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Processing Relational OLAP Queries with UB-Trees and 
Multidimensional Hierarchical Clustering 

 

 
 

 
 

Abstract 
 
Multidimensional access methods like the UB-
Tree can be used to accelerate almost any query 
processing operation, if proper query processing 
algorithms are used: Relational queries or SQL 
queries consist of restrictions, projections, 
ordering, grouping and aggregation, and join 
operations. In the presence of multidimensional 
restrictions or sorting, multidimensional range 
query or Tetris algorithms efficiently process 
these operations. In addition, these algorithms 
also efficiently support queries that generate 
some hierarchical restrictions (for instance by 
following 1:n foreign key relationships). In this 
paper we investigate the impacts on query 
processing in RDBMS when using UB-Trees and 
multidimensional hierarchical clustering for 
physical data organization. We illustrate the 
benefits by performance measurements of 
queries for a star schema from a real world 
application of a SAP business information 
warehouse. The performance results reported in 
this paper were measured with our prototype 
implementation of UB-Trees on top of Oracle 8. 
We compare the performance of UB-Trees to 
native query processing techniques of Oracle, 
namely access via an index organized table, 
which essentially stores a relation in a clustered 
B*-Tree, and access via a full table scan of an 
entire relation. In addition we measure the 
performance of the intersection of multiple 
bitmap indexes to answer multidimensional 
range queries. 

1   Introduction 
The most established relational data models for data 
warehousing applications are the star schema and the 
snowflake schema. In both approaches there is a central 
fact table that contains the measures and the dimension 
tables are situated around it. The connection between a 
fact tuple and the corresponding dimension members is 
realized via foreign key relationships. In the star schema 
the dimension tables are completely denormalized while 
in the snowflake schema they may be normalized. Que-
ries usually contain restrictions on multiple dimension 
tables (e.g., only sales for specific customer group and for 
a specific time period are asked) that are then used as 
restrictions on the usually very large fact table.  
In this paper we investigate, how UB-Trees and the Tet-
ris algorithm in combination with our technique of mul-
tidimensional hierarchical clustering by hierarchy inter-
leaving (MHC/HI) may be used to accelerate relational 
query processing with a special focus on star-joins, the 
most frequent operation of query processing for relational 
data warehouses. With our technique of MHC/HI we spe-
cifically cluster the data with respect to the foreign key 
relationships defined by the star- or snowflake schema of 
a data warehouse. We also illustrate the physical data 
modeling with MHC/HI for a SAP business information 
warehouse and give a performance analysis for this real-
world application. Our performance analysis gives in-
sight into the real world data distribution of 6 GB of sales 
data from a fruit juice company and shows, why MHC/HI 
in combination with UB-Trees is superior to classical 
bitmap indexes, clustering B*-Trees and parallel full 
table scans. 
Our paper is organized as follows: Section 2 surveys re-
lated work, in Section 3 we present the basic concepts of 
UB-Trees, their algorithms and MHC/HI. Section 4 pre-
sents the SAP business warehouse schema that we use for 
our analysis. In Section 5 we analyze the data distribu-
tion of the real world data. Section 6 gives a performance 
analysis and performance measurements with our proto-
type implementation. Section 7 concludes our paper and 
gives an outlook on future work. 
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2   Related Work 
Performance optimization has been well studied in the 
field of OLTP systems [Gra93]. Due to the completely 
different query characteristics of OLAP applications in 
comparison to OLTP new questions have to be addressed 
here. The performance problem is heavily linked to the 
physical data model.  
The index selection problem for ROLAP application is 
widely discussed in the research community [GHR+97, 
Sar97]. Especially bitmap indexes have been proposed to 
speed up ROLAP applications because of their compact-
ness and support of star joins [CI98]. A common way of 
performance improvement is the usage of materialized 
views - often in combination with indexing methods 
[TS97, Moe98, WB98]. Due to the large number of pos-
sible views a selection problem exists besides the mainte-
nance issue [Gup97, SDN+96, SDN+98]. Clustering of 
OLAP data plays a key role in providing good perform-
ance. Clustering has been well researched in the field of 
access methods. B-Trees, for instance, provide one-di-
mensional clustering. Multidimensional clustering has 
been discussed in the field of multidimensional access 
methods. See [GG97] and [Sam90] for excellent surveys 
of almost all of these methods. [ZSL98] addresses the 
issue of hierarchical clustering for the one-dimensional 
case.  
Most work on applying multidimensional indexes to 
RDBMS discusses restrictions by range queries [SRF97, 
NHS84, Gut84, OM84, LS90]. [JL98] accelerates range 
queries with aggregations by storing aggregated data in 
R-Trees. [MRB99] and [Bay97b] are the basis of our ap-
proach, where joins and sorted processing of data organ-
ized by a multidimensional index are investigated. 

3   The UB-Tree 
The basic idea of the UB-Tree [Bay97a, Mar99] is to use 
a space-filling curve to partition a multidimensional uni-
verse. Using the Z-Curve (Figure 1a) the UB-Tree pre-
serves the multidimensional clustering. A Z-Address α = 
Z(x) is the ordinal number of the key attributes of a tuple 
x on the Z-Curve, which can be efficiently computed by 
bit-interleaving [OM84]. A standard B-Tree is used to 
index the tuples taking the linear Z-Address of the tuples 
as keys. 
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(a) (b)  
Figure 1: Z-curve and Z-addresses 

The fundamental innovation of UB-Trees is the concept 
of Z-Regions to create a disjunctive partitioning of the 
multidimensional space. This allows for very efficient 
processing of multidimensional range queries [Mar99]. A 

Z-Region [α : β ] is the space covered by an interval on 
the Z-Curve and is defined by two Z-Addresses α and β. 
We call β the region address of [α : β ].Each Z-Region 
maps exactly onto one page on secondary storage, i.e., to 
one leaf page of the B-Tree. 

(a) (b) (c)  
Figure 2: Z-regions 

For an 8×8 universe, i.e., s = 3 and d = 2, Figure1b 
shows the corresponding Z-addresses. Figure2a shows 
the Z-region [4: 20] and Figure2b shows a partitioning 
with five Z-regions [0 : 3], [4 : 20], [21: 35], [36 : 47] 
and [48 : 63]. Assuming a page capacity of 2 points, 
Figure2c shows ten points, which create the partitioning 
of Figure2b. The details of the UB-Tree algorithms are 
described in [Bay97a, Mar99]. 

3.1  Bit Interleaving 

The performance of the UB-Tree crucially relies on an 
efficient implementation of the Z-address calculation. For 
tuples of positive integer numbers, bit interleaving im-
mediately yields an algorithm to calculate a Z-address 
from the binary representation of a tuple. 
It is easy to incorporate varying attribute lengths, i.e., 
attributes with different resolutions, into this algorithm: 
When the limit of the resolution (i.e., the last bit) in one 
attribute is reached, this attribute is not used for bit-in-
terleaving any further. The number of bits in each further 
step is reduced in this case. 
For each attribute Ai we denote the number of distinct 
values of its domain by ri, i.e., ri = |Ai| 
Definition 1: The number of steps for attribute Ai of a 
domain with cardinality1 ri is determined by its resolu-
tion:  steps(i) = log2ri 

Definition 2: The length of step k in bits (i.e., the num-
ber of dimensions in step k) is:  
           steplength(k) = |i | steps(i) ≥ k and i ∈ D}| 

Figure 3 shows this generalized algorithm for bit inter-
leaving. 

Input:  x : tuple  
Output: Z-address α 
 
for step = 1 to max({steps(rj) | j ∈ D}) 
 for i = 1 to steplength(step) 
  copy bit step of xi to bit i of αstep 

 end for 
end for 

Figure 3: Bit-Interleaving to calculate α = Z(x) 

With r = max({steps(rj) | j ∈ D}) bit interleaving has a 
CPU-complexity of O(d⋅r) bit operations (resp. ( )∑ =

d
i irO 1  

                                                        
1 Note that we defined ri to be 2v for some v ∈ 1R  
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for attributes of different length). The same holds for the 
inverse algorithm Z-1 that calculates the Cartesian coor-
dinates of a tuple from its address. 

3.2  Range Queries on UB-Trees 

To answer a range query, only those Z-regions, which 
properly intersect the query box, must be fetched from 
the database and thus from the disk. Initially the range 
query algorithm calculates and retrieves the first Z-region 
that is overlapped by the query-box. Then the next inter-
secting Z-region is calculated and retrieved. This is re-
peated until a minimal cover for the query box has been 
constructed, i.e., the region that contains the ending 
point of the query box has been retrieved. 
It is important to note that for any Z-region the calcula-
tion of the next point intersecting the query box is per-
formed solely in main memory. [Bay97a] describes an 
algorithm that for a Z-region [α : β ] and a query box Q 
calculates the smallest Z-address γ > β  that intersects Q 
in time exponential to the number of dimensions. A lin-
ear algorithm which is solely based on bit operations is 
described in [Mar99] and [RMF+00]. 

3.3 The Tetris Algorithm 

With the Tetris algorithm [MZB99], tables organized by 
a UB-Tree can be read in any key sort order in O(n) disk 
accesses where n is the number of pages of the table or 
the minimal number of regions covering a query box. 
The Tetris algorithm is a generalization of the multidi-
mensional range query algorithm that efficiently com-
bines sort operations with the evaluation of multi-attrib-
ute restrictions. The basic idea is to use the partial sort 
order imposed by a multidimensional partitioning in or-
der to process a table in some total sort order. Essentially 
a plane sweep over a query space defined by restrictions 
on a multidimensionally partitioned table is performed. 
The direction of the sweep is determined by the sort at-
tribute. Initially the algorithm calculates the first Z-re-
gion that is overlapped by the query box, retrieves it and 
caches it in main memory. Then it continues to read and 
cache the next Z-regions with respect to the requested 
sort order, until a complete thinnest possible slice of the 
query box (in the sorting dimension) has been read. Then 
the cached tuples of this slice are sorted in main memory, 
returned in sort order to the caller and removed from 
cache. The algorithm proceeds reading the next slice, 
until all Z-regions intersecting the query box have been 
processed. Only disk pages overlapping the query space 
are accessed. With sufficient, but modest, cache memory 
each disk page is accessed only once. 

3.4 Multidimensional Hierarchical Clustering 

Multidimensional Hierarchical Clustering by Hierarchy 
Interleaving (MHC/HI, [MRB99]) clusters a multidimen-
sional data set on disk with respect to the hierarchical 
relationships in multiple dimensions. This is achieved by 
creating surrogate values that ensure that a hierarchical 
restriction like REGION = “North America” and 

NATION = “USA” is mapped to an interval restriction in 
a linear domain. With this technique, a star join on a 
schema with d dimensions therefore creates a d-
dimensional interval restriction on the fact table which 
then may efficiently be processed by the UB-Tree. 
In general one can imagine any foreign key relationship 
to be used for such a clustering. In the following we il-
lustrate MHC/HI by hierarchical relationships as they 
usually occur in data warehousing applications. In 
ROLAP hierarchies are usually modeled implicitly by a 
set of attributes A1, ..., An where Ai corresponds to hierar-
chy level i and level 1 is the root of the hierarchy. 
Many attributes in relational DBMS in general and in 
data warehouses in particular have an actual domain of a 
very small set of values. A typical example (cf. Figure 4a) 
is the attribute REGION of the dimension table 
CUSTOMER, which has an actual domain of 8 values 
(Southern Europe, Central Europe, Northern Europe, 
Western Europe, North America, Latin America, Asia, 
Australia). By MHC/HI, these long strings are replaced 
by numbers. In the corresponding tables small numbers 
or bit strings are stored instead of long, space wasting 
character strings. If all records must be retrieved that 
concern Europe, only an interval [0;3] on this number is 
necessary. Otherwise every member of region must be 
specified. The mapped numbers are called surrogates 
because they replace the character strings. This data type 
is called enumeration type. 

REGION f(REGION)

South Europe 0
Middle Europe 1
Northern Europe 2
Western Europe 3
North America 4
Latin America 5
Asia 6
Australia 7

(a)

(b)

0

CUSTOMER

SouthEurope North America Asia

RetailWholesale Kaná s SushiBar

Joe‘s Sports Bar

... ...

Bar

4 6

2

1

10

RetailUSACanada 10

... ...

... ...

... ...

Australia7

Wholesale0

 
Figure 4: Surrogates for REGION and the Customer 

Hierarchy 

This surrogate technique is generalized to all levels of the 
hierarchies. Figure 4b shows a part of the customer 
hierarchy with the surrogates propagated to all levels of 
the hierarchy. 
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To efficiently encode hierarchies, we introduce the con-
cept of compound surrogates for hierarchies. Since we 
require hierarchies to form a disjoint partitioning of a 
dimension, a uniquely identifying compound surrogate 
for each child node of a hierarchy member exists and can 
be recursively calculated by concatenating the compound 
surrogate of the member with the running number of the 
child node. Because only efficient bit operations are nec-
essary, the computation is extremely fast. The ord func-
tion returns the corresponding surrogate of a hierarchy 
member in the specified level. 
The hierarchy path North America Å USA Å Retail Å 
Bar (cf. Figure 4b) has the compound surrogate: 
ordCustomer (North America) ο ordNorth America (USA) ο 
ordUSA(Retail) ο ordRetail(Bar) = 4 ο 1 ο 1 ο 2. 
The upper limit of the domain for surrogates of level i is 
calculated as the maximum fan-out (number of children) 
of all members of level i–1 of a hierarchy H, i.e., surro-
gates(H, i) = max {cardinality(children(H, m)) where m 
∈ level(H, i - 1)} 
The compound surrogate can be interpreted as a number. 
In the above example – using the surrogate length of 
Figure 4a with a length of 10 bits for the customer surro-
gate (3 for REGION, 3 for NATION, 1 for Trade Type 
and 3 for Business Type) the hierarchy path results in the 
compound surrogate 10000110102 = 538. 
Usually growth expectations for a hierarchy are known 
well in advance. Often hierarchy trees are even static. 
Therefore it is possible to determine a reasonable number 
of bits for storing each surrogate of the compound surro-
gate of a hierarchy. The overall number of bits necessary 
to store a compound surrogate is relatively small. For 
instance, a hierarchy tree with four branches on 8 levels 
already represents 48 = 65536 partitions and is stored in 
only 16 bits. The maximum length of the compound sur-
rogates for the ‘Juice & More’ schema that we used for 
our analysis can be computed from the maximum fan-out 
of the hierarchy levels given in Figure 4a. 
This very compact fixed length encoding preserves the 
lexicographic order on the hierarchy levels. Thus, point 
restrictions on upper hierarchy levels result in range re-
strictions on the finest granularity of a hierarchy. For 
instance, the point restriction NATION = “USA” on the 
second level of the CUSTOMER hierarchy with f(“North 
America”) = 4 = 1002 and f(“USA”) = 1 = 0012 maps to 
the range restriction cscustomer between 528 = 
10000100002 and 543 = 10000111112. Thus, a star join 
with this surrogate encoding for the foreign keys of a fact 
table results in a range restriction on each compound 
surrogate, if some hierarchy level of each dimension is 
restricted to a point. In the same way intervals on the 
children of one hierarchy level result in a range of the 
corresponding compound surrogates (e.g., YEAR = 1998 
and MONTH between April and June). A star join on a 
schema with d dimensions therefore creates a d-dimen-
sional interval restriction on the fact table. 

4   Schema and Queries of ‘Juice & More’  
In this section we investigate, how UB-Trees and the 
Tetris algorithm in combination with MHC/HI may be 

used to accelerate star-joins, the most frequent operation 
of query processing for relational data warehouses. 

4.1  The Juice & More Schema 

We use the schema of the beverages supplier ‘Juice & 
More’, a real customer of one of our project partners2. In 
the data warehouse of ‘Juice & More’ data is organized 
along the following four dimensions: CUSTOMER, 
PRODUCT, DISTRIBUTION and TIME. Figure 5a 
shows the hierarchies over the dimensions (the number 
in parentheses specifies the maximum number of level 
members). 

(b)

PRODKEY

CUSTKEY

DISTKEY

TIMEKEY

SALES

DISTCOST

PRODKEY

PRODUCT
2180 rows

TYPE

BRAND

CATEGORY

CONTAINER

...

CUSTKEY

CUSTOMER
7064 rows

REGION

NATION

TRADE-TYPE

BUSINESS-TYPE

...

DISTKEY

DISTRIBUTION
12 rows

SALESORG

CHANNEL

...

TIMEKEY

TIME
36 rows

YEAR

MONTH

FACT
26M rows

...

(a)

Year (3)

Month (12)

TIME

Region (8)

Nation (7)

Trade Type (2)

Business Type (7)

CUSTOMER

Type (5)

Brand (8)

Category (19)

Container (10)

PRODUCT

Sales
Organization (5)

Distribution
Channel (3)

DISTRIBUTION

All Products All DistributionsAll Customer All Time

 
Figure 5: Hierarchies in the ‘Juice & More’ schema and 

the corresponding star schema 

The ROLAP data model for the ‘Juice & More’ schema 
(Figure 5b) is a typical star schema with one fact table 
FACT and a table for each of the 4 dimensions. Let 
‘SALES’ and ‘DISTCOST’ be some of the measures in 
the fact table. We used the methodologies of surrogates 
and multidimensional hierarchical clustering as 
described in Section 3.4 for clustering the fact table of 
‘Juice & More’ with UB-Trees. 

                                                        
2 The company and the data presented here have been 
made anonymous. 
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In the following we describe some example queries 
involving star joins for the ‘Juice & More’ schema. These 
queries were taken from the decision support system of 
‘Juice & More’. Thus next to the investigation of 
multidimensional hierarchical clustering this section is 
interesting from a second point of view: The highly 
skewed data distribution of the ‘Juice & More’ will prove 
that UB-Trees, the Tetris algorithm and MHC/HI are not 
only applicable to laboratory environment tests with 
generated data, but also prove their efficiency in the 
practical application scenarios. In order to show the 
highly skewed data distribution we included an entire 
section displaying the one-dimensional data distribution 
of ‘Juice & More’ for every dimension. 
We then present measurements performed with our 
prototype implementation of the UB-Tree on top of 
Oracle 8. For the evaluation of our clustering technique 
we defined a benchmark with 36 queries. In comparison 
we also conducted measurements with native Oracle 8 
access methods: parallel full table scan (FTS) and bitmap 
indexes (BII). For these measurements we used a 
completely denormalized fact table, that is, no additional 
joins next to the star join had to be performed to answer 
the queries. The bitmap indexes were created on each 
hierarchy level. We did not include secondary indexes in 
our comparison measurements because earlier 
experiments showed that they are neither competitive to 
the UB-Tree nor to FTS or BII [MZB99]. 

4.2 Queries on the ‘Juice & More’ Schema 

In the following we present typical queries that are taken 
from the ‘Juice & More’ SAP business information 
warehouse. We will use these queries to illustrate our 
approach and we will present performance measurements 
for exactly these queries in Section 6.2. 
Query 1 (Q1, cf. Figure 6) computes the sales for a given 
product group (TYPE and BRAND  specified as (X1, 
X2)) and a given customer group (NATION and 
REGION specified as (Y1, Y2)) for the months from 
October to December of 1993. This query uses the UB-
Tree range query algorithm on MHC/HI surrogates. 
However, surrogates are only used for clustering and 
indexing and thus are transparent to the user. 

SELECT  SUM(Sales) 

FROM  Fact F, Customer C, Product P, Time T 

WHERE  F.ProdKey = P.ProdKey AND 

 F.CustKey = C.CustKey AND 

 P.Type = X1 AND P.Brand = X2 AND 

 C.Region = Y1 AND C.Nation = Y2 AND 

  F.TimeKey = T.TimeKey AND T.Year = 1993 AND  

  T.Month >= October AND T.Month <= December 
Figure 6: Time Interval (Q1) 

Query 2 (Q2, cf. Figure 7) calculates the cost of 
distribution of the products of type X for each 
distribution channel. This query uses the Tetris algorithm 
on MHC/HI surrogates in order to efficiently calculate 
aggregations. 

SELECT  SALESORG, CHANNEL, SUM(DistCost) 

FROM  Fact F, Distribution D, Product P 

WHERE  F.DistKey = D.DistKey AND 

  F.ProductKey = P.ProductKey AND 

 P.Type = X 

GROUP BY D.SalesOrg,D.Channel 
Figure 7: Distribution cost (Q2) 

Query 3 (Q3, cf. Figure 8) restricts all dimensions on the 
first level of the hierarchies. This query also uses the 
Tetris algorithm on MHC/HI compound surrogates. 

SELECT  SUM(SALES) 

FROM Fact F, Distribution D, Product P, 

  Customer C, Time T 

WHERE F.DistKey = D.DistKey AND 

  F.TimeKey = T. TimeKey AND 

  F.CustKey = C.CustKey AND 

  F.ProdKey = P.ProdKey AND 

  P.Type = t AND D.SalesOrg = s AND 

  T.Year = y AND C.Region = r 
Figure 8: Partial match query in first hierarchy level (Q3) 

5   Data Distributions of the ‘Juice & More’ 
Fact Table 
The data of ‘Juice & More’ is real world data; the data 
distribution of both the fact table and the dimension ta-
bles is highly skewed: The dimensions are neither dis-
tributed uniformly nor are independent. The original fact 
table consisted of 823.464 tuples (about 175 MB). To get 
a realistic large data cube, the fact table was enlarged to 
26.350.848 tuples (about 6 GB). Our project partner im-
plemented an augmentation algorithm with minimal im-
pact on the data distribution (see [Pie98]). 
In the following we show some charts that describe the 
one-dimensional data distribution for each dimension. 
However, we once more stress that the dimensions are 
not independent (e.g., some customers always order the 
same subset of products, some customers or products only 
exist for a certain time, etc.). Thus in general, the overall 
selectivity of a query restricting several dimensions is not 
the product of the selectivities of the one-dimensional 
restrictions (which is shown in the following charts). We 
will see this deviation in Section 6. 
The fact table of ‘Juice & More’ stores several measures 
(e.g., distribution cost, sales) aggregated on a daily basis 
with respect to the dimensions time, customer, product 
and distribution. Since the data is sensitive real-world 
business data, it is not possible to show the labels/names 
of the hierarchy members in the charts. 

5.1 The Time Dimension 

The time dimension of ‘Juice & More’ consists of a two-
level hierarchy of months and years. The test data stored 
the years from 1993 to 1995. As shown in Figure 5a, the 
days of the time dimension are organized by a two level 
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hierarchy (year and month). Figure 9 shows the cumu-
lated data distribution of the fact table with respect to the 
time dimension grouped by year and month. The hori-
zontal axis displays the hierarchy members, with “All” at 
the very bottom (i.e., the lowest level), the years 1993, 
1994, and 1995 in the middle and the twelve months for 
each year above the year. The arrows in the horizontal 
axis indicate the relationship between the members of 
neighboring hierarchy levels. 
Thus the fact table of ‘Juice & More’ is almost uniformly 
distributed with respect to the time dimension. The 
minimum number of facts for one month is 2,70% of the 
fact table (in January 1993, December 1993 and January 
1995), whereas the maximum number of facts per month 
is 2,83% (in March of each of the three years). Thus with 
a multidimensional clustering using 5 bits for time, re-
strictions to one month in the time dimension (=1/36) 
can be expected to reduce the amount of data to around 
1/25 = 1/32. 
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Figure 9: Data Distribution in the Time Dimension 

5.2 The Product Dimension 

The top level of the hierarchy on product has five entries. 
The data distribution is quite skewed, there are three 
product groups to which 93% of all tuples of the fact ta-
ble belong. 1% of the data is unclassified. The distribu-
tion of the first level of the product hierarchy is illus-
trated in Figure 10. 

1%

32%

6%

27%34%
unclassified
910
912
920
922

 
Figure 10: Product – first hierachy level 

Multidimensional hierarchical clustering ensures that a 
restriction in the first hierarchy level will result in a 1%, 
27%, 6%, 32% respectively 34% reduction of I/Os which 
are necessary to retrieve the result set. Without exactly 
showing the relationship between the hierarchy members, 
we show the skew of the data distribution over the first 
four product levels in Figure 11.  
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4%

product  
Figure 11: Product – first four hierachy levels 

5.2 The Customer Dimension 

According to business administration literature 20% of 
the customers contribute to 80% of the business. The 
customer dimension of ‘Juice & More’ is a typical exam-
ple for a classification of customers in such a company. A 
high number of customers (in this case 88%, the very left 
entry of Figure 12) are not classified (maybe they are not 
interesting for the company because of small turnover or 
it is not possible to find a classification). The classified 
customer groups contain 0% to 3% of the tuples stored in 
the table.3 The hierarchical relationships on the horizon-
tal axis show that the hierarchy of the customer dimen-
sion is not balanced, since several hierarchy members 
just have one child. 
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Figure 12: Customer – first four hierachy levels 

                                                        
3 Note that the data in the ‘Juice & More’ warehouse is 
aggregated on a daily basis, thus the amount of data is 
usually compressed for large customers, thus the 
proportion of large customers is reduced. 
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The consequence of the small number of classified cus-
tomers is that queries the restriction CUSTOMER will 
result in a selectivity of at most 3% and therefore the 
overall result set will be small. 

5.2 The Distribution Dimension 

There are seven entries on the first level of the distribu-
tion hierarchy. The data distribution of the fact table with 
respect to the distribution dimension is highly skewed. 
Figure 13 shows the distribution of the first hierarchy 
level (i.e., sales organization), while Figure 14 shows the 
distribution of facts in the fact table for each distribution 
channel of each sales organization. Again the arrows 
indicate the hierarchical relationship of the members of 
neighboring hierarchy levels with the hierarchy root 
“All” at the bottom of the Figure. 
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Figure 13: Distribution – first hierachy level 
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Figure 14: Distribution – first two hierachy levels 

6   Performance Analysis of MHC/HI for 
‘Juice & More’ 
In this section we first analyze the performance of 
MHC/HI on UB-Trees analytically and then, taking the 
data distributions and query selectivities into account, 
verify our expectations by comparing the number of re-
trieved pages with the product of the selectivities over all 
dimensions. We then also give response times which 
show the superiority of UB-Trees and MHC/HI over 
traditional indexes even for our prototype 
implementation. 

6.1 Performance Analysis 
Figure 15 shows the compound surrogates for the ‘Juice 
& More’ data warehouse, which are calculated as fixed 
length compound surrogates in [MRB99]. For any of the 
4 hierarchies the length of the compound surrogate does 
not exceed 15 bits and thus can be stored in a single inte-
ger value. These compound surrogates are used as attrib-
utes for each of the four dimensions of ‘Juice & More’ to 
calculate the Z-address for each tuple of the ‘Juice & 
More’ fact table. 
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Figure 15: Compound surrogates for each dimension of 
‘Juice & More’ 

The UB-Tree for the ‘Juice & More’ fact table consists of 
P = 878362 pages, which corresponds to: l = log2 P = 
log2878362 = 19,7 bits that are in any case necessary to 
address the bit-interleaved multidimensional space. With 
bit interleaving in the order of dimensions PRODUCT, 
CUSTOMER, TIME, and DISTRIBUTION the Z-address 
α  for a tuple of the ‘Juice & More’ fact table is calcu-
lated as: 

{ 4444444 34444444 2144444444 344444444 21

ondistributi data on the depending dpartitione

12345162738491510

splitpartly 

1

ondistributi dataany for   dpartitione completely

2611237123481345914561015 pppppcpcpcpcptcpdtcpdtcpdtcpdtcpdtcp=α
 

The first 19 bits of the Z-address are guaranteed to be 
used to partition the four dimensional universe of the 
‘Juice & More’ fact table. This means that the binary 
strings p15p14p13p12p11 of the compound surrogate of 
product, c10c9c8c7c6 of customer, t6t5t4t3t2 of time and 
d5d4d3d2 of distribution are used to partition the universe. 
For each of the four dimensions the first hierarchy level 
is completely used for the partitioning. The second hier-
archy level is used to a large extent to partition the uni-
verse. Therefore a restriction in the first hierarchy level 
will result in a reduction of the number of pages as de-
termined by the data distribution of Section 5, i.e., a re-
striction of the product main group to “910” will reduce 
the number of pages to be retrieved to 27%, a restriction 
to “912” will result in a reduction to 6,41%. This holds 
for the restriction of the first hierarchy level in any di-
mension. If the top hierarchy level is restricted in several 
dimensions and the independence assumptions holds for 
these dimensions, the reduction is multiplicative. Figure 
16 shows the predicted selectivity calculated as the prod-
uct of the selectivity in each dimension, the actual selec-
tivity and the loaded pages in percent of the entire pages 
in the database for two queries, which restrict the first 
hierarchy level of three out of four dimensions. 
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in 
% 

Pages  
loaded  

Predic-
ted 
selecti-
vity in 
% 

Actual 
selecti-
vity in 
% 

loaded 
pages 
in % 

0,78 6,4 37,5 100 178 0,0182 0,0199 0,0207 

87,3 6,4 37,5 100 18996 2,0981 2,1618 2,1627 

Figure 16: Restrictions in the first hierarchy level in 3 of 
4 dimensions 

However, the data is not independently distributed in the 
entire 4-dimensional universe of ‘Juice & More’. In this 
case the predicted selectivity does not describe the actual 
selectivity anymore. Thus some bits of the first 19 bits are 
correlated. This means that not all combinations of these 
bits occur and some partitioning will take places in the 
bits below bit number 19 of the Z-address. In this case 
the second level may already be completely partitioned 
and even a third hierarchy level partitioning may have 
started for some dimensions. A typical part of the multi-
dimensional space where this will happen is the customer 
hierarchy “unclassified”, which stores 87,34% of the 
customers. At most the three bits c10c9c8 of the customer 
hierarchy are needed to distinguish these customers from 
all other customers. Thus for the unspecified customers 
the bits c7c6 of the first 19 bits of the Z-address are cor-
related to c10c9c8 and two further bits may be used for 
partitioning. Thus d1 will be split completely, p10 will be 
used for the partitioning and t1 will be partly split (c5 is 
also correlated to c10c9c8). Our measurements show that 
this effect also holds for other dimensions. Figure 17 
shows queries where the first two hierarchy levels of 
CUSTOMER, PRODUCT and TIME are restricted, 
whereas the DISTRIBUTION dimension is not restricted. 
The selectivity predicted by the cost functions here differs 
from the actual selectivity of the query because of de-
pendencies in the data distribution. However, the per-
centage of pages loaded is similar to the actual selectivity 
of each query. 
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in % 
Pa-
ges 
loa-
ded 
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selecti-
vity in % 

actual 
selec-
tivity 
in % 

loaded 
pages 
in % 

2,95 3,64 100 38,4 312 0,0414 0,0310 0,0355 

2,95 27,99 100 38,4 782 0,0318 0,0851 0,0890 

Figure 17: Restriction in the first two hierarchy levels in 
3 of 4 dimensions 

Each of the 878362 pages of the ‘Juice & More’ fact table 
stores 30 tuples. All of the measurements showed that 
when restricting the first hierarchy level in each dimen-

sion in average 99,99% of the tuples on the pages con-
tributed to the result set. A standard deviation of less 
than 0,001 for these measurements means that the multi-
dimensional hierarchical clustering is perfect for multi-
dimensional restrictions in the first hierarchy level. 
When additionally restricting the second hierarchy level 
in average 557 pages were loaded, where 10,7% of the 
tuples did not contribute to the result set. The standard 
deviation here was 0,06. Additionally restricting the third 
hierarchy level of each dimension usually created result 
sets with only one page. 
Thus multidimensional hierarchical restrictions are very 
well processed by UB-Trees storing compound surrogates 
which are created by the multidimensional hierarchical 
clustering technique. For star schemas as used in present 
data warehousing applications this approach significantly 
speeds up query performance and reduce resource re-
quirements in disk space and processing time. 

6.2 Performance Measurements 

The measurements for ‘Juice & More’ were performed on 
a SUN Enterprise with four 300 MHz UltraSPARC proc-
essors and 2 GB RAM under Solaris 2.6. As secondary 
storage a partition on a SPARCstorage array with RAID 
level 0 (6 disks striping, 5-6 MB/s transfer rate per disk) 
was used. All measurements were done in a single-user 
environment. 
It is important to note that our implementation still 
causes significant overhead due to the fact that we have 
implemented the UB-Tree on top of a DBMS and not in 
the kernel itself. First, the number of SQL statements that 
have to be processed (UB: 1 statement for each page in 
the result set, Oracle 8 methods: 1 statement in total) 
leads to extensive inter-process communication (about 
30% of the total processing time) and DBMS overhead 
(e.g., parsing of statements). Second, our table is larger 
than the one for the FTS and the bitmap indexes due to 
unimplemented compressing techniques in the UB-Tree 
(for 8 KB pages: UB: 878362 pages, FTS: 723539 pages, 
BII: FTS+31134 pages). 
Figure 18 shows result set sizes and response times of the 
three example queries (Section 4.2). Q1 shows that the 
UB-Tree with multidimensional clustering is over 2 
times faster than BII even for very small result sets. Q3 
which is processed by the unoptimized UB-Tree at least 
10 times faster than with any other access method un-
dermines this observation. 
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Query Loaded Tuples
Percentage 
of Database

Q1 8160 0,03%
Q2 1696416 6,52%
Q3 19752 0,08%  

Figure 18: Query response times and result set sizes 

The result set of query Q2 is quite large but the almost 
perfect clustering factor of the UB-Tree (in average more 
than 29 out of 30 tuples/page belong to the result set) still 
leads to a speed up of more than 30 % in comparison to 
BII. The time for FTS for Q2 differs from the times for 
Q1 and Q3 due to the less complex WHERE clause of the 
statement. The number of comparison operations is 
therefore much smaller than for the other queries, which 
causes the faster execution. 
All these results on real data show how well the multidi-
mensional hierarchical clustering with UB-Trees works 
in practice and the accuracy of our theoretical cost model 
[MZB99]. In total more than 77% of all benchmark que-
ries (28 out of 36) showed a speed up between a factor of 
1.3 and 10 over traditional techniques. 

 Cust-
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ibution 

Time Select-
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ce 1 in 
% 

Select-
ivity 
Instan-
ce 2 in 
% 

Q4 2 2 0 1 0,0414 0,3176 

Q5 1 1 1 1 0,0070 3,4383 

Q6 1 1 1 0 0,0182 2,0981 

Q7 1 0 0 1 1,1346 1,1346 

Q8 0 1 0 1 6,0000 34,000 

Figure 19: Restricted hierarchies and selectivities for five 
queries against the ‘Juice & More’ data warehouse 
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Figure 20: Performance Q4-Q8 (instance 1) 

Figures 20 and 21 list two instances for each of five 
further queries of that benchmark. For each query Figure 

19 lists the number of hierarchy levels that by each query 
are restricted to a point for each dimension. Since the 
data is non-uniformly distributed, the selectivity of each 
query depends on the exact point restriction, not only on 
the number of restricted hierarchy levels. We thus 
present two instances of the queries, each of which has a 
different selectivity. 
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Figure 21: Performance Q4-Q8 (instance 2) 

7   Conclusions and Future Work 
We have presented multidimensional hierarchical clus-
tering by hierarchy interleaving (MHC/HI) as a physical 
data modeling technique for OLAP applications in rela-
tional databases. Our performance measurements have 
shown that MHC/HI in combination with UB-Trees and 
the Tetris algorithm significantly reduces the number of 
random accesses to the fact table for star joins and other 
queries with restrictions in multiple hierarchies. This 
results in considerably lower response times for typical 
data warehousing queries with star joins. For a 6 GB re-
tail data SAP business information warehouse, our pro-
totype implementation of MHC/HI accelerates the proc-
essing of star-join queries more than a factor of two com-
pared to bitmap indexes, clustering B*-Trees or parallel 
full table scans. For dimensionalities typical for data 
warehousing, only I/O-time linear in size of the result set 
prior to aggregation and sublinear temporary storage are 
necessary to aggregate parts of a fact table of a star or 
snowflake schema. Thus secondary storage space and 
pre-computation time for many aggregates and bitmap 
indexes can be avoided. In addition the widely discussed 
view maintenance problem is minimized. Depending on 
the query, temporary storage requirements for sorting are 
reduced by several orders of magnitude. Our clustering 
approach also holds not only for ROLAP but also for 
MOLAP implementations of a data warehouse since both 
ROLAP fact tables and MOLAP data cubes can be clus-
tered in this way. 
Our future work includes deriving a set of cost based de-
cision rules for how to – possibly multidimensionally - 
index a relation for a given set of queries. We also intend 
to apply our model to cost based query optimization and 
combine the model with multidimensional histograms in 
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order to take dependencies and correlations between the 
attributes into account. 
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