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Abstract

A data warehousds an integrated and time-
varying collection of data derived from opera-
tional data and primarily used in strategic deci-
sion making by means of online analytical pro-
cessing (OLAP) techniques. Although it is gener-
ally agreed that warehouse design is a non-trivial
problem and that multidimensional data models
and star or snowflake schemata are relevant in
this context, hardly any methods exist to date
for deriving such a schema from an operational
database. In this paper, we fill this gap by showing
how to systematically derive a conceptual ware-
house schema that is evenganeralized multidi-
mensional normal form

Introduction

A data warehousé generally understood as an integrated
and time-varying collection of data primarily used in strate-
gic decision making by means of online analytical process
ing (OLAP) techniques.

methods exist to date for deriving such a schema from
an operational database. In this paper, we recall the no-
tion of multidimensional normal form (MNHLAW98] as
a means to describe “good” warehouse schemata, and we
show how to systematically derive a conceptual warehouse
schema in MNF from a given operational schema.
Traditional database design methods [BCN92, Vos99]
structure the design process into a sequence of phases or
steps. It is common to start witkquirements analysis and
specification then doconceptual desigrthenlogical de-
sign, and finallyphysical designthis broad description can
be refined in a variety of ways. As a central issue during
a design process,@nceptuaschema for the database un-
der design is established which is then transformed into the
“language of dogical data model as the basis for physical
implementation. For data warehouses, no corresponding
methodology is yet in sight, although there is a large body
of literature that discusses how to derive schemas based on
intuitive principles. We remedy this situation by present-
ing a method for conceptual warehouse design that is in
line with traditional database design, and that fits into a
modeling process which follows classical approaches. An
important point for our exposition is that traditional design

methods have clearly defined goals and objectives, such as

It is essentially a database thaf,mjeteness w.rt. a coverage of the underlying applica-

stores integrated, often historical, and aggregated informatl'on, minimality of resulting schemata, freedom of redun-
tion extracted from multiple, heterogeneous, autonomousdancies' readability, etc. Some of these requirements can
and distributed information sources. _Although i_t _is gen-aven be made formally precise. Most notably, relatiafeal
erally agreed that warehouse design is a non-trivial pmbbendency theorgrovides insight to understanding the rea-

lem and that multidimensional data models and star ok, tor redundancies in database relations, and formalizes
snowflake schemata are relevant in this context, hardly any, .41 forms and normalization as a way to avoid them:

The copyright of this paper belongs to the paper’s authors. Permission tJnoreOV_er’ ther_e are algorlthmlc approaches (SUCh QS the
copy without fee all or part of this material is granted provided that the Synthesis algorithm [Vos99]) for constructing normalized
copies are not made or distributed for direct commercial advantage. schemata.

Proceedings of the International Workshop on Design and For two reasons, the above is in remarkable contrast
Management of Data Warehouses (DMDW'2000) with what can be called warehouse design. First, current
Stockholm, Sweden, June 5-6, 2000 practice in data warehousing and its applications marks a
(M. Jeusfeld, H. Shu, M. Staudt, G. Vossen, eds.) radical departure from the principles of normalized schema
http://sunsite.informatik.rwth-aachen.de/Publications/ CEUR-WS/\ol-28/ design. Indeed, a common understanding of a “well-
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designed” warehouse schema is that the schema under catlatabase management system, is ia well-understood pro-
sideration should have the form of a “star”, i.e., it shouldcess; following [BCN92], database design can roughly
consist of a centrdlct tablethat contains the facts of in- be seen as being done in four steps, with the result of a
terest to an OLAP application, and that is connected to a@atabase schema which can be processed by a database
number ofdimension tableshrough referential integrity management system. This process comprises the phases
constraints based on the various dimension keys. Since diequirements analysiconceptual schema desiglogical
mensions can be composed of attribute hierarchies, it is oschema desigrandphysical schema design

ten the case that dimension tables are unnormalized, and Concerningdata warehouse desigthere is a general
their normalization results in what is known asrowflake  agreement that at least a conceptual or logical modeling
schema. As an example, the conceptual schema shovattivity should precede the actual implementation [WB97,
in Figure 1 may be perceived as a conceptual snowflakeGS97, CT98, GMR98]. Typically, the modeling activ-
schema that corresponds to the operational schema of Figty is based on a multidimensional model (see [BSHD98,
ure 2. Second, the research community has not been payings99, PJ99] for comparisons of various multidimensional
too much attention so far to (a) developing complete deimodels), whereas the implementation is carried out either
sign methods for data warehouses in general or for concepwithin relational or multidimensional databases [CD97].
tual design in particular, and (b) establishing guidelines forHowever, most of these models were developed without an
good schema design or integrity constraints within the conembedding into a design process and thus without guide-
text of multidimensional models. As a result, there appear$ines on how to use them or what to do with the result-
to be a discrepancy between traditional database design @&y schemata. Notable exceptions in this respect are the
applied to operational databases, and the design principlegpproaches of [CT98] and [GR98], which we summarize
that apply to data warehouses. next.

We remedy this situation by presenting a phase-oriented In [CT98] a design method is presented that starts
design process for data warehouses that is modeled aftétom an existing E/R schema, derives a multidimensional
the traditional design process, where we use an exampkchema, and provides implementations in terms of rela-
from the banking domain as our running example. Con+ional tables as well as multidimensional arrays. The
cretely, we will show how to obtain the warehouse schemalerivation of the multidimensional schema is structured
shown in Figure 1 from the conceptual operational databasi@to the steps (1) identification of facts and dimensions,
schema in Figure 2. The mostimportant phase, the phase ¢2) restructuring of the E/R schema, (3) derivation of a di-
conceptual desigrhas to sort oulimensionscorrespond- mensional graph, and (4) translation into the multidimen-
ing dimension hierarchiesindmeasuresand has to deter- sional model. In the first step, facts along with their mea-
mine which attribute from the underlying database(s) besures have to be selected, and afterwards dimensions for a
longs where. Our contribution here is threefold: First, wefact are identified by navigating the schema. Then, in the
establish guidelines for answering the question of whethegecond step, the initial E/R schema is restructured in or-
an attribute is a dimension level or a property attribute.der to express facts and dimensions explicitly, thus arriving
Second, we propose a graphical formalism for conceptuadt a schema that can be mapped to the multidimensional
warehouse design that captures this distinction in an apmodel. From this point on, the remaining steps provide
propriate way. Third, we show hogeneralized multidi- natural translations of the E/R schema into an multidimen-
mensional normal form (GMNF)originally proposed in sional schema and then into a target database schema.
[LAW98], can be obtained for a warehouse schema under The work of [GR98] presents a complete warehouse de-
design. sign method which resembles the traditional database de-
sign and consists of the following steps: (1) analysis of
he information system, (2) requirement specification, (3)

2, we briefly recall the database design process, and we r . :
view previous approaches on warehouse design and norm%?nceptual d_e5|gn (following the method .Of [GMRQS])’ (4)
orkload refinement and schema validation, (5) logical de-

forms for warehouse schemata. We then introduce nece- . . .
sary terminology in Section 3, before we propose and illus>'9"N: (6) physical de§|gn. We note here that t_he design of a
onceptual schema is carried out by producing a so-called

trate our approach to conceptual warehouse design in Se¢- . .
tion 4. Afterwards, we show in Section 5 that our designgaCt schemdor each fact, which, following [GMR98], can

method does indeed produce schemata in GMNF. FinaII)}je derived from an E/R schema using an algorithmic pro-

concluding remarks and plans for future research appear iﬁedure, which starting from_ factg navigates through the
Section 6. schema along x-to-one relationships in order to determine

dimensions and their hierarchies.

Concerning these two approaches, we critically remark
the following. In [CT98], conceptual and logical design
Database design, i.e., the task of mapping a given reakre mixed, and a “logical” multidimensional model is pre-
world application to the formal data model of a given sented. We argue (in accordance with, e.g., [WB97]) that

The organization of this paper is as follows: In Section

2 Related Research
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Figure 1: Conceptu

al Multidimensional Schema.
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Figure 2: Sample Conceptual Operational Schema.
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the conceptual design should be independent of the targstored inmeasuresind a qualifying context which is deter-
database system, whereas the logical design should be tamined through(terminal) dimension levelsEach dimen-
lored towards the chosen target system (here: relationaion level contains a set of instancesetements An ag-
or multidimensional database system). As a consequencgregation paths a subsequence of dimension levels, which
what is called logical design in [CT98] should actually be starts in a terminal dimension level and ends in an implicit
called conceptual design instead, and the implementatiodimension levelAll containing a single elemertall >.
activity of [CT98] should be divided into a logical and a Given an aggregation patfds,... ,d,), whered; is a di-
physical design phase, as in [GR98]. Moreover, the cruciamension level, K i < n, we assume that every element of
first two steps of [CT98] are presented by examples onlyd; belongs to(or is associated to) at most one element of
and remain rather vague. In contrast, [GR98] contains auli;1, 1 <i < n—1; moreover, we say thal,; is a higher
algorithmic procedure to perform the corresponding activ{aggregation) level thad;. A dimension is structured in
ities. However, neither approach provides any formal justerms of one or more aggregation paths that share the same
tification for the applied method, and nor does it supplyterminal dimension level. Therefore, each dimension com-
criteria according to which schema quality could be meaprises at least one terminal dimension level and the im-
sured. plicit level All . For example, a dimensicime might

In summary, well-established design phases for mulconsist of the single aggregation pgttay, month,
tidimensional databases are still missing, and while noryear) , where the elemert.2000/03/2% of dimension
mal forms have a long tradition in the area of relationallevel day is associated to elemert2000/03> of level
databases as guidelines for good schema design, researonth , which in turn belongs to elemert2000> of level
on quality factors for multidimensional database schematgear . In slight abuse of terminology, the graph consisting
seems to have started only recently. Indeed, the work presf all aggregation paths for a given dimension is catled
sented in [LS97] can be regarded as a first step in this remension hierarchyalthough a dimension level might have
spect. The authors argue tratmmarizability i.e., guar- more than one parent level). We assume that sets of dimen-
anteed correctness of aggregation results, is of most insion levels of distinct dimensions are disjoint.
portance for OLAP queries. Hence, any multidimensional A property attributedescribes additional information
schema should be set up in such a way that summarizabitelated to a dimension level (e.g., the property attribute
ity is obtained to the highest possible degree. Moreover, itustName for dimension levetustlD in Figure 1). An
summarizability is violated along certain aggregation pathoptional property attribute (e.ggustAge ) needs not be
then the schema should express this constraint clearly. Fspecified for each element of the corresponding dimension
nally, [LS97] provides criteria that imply summarizability. level and therefore may contaimull> values. A property

Following and extending this line of thought, [LAW98] attribute can be used to delimit the resulting set of a multi-

defines thenultidimensional normal fordMNF) of multi-  dimensional query, but does not determine its aggregation
dimensional schemata, which guarantees summarizabilitigvel.
within one-dimensional contexts. However, [LAW98] il- A fact schemaepresents the dimensional context for a

lustrates by an example taken from [Leh98] that the mul-set of facts that share the same terminal dimension levels;
tidimensional normal form might be too restrictive for we use graphical schemata such as the one shown in Figure
certain application scenarios and defines gemeralized 1 to express fact schemata. Note that we avoid the taein
multidimensional normal form{GMNF). As argued in tableduring conceptual design, as “table” suggests logical
[LAW98], a schema in GMNF ensures summarizability in storage in (relational) tables, which concerns logical design
a context-sensitive manner and supports an efficient phystecisions only.

ical database design. However, so far there is no design

method that guarantees multidimensional normal forms. 3 5 pimension hierarchies

Dimension hierarchies are classified into two basic
types. A simple hierarchy consists of exactly one lin-
We briefly describe a graphical notation for conceptualear aggregation path within a dimension (e.g., path
multidimensional data modeling next. To avoid misunder-day —month —year in dimensiortime of Figure 3).
standings resulting from the variety of terminology in mul- A multipledimension hierarchy contains at least two dif-
tidimensional databases, we first clarify some terms anderent aggregation paths in a dimension (e.g., the dimen-
then use these throughout the rest of the paper. sionaccount of Figure 3). A group of aggregation paths
rooted in a common dimension levelis calledalterna-

tive, if every element ofl belongs to exactly one element
of each higher level (e.g., the paths of Figure 3 starting
Factsrepresent atomic information elements in a multidi- in dimension levebrgID ). Moreover, we allowoptional
mensional database. A fact consists of quantifying valuegroups of aggregation paths. Here, we assume that some

3 Terminology and notation

3.1 Basic multidimensional structures
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Figure 3: Simplified Fact Schemaccount facts with measures{balance, turnover } and dimensions
{account, time }.
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dimension leved, has two or more higher levels such that

for every element off, there is exactly one element in a _ _ Operational database /
higher level to which that element belongs. For example, oo i
in Figure 3 the group of aggregation paths starting in di- T It Semifommal business
mension levelustID is optional, and each element of / concept
dimension levekustlD is related to either @rofes- consepua] dRsiET
sion or abranch ); within an optional group of aggrega- ™
tion paths a dimension level such@sstID s calledsplit a1 Formal sonceptial
levelwhereagustomerType is calledjoin level L ouical desian «

In our graphical notation, simple hierarchies and alter- ’ ’
native groups of aggregation paths are indicated by sim- I R el 2
ple arrows, pointing from the lower dimension level to the P
higher one. Optional groups of aggregation paths are spec- Plveiieal cesign pi | Physical databases
ified by double lined arrows. A mandatory property at-
tribute is connected via a diamond to its dimension level,
and an optiona| property attribute without. Figure 4: Process Model For Data Warehouse Design.

Intuitively, aggregations along different aggregation )

paths in an alternative group yield the same result. How#-1 A Process model for Data Warehouse design

ever, if a group is optional then aggregations along differ-The data warehouse design process comprises four sequen-

ent paths within the group represent (partial) aggregatiofia| phases just like the classical database design process.

results for mutually disjoint subsets of the elements of thqn Figure 4 these phases along with their respective input

terminal dimension level. and output are shown.

We point out that if some element of a dimension level

does not belong to an elemgnt of some higher level then ,""HQequirements analysis and specification

data related to that element is lost at the higher aggregation

level, resulting in erroneous query results. To avoid suchThe operational E/R schema delivers basic information to

partial mappings we propose the insertion of an elemendetermine the multidimensional analysis potential, where

<other > into the higher dimension level. After that we we assume that such a schema is available to the ware-

allocate every nonrelated element of the lower level to théiouse designer (if it is not, it could be obtained, for exam-

element<other > of the higher one. ple, through techniques of reverse engineering as described
in [FV95]). In this phase business domain experts select
strategically relevant operational database attributes and

4 Data Warehouse Design specify the purpose to use them as dimensions and/or mea-
sures. For each attribute it is necessary to decide whether it

In this section, we propose an approach to data warehousmntains optional data or not. Furthermore, additional com-

design that resembles the traditional database design prplementary requirements in the form of complex derived

cess. In Section 4.1 we briefly sketch the overall approachmeasures are added. The resulting requirements specifica-

then we present the conceptual design phase in detail ition contains a tabular listing of attributes along with their

Section 4.2; we refer to [Hue99] for more information on multidimensional purpose. Supplementary informal infor-

the remaining phases. mation (such as relevant business integrity constraints) can
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be added in a textual appendix, which also includes typicalshow the average turnover by year and product group” or

strategic queries. “how many current accounts are managed online.”
We note that Table 1 contains additional attributes
Conceptual design that represent multidimensional requirements which are

) _not part of the operational schema (e.d.month,
The conceptual design phase performs a transformation @fstomerType 1). In particular, the new dimension level
the semi-formal business requirements specification into g,siomerType is introduced in order to represent the
formalized conceptual multidimensional schema. The forgpecialization hierarchy concerning different types (e.g.
malization results in a graphical multidimensional diagram,jy;siness and private) of customers as shown in Figure 2.
which comprises fact schemata with their related measuregpese attributes extend operational data and augment mul-
and dimension hierarchies. For each measure of a fagjgimensional aggregation possibilities according to multi-
scheme the summarizability constraints are formalized injimensjonal analysis needs. Further additional attributes
an tabular appendix. In Section 4.2 we propose a phasgre optained by an examination of those attributes that are
model to derive such diagrams and appendices in a straigh§pecified both as measure and dimension. In our case, we
forward way starting from the requirements specification. ote that related to business management it may not be use-
ful to query an aggregation level on discredance and

Logical design turnover values. Thus, we define new dimension lev-
. . els balanceClass, turnoverClass that represent
The logical design phase converts the conceptual schema e i ) o

) : . analysis intervals; moreover, the corresponding original at-
to a logical one with respect to the target logical datatributes{balance turmnover } are then rated as non-
model (mostly relational or multidimensional). The logical dimensional '
schemata are generated according to transformation rules, '

whichonlyrefer to the developed conceptual diagrams and )
summarizability constraints. A process model to conceptual data warehouse design

We subdivide the process phase of conceptual data ware-
Physical design house design into three sequential phases:

The data warehouse design process ends in a physical im-1  context definition of measures,
plementation of the logical schemata with respect to the in-

dividual properties of the target database system, including 2. dimensional hierarchy design, and
physical optimization techniques such as commonly known

indexing strategies, partitioning etc., as well as OLAP- 3. definition of summarizability constraints.
specific adjustments like relational denormalization of di-

mension tables, pre-aggregations or special use of bitmagontext definition of measures

indexes. ) ]
Given the seM = {my,...,mx} of measures defined dur-

ing requirements analysis and the Betf dimensional at-
tributes, every fact can be perceived as an element of a
As we mentioned already, the aim of the conceptual schemgraph of soméunctionfrom dimension levels to measures.
design phase is to produce a graphical multidimensionatence, the conceptual design phase starts by determining
schema, which for each measure expresses its multidimeifiinctional dependencig&Ds) from dimension levels to
sional context in terms of relevant dimensions and their himeasures. First, we determine a (minimal) KgyC D for
erarchies. each measuney; then we define the s€key as consisting

We assume that a global operational E/R schema suc®f all FDs of the formD; — m; so obtained. Thus, given an
as the one shown in Figure 2 exists, which describes th&D Di — my € Fkey, the dimension levels iD; functionally
available source information. Moreover, we assume that redetermine measurg, but are not functionally determined
quirements analysis has been carried out together with dddy any other level. Hence, they qualify as terminal dimen-
main experts, and that the global operational E/R schema&ion levels that are used as roots of dimension hierarchies.
has been analyzed to determine interesting measures, dfor each terminal dimension level we define a correspond-
mensions, and initial OLAP queries. The output of thising dimension.
phase consists of (a) tables such as the extract concern- In our running example, we hence obtain the (&-
ing account information shown in Table 1 (which containscountID, effectiveDay) — balance € Fxey for
an informal description for each relevant attribute and in-measuréalance . Furthermore, all measures, m; with
dicates whether the attribute may be used as measure or _ ; . . .

. . . . . . Since functional dependencies are a well-known concept in relational

dimensional attribute and whether the attribute is optionaljztapases, we assume the reader to be familiar with it; otherwise see, for
or not) and (b) standard multidimensional queries such asxample, [BCN92, Vos99].

4.2 Conceptual Data Warehouse Modeling
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Table 1: Requirements Specification.

Attribute Description M |D |O
effectiveDay | data import date no | yes| no
month time aggregation no | yes| no
quarter time aggregation no | yes| no
year time aggregation no | yes| no
accountlD account key no | yes| no
balance balance at effective day yes| no | no
balanceClass| balance classification no | yes| no
turnover turnover at effective day yes| no | no
turnoverClass| turnover classification no | yes| no
creditlimit creditlimit of the account yes| no | no
interest interest rate yes| no | no
custiD customer key no | yes| no
custName costumer name no | yes| no
custAge age of a private customer no | yes| yes
customerType classification of customers no | yes| no
profession profession of a private customer no | yes| yes
branch branch of a business customer no | yes| yes
productiD product description no | yes| no
productType | classification of products no | yes| no
orglD attending organizational unit no | yes| no
orgName name of a organizational unit no | yes| no
orgGroup grouping of organizational units no | yes| no
orgType classification of organizational units | no | yes| no
businessector| classification of orgGroup and orgTypeno | yes| no

D; = Dj are grouped into the sanfact schemaas they  Dimensional hierarchy design

share the same dimensional context. In the next step, we gradually develop the dimension hi-

Table 2 shows the result of this process applied to meaerarchies for each dimension. To this end, we determine
sureshalance , turnover , creditlimit , andin- all FDs between dimension levels belonging to a dimen-
terest occurring in Table 1. All measures are func- siondimwith terminal dimension level; as follows: Sup-
tionally dependent on the same terminal dimension levpose we are given dimension levelsd, € D s.t.dx — d

els, namelyaccountlD and effectiveDay , which  is avalid FD and there exists a (potentially transitive) func-
in turn belong to the dimensiorsccount andtime tional dependence af on d;, then we addly — d to the
resp. Hence, all measures are grouped into a commosetFgin.
fact schemaccountfacts . At this point, we start the In our example, fact schenscountfacts  includes
graphicalconceptual design by modeling fact schemata upheaccountID andeffectiveDay as terminal dimen-
to terminal dimension levels (see Figure 5). sion levels. Starting with terminal dimension lewedt
fectiveDay  of dimensiontime we determine the fol-
lowing FDs:
account- ‘E( account H accountlD |
facts Rime = {effectiveDay — month,
| time H effectiveDay | month —s
balance quarter’
turnover quarter —year }
creditlimit

Graphically, we derive the simple dimension hierarchy

torest N
interes shown in Figure 6.

Figure 5: First Part of the Conceptual Schema.
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Table 2: Functional Dependencies between Terminal Dimension Levels and Measures.

Fact schema Measure Dimension Terminal dimension level
accountfacts balance, account accountlD

turnover,

creditlimit, time effectiveDay

interest

gation paths or not. If all dimension levels are manda-
crlme H{ereeeon fof wew e wew fe{ v | g1y according to the requirements specification then all
groups of aggregation paths are alternative. If, however,
some dimension levels are optional (suchpasfes-

sion andbranch in our example) then these levels in-
troduce groups of optional aggregation paths. Assume
that d, is a (mandatory) split level that functionally de-

Figure 6: Simple Dimension Hierarchiyne .

The dimension levels of dimensi@tcount exhibit the
following FDs:

Faccount= { accountlD  — orgID , termines the optional dimension levels,...dy. These
accountlD — custlD ,accountlD — turnoverClass , optional levels are now grouped by building disjoint sub-
accountlD — balanceClass sets of{dy,,...dc } such that the elements of levels in each
accountlD  — productlD group form a complete and disjoint partitioning of the ele-
productlD  — productType ments of split levet.

orglD — orgGroup ,orglD — orgType ,
orgType — businessector ,

orgGroup — businessector

orglID — orgName,

custiID — profession ,custlD — branch,

In our example, custID is the split level, and
{profession ,branch } are the optional dimension lev-
els which have to be grouped. Clearly, each element
of custiID belongs either tgrofession (in case of

profession s customerType , a private customer) or tdranch (in case of a busi-
branch — customerType |, ness customer), which implies that the aggregation paths
custiD — custName ,custiD — custAge } from custID to profession  andbranch form an

optional group of aggregation paths. Moreoveus-

In the following, we use the dimensi@tcount (see  tomerType is the join level for this group asus-
Figure 7) as running example for the derivation of CompleXtomerType is functiona”y dependent Oprofession
dimension hierarchies. In a first step, property attribute%nd branch . We point out that in generaL however, (a)
and dimension levels have to be diStinguiShed according tﬁ]ump'e groups may arise and (b) |t may be necessary
analysis requirements (recall that property attributes mayp introduce new optional levels in order to ensure com-
only be used for selections but not for aggregations). Fopjeteness for each group. Furthermore, we require that
example,orgName represents a property attribute, since each group has a join level whose elements indicate for
aggregations according trgName are meaningless to each element of the split level to which optional level

business analyStS. SimilarlyustName and Cusmge of the group it be'ongs_ For examp|e, d¢listomer-
are identified as property attributes, whereas all remainingrype contains the elementsbusiness customer >
dimensional attributes represent dimension levels. and <private customer > then each customer, i.e.,

Next, in a second step, a rough approximation of the dieach element afustiD , belongs tdoranch if the cus-
mension hierarchy is obtained by building a directed grapRomerType is <business customer > and topro-
whose nodes are dimension levels. This graph Contain%ssion otherwise. ThuspustomerType is a join
an edge from dimension level to leveld;, if di # dj  |evel that satisfies our requirements. In general, it might

andd; — dj is a non-transitive FD, i.e., ifi — dj holds  pe necessary to introduce such a join level explicitly.
and there is no dimension levey} (dg # d;,d;) such that

di — de — dj holds. . . Definition of summarizability constraints
The graph obtained so far is now augmented with prop-
erty attributes: Property attributh, is attached to dimen- As already argued in, e.g., [LS97, GMR98, PJ99], not all
sion leveld, if the FDdy — dp is non-transitive. The infor-  possible aggregations of measures within a certain applica-
mation whether a property attribute is optional or not cartion scenario make sense in general. For example, given a
be retrieved from the requirements specification. group of customers, summing over as well as taking aver-
Finally, multiple dimension hierarchies have to be ages of account balances may be perfectly reasonable; sim-
checked whether they contain optional groups of aggre#arly, the computation of average ages may be reasonable,
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—| account H accountlD i——»' custiD
tcustName
custAge
—>| orglD orgGroup businessector |
l orgName
—>| productID |—>| productType |

| balanceClass
turnoverClass

Figure 7: Multiple Dimension Hierarchgccount .

customerType |

whereas the sum of customer ages will probably be mearbased on the allowed aggregation functions along every
ingless. Consequently, a conceptual model should providpath is meaningful. We declare a chosen restriction on
means to distinguismeaningfulaggregations of measures a given dimension level implicitly valid for all dependent
from meaningles®nes, as this information helps analysts higher dimension levels. This does not exclude the possi-
in formulating their queries. In particular, the warehousebility to define further constraints with greater restriction
schema should express explicitly which measure may b&vel on higher dimension levels.

aggregated along what dimension hierarchy according to The results of this process are arranged within a sum-
what aggregation function. Clearly, we could integrate thismarizability appendix such as the one shown in Table 4,
information into the graphical fact schemata by connectwhich contains the restriction levels for measures in the fact
ing each pair of measures and terminal attributes by aschema of Figure 1.

edge that is labeled with all meaningful (or, alternatively, The measuréalance is additive in the dimension
by all meaningless) aggregate functions. However, for théevel accountID, so we assign restriction level 1 to it for
schema shown in Figure 1 we would already have to adall aggregation paths starting accountID . In contrast

at least 8 edges, thereby reducing readability. Hence, weumming ugbalance -values in the dimension levef-
refrain from representing meaningful aggregations withinfectiveDay  is meaningless. Nevertheless the analysis
graphical schemata, but propose to sissmmarizability ap-  of average values or other statistical characterizing quanti-
pendicesas described next. ties makes sense, so restriction level 2 is allocated for the

Along the lines of [PJ99] we distinguish four degrees of dimension leveeffectiveDay

increasing restriction levels for measures within the con- ) )
text of dimension levels as shown in Table 3. Given a pai®  DIscussion

(m,d) of a measuren and a dimension leval, we asso-  ,mnared to the approaches [CT98, GMR98], our analysis

ciatg restriction level 1, if_ all ag_gregate functions may beOf FDs corresponds to the “schema navigation” performed
applied to roll-upm from dimension leved to every func-  j, yhose approaches. However, we start by an identifica-
tionally dependent higher level. Restriction level 2 is assOtion of measures and proceed algorithmically from there

ciated to those pairem,d), where all aggregate functions ,, \hereas [CT98, GMR98] start by a rather vague identi-
but the SUM-Operator are applicable (e.g., age informatione iion of facts. Moreover, our method is justified by mul-
along the customer dimension as explained above). Thﬁdimensional normal forms as we will show next.

restriction level 3 represents the highest limitation, where First, we recall terminology related to multidimensional

aggregation is still possible, but only in terms of countingnormal'forms from [LAW9S], suitably adapted to our

(e.g., for cor)stant mgas_ures). I_:inglly, degree 4 states thﬁtamework. We point out that [LAW98] distinguishes weak

na aggregation function is permissible. FDs (which amount to partial functions) from non-weak
Given the graphical, conceptual schemata so far, thenes (denoting total functions), whereas we (equivalently)

next step is to define restriction levels for all measuresnake use of FDs in the usual sense but distinguish optional

along the different aggregation paths in every fact schemdgrom mandatory attributes.

For each pair of measures and dimension levels we define A dimensional schemia a set of dimensional attributes

a restriction level such that every multidimensional queryD where for alld; € D there isd; € D\ {d;} such that we
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Table 3: Classification of Restriction Levels.

Restriction level | Applicable aggregate functions
1 { SUM, AVG, MIN, MAX, STDDEV, VAR, COUNT}
2 { AVG, MIN, MAX, STDDEV, VAR, COUNT}
3 { COUNT}
4 {J

Table 4: Summarizability Appendix for Fact Scheatwountfacts

Fact schema Measure Dimension levels Restriction level
account facts balance accountlD 1
effectiveDay 2
turnover accountlD 1
effectiveDay 1
creditlimit accountlD 2
effectiveDay 2
interest accountlD 2
effectiveDay 2
have an FD of the form eithey — d; ord; — d;. A multidi- the dimensions.
mensional schemia a pairM = ({Dy,...,Dk},S), where Now we are ready to relate our approach to the concepts

{D1,...,Dk} is a set of dimensional schemata @& a  introduced in [LAW98]:
measure that is functionally determined by the attribmeiemma 51
occurring in{D1,...,Dx}. A dimensional attributei € D '

is terminal if there is nod € D\ {d;} such thad — d;. A 1. Each dimension hierarchy determined during concep-
dimensional attributd € D\ {d; } is acategory attributef tual design is a dimensional schema that is rooted in
dis mandatory and thered$ € D\ {d,d} such that’ — d exactly one terminal attribute.

ord’ is mandatory and — d’; all other attributes arprop-

erty attributes Letd; be a terminal attributed, a property

attribute, andl; a category attribute of a common dimen- 3 |, gimensions without optional hierarchies all dimen-

sion. An element of d; is acontext of validityof dp, if (a) sion levels are mandatory.

for each element ak belonging tec there is a value fodp

and (b) for each element of not belonging ta there is no 4. If adimension contains an optional hierarchy then the

value fordp. elements of the join level represent contexts of validity
for property attributes.

2. The dimensions are orthogonal to each other.

A dimensional schem@ is in dimensional normal form
if (@) there is exactly one terminal attribuee D, (b) the 5. All measures are full functionally determined by the
elements ofty are complete (i.e., all real-world concepts set of terminal dimension levels of the dimensions.
are captured_),_and (c_) all dimensional attributes are mandebsing this lemma, we can show the following:
tory. A multidimensional schemil = ({D4,...,Dg},9
is in generalized multidimensional normal form (GMNF) ~ Theorem 5.1 The conceptual design described in Section
the following conditions are satisfied: (1) For each property4 produces fact schemata in generalized multidimensional
attributed, € D; there is an element of a category attribute normal form.

de € Dj denoting the context of validity ofly. (2) Each 4 ctive to note that the distinction of property and

dimensional schema restricted to category attributes is ”Eategory attributes in the sense of [LAW98] is not neces-
dimensional normal form. (3) The dimensions are orthog-

. . ry in order har riz hemata in GMNF.
onal to each other, i.e., there are no FDs among attrlbutga y in order to characterize schemata in G
from distinct dimension schemata. (4) Meas@&s full Theorem 5.2 A fact schema is in GMNF if the following

functionally determined by the set of terminal attributes ofconditions are satisfied.
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