
Reasoning with Large Data Sets

Darko Anicic

Digital Enterprise Research Institute (DERI), University of Innsbruck, Austria
darko.anicic@deri.org

Abstract. Efficient reasoning is a critical factor for successful Semantic
Web applications. In this context, applications may require vast volumes
of data to be processed in a short time. We develop novel reasoning tech-
niques which will extend current reasoning methods as well as existing
database technologies in order to enable large scale reasoning. We pro-
pose advances and key design principles primarily in: making an efficient
query execution plan as well as in memory, storage and recovery man-
agement. Our study is being implemented in Integrated Rule Inference
System (IRIS) - a reasoner for Web Service Modeling Language.

1 Problem Statement

The Web Service Modeling Language WSML1 is a language framework for de-
scribing various aspects related to Semantic Web (SW) services. We are develop-
ing IRIS2 to serve as a WSML reasoner which handles large workload efficiently.

Current inference systems exploit reasoner methods developed rather for
small knowledge bases [2]. These systems3, although utilize mature and efficient
relational database management systems (RDBMSs) and exploit a number of
their evaluation strategies (e.g., query planning, caching, buffering etc.), cannot
meet requirements for reasoning in complex SW applications. Reason for this
is found in the fact that database techniques are rather developed for explicitly
represented data, and need to be extended for dealing with implicit knowledge.

In this work we investigate a framework which generalizes relational databases
by adding deductive capabilities to them. RDBMSs suffer some limitations w.r.t
the expressivity of their language. Full support for recursive views is one of them
[3]. Further on, negation as failure is recognized as a very important nonmono-
tonic property for the Semantic Web. RDBMSs, although deal with negation
as failure, can not select a minimal fixpoint that reflects the intended meaning
in situations where the minimal fixpoint may not be unique. Our framework,
although exceeding capabilities of RDBMSs, does not compromise their perfor-
mance.

Current reasoners cannot cope with large data sets (i.e., relations larger than
system main memory). Hence a reasoner needs to deal effectively with portions of

1 WSML: http://www.wsmo.org/TR/d16/d16.1/v0.2/.
2 IRIS: http://sourceforge.net/projects/iris-reasoner/.
3 Reasoners which utilize persistant storage: KAON2, Aditi, InstanceStore, DLDB.



relations (possible distributed over many machines), and sophisticated strategies
for partition-level relation management are required. Consequently, a relevant
topic for our present and future work is: The development of effective optimiza-
tion algorithms as well as distribution and memory management strategies for
reasoning with large data sets.

2 Efficient Large Scale Reasoning: an Approach

We will now give a short overview of our approach to achieving effective reasoning
with large data sets.

Unlike other inference systems4, which utilize SQL to access existential rela-
tions, we tightly integrate IRIS with its storage layer (i.e., rules are translated
into relational algebra expressions and SQL is avoided as an unnecessary over-
head). We extend embedded RDBMS query optimizer (which is rather designed
to be used for extensional data) for derived relations. The estimation of the size
and evaluation cost of the intensional predicates will be based on the adaptive
sampling method [4, 1], while the extensional data will be estimated using a
graph-based synopses of data sets similarly as in [5]. Further on, for reasoning
with large relations, run time memory overflow may occur. Therefore in IRIS
we are developing novel techniques for a selective pushing of currently processed
tuples to disk. This technique will be further extended for data distributed over
many disks (e.g., a cluster of machines). Such techniques aim to enable IRIS to
effectively handle large workload which cannot fit in main memory of the system.

Our framework comprises a recovery manager and thus features fault-tolerant
architecture. Using logging and replications we ensure that, when a crash occurs,
the system may continue with an ongoing operation without loss of previously
computed results.

3 Acknowledgment

I am grateful to Michael Kifer and my supervisors: Stijn Heymans and Dieter
Fensel for their help in the work conceptualization and insightful discussions.

References

1. M. E. Vidal E. Ruckhaus and E. Ruiz. Query evaluation and optimization in the
semantic web. In ALPSWS2006 Workshop, Washington, USA.

2. Dieter Fensel and Frank van Harmelen. Unifying reasoning and search to web scale.
IEEE INTERNET COMPUTING, page 3, 2 2007.

3. Michael Kifer, Arthur Bernstein, and Philip M. Lewis. Database Systems: An Ap-
plication Oriented Approach. Addison-Wesley, Boston, MA, USA, 2005.

4. R. J. Lipton and J. F. Naughton. Query size estimation by adaptive sampling. In
PODS ’90, NY, USA.

5. J. Spiegel and N. Polyzotis. Graph-based synopses for relational selectivity estima-
tion. In SIGMOD ’06, NY, USA.

4 KAON2, QUONTO, InstanceStore and DLDB exploit SQL for querying.


