelines for the developmergfigctivevisual
languages. That is, languages for constructing diagraatscdn be easily and
readily interpreted and manipulated by the human readeud&@éhese guidelines
first to examine classical AND/OR trees as a representafitog@al proofs, and
second to design and evaluate a visual language for repirg@noofs inLofA: a
Logic of Dependability Arguments, for which we provide adfrmotivation and

overview.

1 Introduction

Throughout the histories of both mathematics and engingediagrams have been
used to model and reason about systems, whether physicahoeptual — such as
logic. Both historical and more recent work in this area haemrise to a plethora of
diagrammatic languages, often based upon a simple coredgeg such as “graphs”
consisting of nodes with edges linking them. Graphs havadvantage of a very sim-
ple syntax and thus are easy to read (modulo good layoutgrgetather inexpressive
and so, like many diagrammatic languages, are typicallgrede¢d and embellished sig-
nificantly. Such extensions often risk swamping the sinifyliaf the underlying graphs
with overloaded symbolism and a confusion of textual antimmrta (for example, Fig. 1
versus Fig. 2). Ideally we would wish to know how, and how e, might extend such
attractively simple languages without losing their “satie”. That is, their ability to be
easily and correctly interpreted and manipulated by thedruraader.

Assessing the salience of diagrams requires a theory ofatiapatic languages
that explains how meaning can be attached to the componfemtanguage both natu-
rally (by exploiting intrinsic graphical properties) anttuitively (taking consideration
of human cognition). The outlines of such a theory, constadiby analogy to theo-
ries of natural languages as studied in computational igtigs, were first introduced
in [3, 4] and later drawn upon to offer guidelines for designmaximally salient dia-
grams and diagrammatic languages in [2]. This approactetitComputational Di-
agrammatics’, separates and clarifies issues of diagram morphologyasys¢man-
tics, pragmatics etc, facilitating the design of diagrartimlanguages that maximise
expressiveness without sacrificing readability.

1The author is indebted to Professor Michael A. Gilbert fastfproposing this term.

97

Account Entry
entries
inherits from
Summary Account Detail Account
Order line item Order line interface Order input
Figure 1: Simple UML Class diagram
{balance = sum of amounts of entries}
Account entri N Entry
lentries
components /balance:Money [~ - " """ - """ - - - -~~~ => amount : Money
dispatch()
,7 close()
<<a|ternativefi>?>> prepare()
Summary Account Detail Account
0.1 N 1.x
Order N Datalnput N
1 Order line |— @~ - -| Order input

Product fine item

due : Date

—o

amount : number

Figure 2: Enhanced UML Class diagram

98

There are typically many means by which a diagram, or diagratit language,
may capture structure in a diagram. Naturally, when des@mainew diagram or new
diagrammatic language we would wish to determine which efdptions available
would be the most effective means of matching structure tdesd. That is, ensuring
that the inherent structure in a diagram closely matchafties semantic interpreta-
tion in a manner which is readily accessible to the reader.

This paper presents an overview of the visual language dlgsiglelines proposed
in [2] and an original analysis of the classical represéomadf logical AND/OR trees
in the light of these guidelines, highlighting two signifitdassues. In Section 3 we
present a specialised logic of argumentation first intredio [1]. In section 4 we il-
lustrate the application of our guidelines by developing@aginal visual representation
language for this logic and discuss broader implication§diodeveloping effective vi-
sualisations of more general logical arguments/proofs.

2 Effectiveness of Visual Representations

We may describe the syntactic components of a visual largaageing comprised of
basic graphical primitives and compound shapes. Grappioglerties may be applied
to the primitives. A part of what gives visual languagesttpeiwer is the ability of: (i)
categorizations of certain primitives, and (ii) the gragathproperties; to carry semantic
information.

Basic graphical primitives are shapes and lines. Compouaghical objects can
be constructed from these primitives, two notable compalrapes being arrowed-
lines (composed of a line and a shape — the arrow-head — af eitldl) and bordered
shapes (composed of a shape and a line which traces the bgufidaat shape). The
latter type compound graphical object permits us to comsidapes with, for example,
thick, textured and/or coloured borders.

2.1 Propertiesof Graphical Primitives

The primary properties of graphical objects, a variatiothaft suggested in [5], are:
value (e.g. greyscale shading); orientation; texture. (patterns); colour; and size.
These are applied to lines and shapes as in Table 1. Exanthsg properties, we

| | Valu | Orie | Text | Colo | Size |
Line | Iim v Vv v
Shape | v v vV |V

Table 1: Properties of Graphical Objects

note thatvalueandtextureare not clearly distinguishable when applied to lines. kine
may be of variable weight (e.g. dotted, dashed or solid) winie deem to bealue
However, texture may only be applied if all lines are of sfigaint width, in which case
they should be considered as shapes rather than lines. \&lemizeapplied to lines
primarily to indicate their width, although we note that iaynalso be applied to their
length. Finally, orientation is a property over which soraeecmust be taken. Certain
tokens deemed of different shapes are in fact the same shapdifferent orientation,
for example squares and diamonds.

We make the following observations of the characteristf¢th@se properties:

99

Value (greyscale shading) is discrete and ordered. For lines wsider value to
equate to dotted, dashed or solid; and thus its use is sonhéwiitad (“lim”).
For shapes we note that the combination of (any pair of) yaéxéure and colour
is non-trivial.

Orientation is continuous and ordered. As noted above, some care mustdrewith
orientation and its usage should be minimal for points.

Texture is discrete and nominal (non-ordered).

Colour in theory, the colour spectrum is continuous and orderedvéyer, this is not
intuitive in human perception. Hence, as graphic desigaeraware, colour is
best used as set of easily discernible values which areherpreted as discrete
and nominal.

Size is continuous and ordered. However, in many cases — patlgdior lines, where
size=thickness — the most perceptually effective use @f isiavith some small
number (typically 3-7) of discrete, easily discriminabdues. Furthermore, we
consider here that points have only a minimal (“min”) vddatin size, as too
great a variation would suggest that they are shapes réthepoints.

2.2 Guid€dinesfor Visual Language Design

An effective visual representation is one in which the dabicontent is readily ac-
cessible to the reader and in which desired reasoning taskssassimple and straight-
forward as possible. As indicated above, a significant beagfrisual languages is
that elements of their syntax can intrinsically carry setitanformation. Hence we
may define a visual language thatisll-matchegdmeaning that its syntax is defined to
maximise the desired semantic information that it carfémswyever, there are a variety
of elements of visual language design, over and above thexsywhich may convey
semantic information. A summary of these, and a set of guidgls introduced in [2]
as follows:

1. Morphology astypes: define a clear partitioning of basic diagram shapes into
meaningful, and readily apparent, categories accordisgeantic type.

2. Properties of graphical elements. utilise graphical properties such as colour,
size and texture to further partition diagram elements atoore refined type
structure.

3. Matching semantics to syntax: select diagrammatic relations to represent se-
mantic relations for which they have matching intrinsicgedies.

4. Extrinsicimposition of structure: Impose constraints, or add enhancements or
augmentations, to account for those cases where no diréchimg of syntactic
and semantic elements can be found. However, do this withtoagnsure that
salience is not unacceptably diminished.

5. Pragmatics for diagrams. Utilise, and allow diagram developers the freedom
to utilise, any and all as yet unused diagrammatic morphglpmperties and
syntax to embody further structure in diagrams.

100

Clearly, there will often be cases where a choice of optiotist éor matching the
semantics of a language. Furthermore, certain choicesillict with others; as with
the combination of any pair of colour, texture and valuedatitd earlier. To assist in
resolving some of these choices, when constructing a viggpaesentation (or, more
generally, a visual language) that we wish to be effectiveepwist consider:

1. The audience: who are the intend readers/users of the diagram? In paatjcul
are they commonly from some domain with existing visual lzages and hence
have prior conceptions of the meanings of certain symbotttwer elements of
diagrammatic syntax?

2. Thetask: what content needs to be identified in a diagram, and whabnéag
tasks is the diagram intended to support?

Note however, that as certain graphical properties andisjintrelations may inter-
fere, often a balance or trade-off is required when selgttia most appropriate syntac-
tic match for some semantic aspect. Experience in grapsigaé€e.g [6, 7]) suggests
a rule of thumb thataskconcerns outweighemanticoncerns; that is — where a trade-
off is required, the preference should be whichever optigapsrts greater salience of
task-specific features. For example, in certain electronilogical circuit diagrams
it is often considered acceptable to duplicate the reptaen of some node if this
improves the layout by reducing the complexity and/or nundfeonnections to that
node. In this case a semantic consideration — that each sad@quely represented
in the diagram — is over-ridden by the desire to simplify tasktof identifying and
tracking connections.

Finally we note that typically, for any non-trivial semantiomain and intended
tasks, not all information may be captured directly throdiggram syntax. Conse-
guently the use ofabelling languagedor labels which may potentially contain sig-
nificant semantic information is necessary for most prattiagrammatic languages.
However, in an effort to increase the expressiveness, thanaipled use of sophisti-
cated labelling languages can perturb the directness ag@atnmatic language. Ex-
amples are legion of languages which are diagrammatic &, &t have had their
expressiveness so enhanced through sophisticated fepkalfiguages that any benefit
to readers’ interpretation of the “diagrammatic aspecsidgated. Hence we issue the
warning: treat labels with care.

2.3 Issuesin Visualising L ogical Proof

To illustrate issues raised through the application of theva guidelines in the visu-
alisation of logic, consider a typical AND/OR tree for vis§igang a logical proof, such
as the example of Figure 3 which represents the proof treghéopropositiorA in the
propositional theory:

A<= BVC.

B<DAE.

C<FVG.

D < True, E < True, F <= True,G < True.

Note that for brevity the tree has been simplified by omittimgTrue leaf nodes.

With respect to the above guidelines for effective visuabizage design, there are
two notable issues with this classical representation.fifigs that the significant se-
mantic distinction between AND and OR nodes in the tree isasgnted only with the
relatively minor syntactic distinction of having a horizahbar across the lines leading

101

I N

AN
N

2V

Figure 4: Disjunctive Proofs

to the children of an AND node — as with thi¢ A E' node in Figure 3. The second
issue becomes apparent when considering the task of idiegtihe propositions that
are active in any particular proof of the propositidn

There are, in fact, three alternative proofs of the propmsift wrt the above theory.
Visual languages are notably highly specific and generallgat lend themselves nat-
urally to displaying such disjunctive information. Typllgave have two options when
displaying disjunction, either (i) we display multiple drams, one for each disjunct
(as in Figure 4); or (ii) we introduce some new part of the tiotawhich represents
a semantiabstractionover the disjunctive information. As an example of this lat-
ter form, we might for example introduce a system of colouwtings — where each
disjunct is assigned a distinctive colour and each node aadch may be assigned
multiple colours as appropriate. However, such an approdobduces further issues
that make it undesirable for our purposes here.

In the example of Figure 4 we have chosen to represent disjeriaformation (the
alternative proofs) with multiple instances of the tree igitffe 3, each representing one

102

of the proofs. To assist the task of identifying which praposs are active in a single
proof, we have used botlalue— that is, greyscale shading — to highlight the relevant
nodes; angize— that is, thickness of line — to highlight the relevant bfzesin the
trees.

3 LofA: A Logic of (Dependability) Arguments

Many classes of highly dependable systems, both compatseband otherwise, are
required to construct an argument to satisfy some, typiéatlependent, third party

that the system achieves some minimum specification or atdndeasure of depend-
ability. That is, an argument that the system can be juskfisdid to meet some spec-
ified level of — for example — security, reliability, quality safety. A system devel-

oper’s motivation for providing a dependability argumergynbe the desire to attain
some internationally recognised quality standard for anass, a process or a prod-
uct. Alternatively, as is often the case with safety- andiggcrelated systems, there
may be a mandatory regulatory requirement both to attainesspecified standard,

and to provide a dependability argument that argues thefoatiee attainment of that

standard.

The logic LofA: A Logic of Argumentsintroduced in [1], was developed to as-
sist in the representation, evaluation and negotiationepeddability arguments. At
heart,LofA is a relatively simple propositional logic using a Horn Glauepresenta-
tion, which is augmented with a number of non-logical watsgderived from ideas in
the Philosophy of Argumentation [8]) and an extensible §&tature values. An argu-
ment is a proof inLofA. Two key non-logical warrants are: (i) Argument by Authgrit
and (ii) Multi-Legged Argument. The most notable featurdahihcan be utilised in a
LofA theory is an expression @bnfidencen the argument. Typically, one imagines
the author of an argument will assign confidence values tesigence (leaf-nodes in
a proof) and the confidence of a parent node in the argurhef proof) is automat-
ically derived from its children. Further available feasrinclude temporal and nu-
merical values (resulting in relatively simple proposi@btemporal and many-valued
logics respectively) and also completeness values (usefulepresenting partially-
constructed arguments).

The full expressiveness abfA was first introduced in [1]. However, for the pur-
poses of this exposition we shall consider only the simplastant of the language,
denoted_ofA”, in which propositional, definite Horn Clauses are suppleied with
the above two non-logical warrants and the single featardidenceFor convenience
we represent a propositional atofrand its associated confidence vaiu@ numerical
value in the range 0-1) as the unary predicate att). Thus aLofA° theory is a
collection of clauses of the formd < B; A ... A B,, whereA is a unary predicate
atom, as above, which we refer to as teadof an argument, and each B, ..., B,
is awarrant. A warrant is any one of:

1. Aunary predicate atom, such B¢c)

2. Auth(s,e,c): representing an ‘Argument by Authority’, whesds an authori-
tative statement by (presumed) experandc its confidence.

3. Multi(L): representing a ‘Multi-Legged Argument’, whefeis a list
My, ..., M, of warrants, supposedly offering alternative warrantgtierpropo-
sition which this multi-legged argument itself warranta (iofA° these sub-

103

warrants are simply assumed to be independent, while mptestcated vari-
ants ofLofAinsist on a supplementary argument to justify some meakudab
gree of independence of the sub-warrants).

4. Ev(P,c): Anitem of evidence, wher® is the predicate name of an atom repre-
senting some piece of evidence used to warrant an argunnehtftae associated
confidence value of this evidence.

Clearly, leaf nodes in &ofA” argument are eithekuth nodes oEv nodes. The latter
“Evidence” form of warrant is, in fact, a simple syntactiogan Rather than have
evidence (i.e. an item that needs no further warrant) reptesd as:

P(C) < true —whereC' is some constant
we have replaced, in the body of each clause, each occuroétive atompP (x) with
the warrantEv(P, C). Thatis, we have simplified the clauses by application ofiglsi
resolution step.

The confidence value of propositighin a claused <= By A...AB, iS¢y *. . .%Cp,

wherecy, .. ., ¢, are the confidence valuesBi, . . ., B, respectively. The confidence
valuec, of a multi-legged argument of leg¥/y, ..., M, with confidence values of
ly,...,l, respectively, is defined recursively@s= c¢;_1 + (1 — ¢;—1) *[; andcy = 0.

For example, a multi-legged argument with three legs hav@spective confidence
values).5, 0.8 and0.6, will have derived confidence vale5 + (1 — 0.5) * 0.8 + (1 —
(0.54 (1 —0.5) % 0.8)) % 0.6 = 0.5 + 0.4 + 0.06 = 0.96.

To illustrate the above, consider the following argumeiatt ttofA is a valuable
argumentation tool:

LofA is a valuable argumentation tool, as it is: (i) a relativeins
ple language; (ii) sufficiently expressive for the repreatan of depend-
ability arguments; and (iii) has also shown itself to be “€it purpose”.
Proposition (i) we consider self-evident; proposition iiasserted as be-
ing true by the author; while proposition (iii) is justifiecthn by the fact
that a range of key dependability arguments have alreadyfepeesented
in LofA, and by the fact thdtofA has proved an effective educational tool
in the teaching of dependability argumentation.

Simplifying the above propositions for brevity, and igmariconfidence values for the
moment, we may encode thesd.iofA° as the following three clauses:

LofAvaluable<= Ev(Simplg A SufficientA Fit_for_purpose
Sufficient= Auth(“l say so”, ‘C Gurr’).
Fit_for_purpose<=
Multi([Ev(Representedtey argument$, Fv(Effectiveteachingtool)]).

Suppose that we assert confidence values for the evidencaudimority warrants
as follows: Simple= 1, “I say so” = 0.9, Represente#tey arguments= 0.5, Effec-
tive_teachingtool = 0.8; Then the derived confidence values of intermediarp@st
tions will be: Sufficient 0.9, Fit_for_purpose= 0.5 + (1-0.5)*0.8=0.5+0.4=0.9 and
the derived confidence value fobofA valuableis 1*0.9*0.9 = 0.81.

4 Visualizing LofA Arguments

In Section 2.3 we noted two issues with the classical reptasen of AND/OR proof
trees: (i) that the visual distinction between AND/OR nodes too weak; and (ii)

104

LofA_valuable

Multi
(Simple) Sufficient Fit forJ)urpose

Auth

"| say 0" Represented Effective teachlng
_key args _tool

Figure 5:Lofa Argument Tree

that disjunctive proofs could not be represented in a simiglgalisation without intro-
ducing extra syntactic abstractions. Adopting the gurdsdifor visual language design
summarised earlier, we have addressed these two issues vistralisation oil_ofA
arguments, as illustrated by Figure 5, as follows.

Firstly, to make clear the categorical distinction betwd#fering node types, we
adopt the convention of using categorically different neldapego clearly distinguish
the types. Hence, leaf nodes (Evidence and Authority natesjepicted as boxes with
rounded corners, while non-leaf nodes (AND nodes and Muoliies) are depicted by
boxes with square corners. Furthermore, non-logical wasréAuthority and Multi
nodes) are depicted as a compound shape, consisting of ginepaiate box with a
named box inset in the top-right corner. Finally, where aebds multiple children,
the top of the branches leading to the children are clealigllad with one of two
shapes depending on whether they are an AND node or a Mulé adte latter be-
ing, effectively, a variant of a logical OR node. These twoelling AND- and OR-
shapes are adopted from the classic representation ofadeupivnodes in logical cir-
cuits. These have been chosen specifically to match the ddmawledge of the most
likely readers ofLofA arguments, who are typically familiar with this specific rep
sentation of AND and OR nodes from either logical or eleafr@rcuits, or Fault Tree
Diagrams, each of which are common in the assessment offtdgpkendable systems.
Note also the somewhat more subtle variation in the reptaen of branches be-
tween AND and Multi nodes, that branches below AND nodes saevad as (angled)
straight lines with no bends, in contrast to those below Muddes. Thus we have
usedorientationto some effect here. In addition, for both AND and Multi nodles
branches below such nodes issue from a single point— andbseguently split in the
case of Multi nodes — rather than issuing from multiple poag is permitted in logical
circuit diagrams. This is a further subtle, yet deliberatdicator of the equally subtle
point that the validity — as opposed to the confidence — of theraent represented by
an AND or Multi node is equally dependent upon the validiteath of its children.

The second issue raised with AND/OR trees — that disjunetigegments cannot
be readily represented in a single diagram — is avoided mwisiualisation ofLofA
arguments through the simple fact that such disjunctiveraemnts (where only a subset
of propositions contribute to a given proof) do not arise@fiA. TheLofAequivalent of

105

LofA_valuable

Multi
Sufficient Fit_for _purpose

Auth
"| say 0" Represent Effective teachlng
_key args _tool

Figure 6: Visually annotateldofa Argument Tree

the OR node is the Multi node, where sub-warrants each offattarnative argument
forthe node, yet these are considered esliectiveeffort to increase confidence, rather
than independent alternative justifications.

Having constructed this visual language fafA, we may next explore how any
currently unused graphical attributes — notably propstieplied to graphical primi-
tives — may be used to enhance the language wrt making céaiskis especially easy
to perform. For example, consider the confidence valuesesigd above for our illus-
trative LofA argument. An assessor of this argument would wish to be abieadily
identify both (i) what confidence is derived for the top-lesegument, and (ii) how
do subsidiary nodes contribute to this derived value? We male such information
readily visible in our language through application of ap@ypriate graphical property
to the nodes. For example, usiaglue(greyscale shading), where darker nodes indi-
cate greater confidence, we may visually annotate the angiuoh&igure 5 to produce
that of Figure 6. The choice of value to represent confidemé&ggure 6 is appropriate
as the primary semantic characteristics of confidenceiftisatiscrete and ordered) are
well-matched by our choice of graphical property to repnése Thus, for example,
identifying which nodes in the argument of Figure 6 have tnear lesser confidence
is an almost immediate process for the reader. Having matte auepresentational
choice, however, constrains our further choices should vgh ¥o extend the visual
language.

Consider, for example, the feature odmpletenessith which we may extend
LofA’. In its simplest form, completeness is a binary value (cetegincomplete)
applied to any leaf node in an argument. All leaf nodes in gument are incom-
plete until determined to be complete by the argument’sidpes. A non-leaf node is
complete iff all of its children are complete. This permitg targument developer to
construct goartial argument. That is, one for which the structure of the argurizen
known, but for which not all evidence has been fully asseohbled/or assessed. Ex-
tending the above illustrativieofA° argument, we could assert that the evidence node
Representetteyargumentsis currently incomplete, and hence that its parent Multi
node and the top-level argument are similarly incomplete.

We have a number of means available to add such completeriessiation into
the argument representation of Figure 6 with a well-matchisdal representation.

106

LOFA valtiable

7 >————>—(Multi
Sufficient Eit’_fgrjnyrpoee’)

Auth
"| say SO Represent Effective teachlng
key args _tool

Figure 7: Further annotateéafa Argument Tree

We might adopt a categorical colour coding, such as greendoplete and red for
incomplete. However, this choice may be problemmatic, abave noted. Not least
because colour can interfere with value, which we have djremsed, but there are
also issues with the accessibility of colour to the humadeea both due to printing
issues (this article is intended to be able to be reprodutddack and white) and
concerns that not all human readers can discern all col@ioasequently we choose
instead to adopexture(that is, patterning) in nodes to representincompletereske
argumenttree of Figure 7 a valueinEompletdor a node is indicated through a dashed
patterning of the relevant node. Hence itis an easy mattéhéareader to identify both
which evidence nodes are incomplete, and how this impagt@njcompleteness of the
remainder of the argument.

Finally, we consider briefly what further annotations cob&imade to argument
trees such as that of Figure 7. We have applied no graphiopkpties to the branch-
lines connecting nodes (other than limited use of orientdfiso colour or size could
be applied meaningfully there. Clearly, the use of colourddes also is a possibility —
although as mentioned above this could only be used in oestiiations and with the
greatest of care. Making the orientation of nodes semdlticeeaningful would not
seem wise, although we might make their size meaningful. édew care would be
needed here also as employing significant variations incfin®de would likely lead
to issues with layout. Were the nodes to be considered contpshapes consisting of
both the shaped node and its bordering line, we might apptiiduvisual annotations
to these borders — potentially both colour and size (thiskhe which would again
permit us to represent further, well-matched, propertiea visually salient manner.
Only last of all should we consider additgxtualannotations to this representation;
for example if we wished to depict the absolute (numericalifidence values and not
merely their relative values as currently displayed. A®dgireviously, adding increas-
ingly semantically sophisticated textual labels is a vergreg temptation to all visual
language designers, but one which can very rapidly negatithinsic advantages of
avisualrepresentation.

107

5 Conclusions and Future Work

The study of dependability argumentation is both a rich ameresting area. Depend-
ability arguments are often complex in nature, combinirgpdrate forms and sources
of evidence in detailed arguments, which must then be readelay, and negotiated
with, a broad audience exhibiting diverse competenciesraacests. The issue op-
resentingdependability arguments is a pressing one, and currenbappes — while
often expressive — generally lack sufficient semantics pthi provide the necessary
support for the analysis and evaluation of arguments.

Adopting a formal approach to representing dependabilgyments has many ad-
vantages, most notably in the precision and exactness ticatan approach brings
to questions of the meaning and validity of an argument. Hewneiven the relative
sophistication and detail contained in a typical deperiatzirgument, the expres-
siveness required of any language for representing suchremgts goes significantly
beyond what typical formal logics presently offer. Ongoingrk in reviewing practical
dependability arguments illustrates what is required cf@esentation for it both to
be sufficiently expressive, and to support the variety ofuatéons and manipulations
demanded in dependability domains. Studies of the repratsamof dependability ar-
guments have much to learn from philosophical studentsgfraentation theory, an
illustrative example being issues of validity and plaugipivith regard to appeals to
authority — a major aspect of many dependability cases.

Diagrams and new diagrammatic languages are frequergly ag being “natural”
and “intuitive” notations, permitting “easy” and “accuedtommunication of complex
structures and concepts. Indeed, such claims have beeiyrepglied to the many
graph-based notations popular in dependability arguntientaHowever, the veracity
of these claims is seldom tested and often the design of saghasnmatic languages
follows no clear or obvious principles of usability, readiéypor effectiveness for the
human user. We intend to continue to develop and evaluateffaative diagrammatic
languages for representing dependability argumentsr Afteit is clear that ultimate
responsibility for acceptance or rejection of any depeiitialargument will always
rest with a human agent or agency. As such, it is both in oer@sts and within our
responsibility to ensure that such agents are presentédtétmost comprehensive,
comprehensible and accessible representations of depiétydarguments that it is
within our power to provide.

References

[1] C Gurr. Argument representation for dependable compodsed systemdnfor-
mal Logig 22(3):293-321, 2002.

[2] C Gurr. Computational diagrammatics: diagrams andcstine. In D Besnard,
C Gacek, and C.B. Jones, edito8tructure for Dependability: Computer-Based
Systems from an Interdisciplinary Perspectipages 143-168. Springer, 2005.

[3] CGurr,JLee, and K Stenning. Theories of diagrammatsoaing: distinguishing
component problemdviind and Machines3(4):533-557, December 1998.

[4] C A Gurr. Effective diagrammatic communication: Syrttacsemantic and prag-
matic issuesJournal of Visual Languages and Computia§(4):317-342, August
1999.

108

[5] R E Horn. Visual Language: Global Communication for the 21st Century
MacroVU Press, Bainbridge Island, WA, 1998.

[6] E R Tufte. The Visual Display of Quantitative InformationGraphics Press,
Cheshire CT, 1983.

[7] E R Tufte. Envisioning InformationGraphics Press, Cheshire, CT, 1990.
[8] D Walton. Informal Logic Cambridge University Press, New York, 1989.

109

