
Conceptual Data Warehouse Design
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Abstract

A data warehouseis an integrated and time-
varying collection of data derived from opera-
tional data and primarily used in strategic deci-
sion making by means of online analytical pro-
cessing (OLAP) techniques. Although it is gener-
ally agreed that warehouse design is a non-trivial
problem and that multidimensional data models
and star or snowflake schemata are relevant in
this context, hardly any methods exist to date
for deriving such a schema from an operational
database. In this paper, we fill this gap by showing
how to systematically derive a conceptual ware-
house schema that is even ingeneralized multidi-
mensional normal form.

1 Introduction

A data warehouseis generally understood as an integrated
and time-varying collection of data primarily used in strate-
gic decision making by means of online analytical process-
ing (OLAP) techniques. It is essentially a database that
stores integrated, often historical, and aggregated informa-
tion extracted from multiple, heterogeneous, autonomous,
and distributed information sources. Although it is gen-
erally agreed that warehouse design is a non-trivial prob-
lem and that multidimensional data models and star or
snowflake schemata are relevant in this context, hardly any
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methods exist to date for deriving such a schema from
an operational database. In this paper, we recall the no-
tion of multidimensional normal form (MNF)[LAW98] as
a means to describe “good” warehouse schemata, and we
show how to systematically derive a conceptual warehouse
schema in MNF from a given operational schema.

Traditional database design methods [BCN92, Vos99]
structure the design process into a sequence of phases or
steps. It is common to start withrequirements analysis and
specification, then doconceptual design, then logical de-
sign, and finallyphysical design; this broad description can
be refined in a variety of ways. As a central issue during
a design process, aconceptualschema for the database un-
der design is established which is then transformed into the
“language of alogical data model as the basis for physical
implementation. For data warehouses, no corresponding
methodology is yet in sight, although there is a large body
of literature that discusses how to derive schemas based on
intuitive principles. We remedy this situation by present-
ing a method for conceptual warehouse design that is in
line with traditional database design, and that fits into a
modeling process which follows classical approaches. An
important point for our exposition is that traditional design
methods have clearly defined goals and objectives, such as
completeness w.r.t. a coverage of the underlying applica-
tion, minimality of resulting schemata, freedom of redun-
dancies, readability, etc. Some of these requirements can
even be made formally precise. Most notably, relationalde-
pendency theoryprovides insight to understanding the rea-
sons for redundancies in database relations, and formalizes
normal forms and normalization as a way to avoid them;
moreover, there are algorithmic approaches (such as the
synthesis algorithm [Vos99]) for constructing normalized
schemata.

For two reasons, the above is in remarkable contrast
with what can be called warehouse design. First, current
practice in data warehousing and its applications marks a
radical departure from the principles of normalized schema
design. Indeed, a common understanding of a “well-
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designed” warehouse schema is that the schema under con-
sideration should have the form of a “star”, i.e., it should
consist of a centralfact tablethat contains the facts of in-
terest to an OLAP application, and that is connected to a
number ofdimension tablesthrough referential integrity
constraints based on the various dimension keys. Since di-
mensions can be composed of attribute hierarchies, it is of-
ten the case that dimension tables are unnormalized, and
their normalization results in what is known as asnowflake
schema. As an example, the conceptual schema shown
in Figure 1 may be perceived as a conceptual snowflake
schema that corresponds to the operational schema of Fig-
ure 2. Second, the research community has not been paying
too much attention so far to (a) developing complete de-
sign methods for data warehouses in general or for concep-
tual design in particular, and (b) establishing guidelines for
good schema design or integrity constraints within the con-
text of multidimensional models. As a result, there appears
to be a discrepancy between traditional database design as
applied to operational databases, and the design principles
that apply to data warehouses.

We remedy this situation by presenting a phase-oriented
design process for data warehouses that is modeled after
the traditional design process, where we use an example
from the banking domain as our running example. Con-
cretely, we will show how to obtain the warehouse schema
shown in Figure 1 from the conceptual operational database
schema in Figure 2. The most important phase, the phase of
conceptual design, has to sort outdimensions, correspond-
ing dimension hierarchies, andmeasures, and has to deter-
mine which attribute from the underlying database(s) be-
longs where. Our contribution here is threefold: First, we
establish guidelines for answering the question of whether
an attribute is a dimension level or a property attribute.
Second, we propose a graphical formalism for conceptual
warehouse design that captures this distinction in an ap-
propriate way. Third, we show howgeneralized multidi-
mensional normal form (GMNF), originally proposed in
[LAW98], can be obtained for a warehouse schema under
design.

The organization of this paper is as follows: In Section
2, we briefly recall the database design process, and we re-
view previous approaches on warehouse design and normal
forms for warehouse schemata. We then introduce neces-
sary terminology in Section 3, before we propose and illus-
trate our approach to conceptual warehouse design in Sec-
tion 4. Afterwards, we show in Section 5 that our design
method does indeed produce schemata in GMNF. Finally,
concluding remarks and plans for future research appear in
Section 6.

2 Related Research

Database design, i.e., the task of mapping a given real-
world application to the formal data model of a given

database management system, is ia well-understood pro-
cess; following [BCN92], database design can roughly
be seen as being done in four steps, with the result of a
database schema which can be processed by a database
management system. This process comprises the phases
requirements analysis, conceptual schema design, logical
schema design, andphysical schema design.

Concerningdata warehouse design, there is a general
agreement that at least a conceptual or logical modeling
activity should precede the actual implementation [WB97,
AGS97, CT98, GMR98]. Typically, the modeling activ-
ity is based on a multidimensional model (see [BSHD98,
VS99, PJ99] for comparisons of various multidimensional
models), whereas the implementation is carried out either
within relational or multidimensional databases [CD97].
However, most of these models were developed without an
embedding into a design process and thus without guide-
lines on how to use them or what to do with the result-
ing schemata. Notable exceptions in this respect are the
approaches of [CT98] and [GR98], which we summarize
next.

In [CT98] a design method is presented that starts
from an existing E/R schema, derives a multidimensional
schema, and provides implementations in terms of rela-
tional tables as well as multidimensional arrays. The
derivation of the multidimensional schema is structured
into the steps (1) identification of facts and dimensions,
(2) restructuring of the E/R schema, (3) derivation of a di-
mensional graph, and (4) translation into the multidimen-
sional model. In the first step, facts along with their mea-
sures have to be selected, and afterwards dimensions for a
fact are identified by navigating the schema. Then, in the
second step, the initial E/R schema is restructured in or-
der to express facts and dimensions explicitly, thus arriving
at a schema that can be mapped to the multidimensional
model. From this point on, the remaining steps provide
natural translations of the E/R schema into an multidimen-
sional schema and then into a target database schema.

The work of [GR98] presents a complete warehouse de-
sign method which resembles the traditional database de-
sign and consists of the following steps: (1) analysis of
the information system, (2) requirement specification, (3)
conceptual design (following the method of [GMR98]), (4)
workload refinement and schema validation, (5) logical de-
sign, (6) physical design. We note here that the design of a
conceptual schema is carried out by producing a so-called
fact schemafor each fact, which, following [GMR98], can
be derived from an E/R schema using an algorithmic pro-
cedure, which starting from facts navigates through the
schema along x-to-one relationships in order to determine
dimensions and their hierarchies.

Concerning these two approaches, we critically remark
the following. In [CT98], conceptual and logical design
are mixed, and a “logical” multidimensional model is pre-
sented. We argue (in accordance with, e.g., [WB97]) that
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Figure 1: Conceptual Multidimensional Schema.
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Figure 2: Sample Conceptual Operational Schema.
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the conceptual design should be independent of the target
database system, whereas the logical design should be tai-
lored towards the chosen target system (here: relational
or multidimensional database system). As a consequence,
what is called logical design in [CT98] should actually be
called conceptual design instead, and the implementation
activity of [CT98] should be divided into a logical and a
physical design phase, as in [GR98]. Moreover, the crucial
first two steps of [CT98] are presented by examples only,
and remain rather vague. In contrast, [GR98] contains an
algorithmic procedure to perform the corresponding activ-
ities. However, neither approach provides any formal jus-
tification for the applied method, and nor does it supply
criteria according to which schema quality could be mea-
sured.

In summary, well-established design phases for mul-
tidimensional databases are still missing, and while nor-
mal forms have a long tradition in the area of relational
databases as guidelines for good schema design, research
on quality factors for multidimensional database schemata
seems to have started only recently. Indeed, the work pre-
sented in [LS97] can be regarded as a first step in this re-
spect. The authors argue thatsummarizability, i.e., guar-
anteed correctness of aggregation results, is of most im-
portance for OLAP queries. Hence, any multidimensional
schema should be set up in such a way that summarizabil-
ity is obtained to the highest possible degree. Moreover, if
summarizability is violated along certain aggregation paths
then the schema should express this constraint clearly. Fi-
nally, [LS97] provides criteria that imply summarizability.

Following and extending this line of thought, [LAW98]
defines themultidimensional normal form(MNF) of multi-
dimensional schemata, which guarantees summarizability
within one-dimensional contexts. However, [LAW98] il-
lustrates by an example taken from [Leh98] that the mul-
tidimensional normal form might be too restrictive for
certain application scenarios and defines thegeneralized
multidimensional normal form(GMNF). As argued in
[LAW98], a schema in GMNF ensures summarizability in
a context-sensitive manner and supports an efficient phys-
ical database design. However, so far there is no design
method that guarantees multidimensional normal forms.

3 Terminology and notation

We briefly describe a graphical notation for conceptual
multidimensional data modeling next. To avoid misunder-
standings resulting from the variety of terminology in mul-
tidimensional databases, we first clarify some terms and
then use these throughout the rest of the paper.

3.1 Basic multidimensional structures

Factsrepresent atomic information elements in a multidi-
mensional database. A fact consists of quantifying values

stored inmeasuresand a qualifying context which is deter-
mined through(terminal) dimension levels. Each dimen-
sion level contains a set of instances orelements. An ag-
gregation pathis a subsequence of dimension levels, which
starts in a terminal dimension level and ends in an implicit
dimension levelAll containing a single element<all >.
Given an aggregation path(d1; : : : ;dn), wheredi is a di-
mension level, 1� i � n, we assume that every element of
di belongs to(or is associated to) at most one element of
di+1, 1� i � n�1; moreover, we say thatdi+1 is a higher
(aggregation) level thandi . A dimension is structured in
terms of one or more aggregation paths that share the same
terminal dimension level. Therefore, each dimension com-
prises at least one terminal dimension level and the im-
plicit level All . For example, a dimensiontime might
consist of the single aggregation path(day, month,
year) , where the element<2000/03/29> of dimension
level day is associated to element<2000/03> of level
month , which in turn belongs to element<2000> of level
year . In slight abuse of terminology, the graph consisting
of all aggregation paths for a given dimension is calleddi-
mension hierarchy(although a dimension level might have
more than one parent level). We assume that sets of dimen-
sion levels of distinct dimensions are disjoint.

A property attributedescribes additional information
related to a dimension level (e.g., the property attribute
custName for dimension levelcustID in Figure 1). An
optional property attribute (e.g.,custAge ) needs not be
specified for each element of the corresponding dimension
level and therefore may contain<null> values. A property
attribute can be used to delimit the resulting set of a multi-
dimensional query, but does not determine its aggregation
level.

A fact schemarepresents the dimensional context for a
set of facts that share the same terminal dimension levels;
we use graphical schemata such as the one shown in Figure
1 to express fact schemata. Note that we avoid the termfact
tableduring conceptual design, as “table” suggests logical
storage in (relational) tables, which concerns logical design
decisions only.

3.2 Dimension hierarchies

Dimension hierarchies are classified into two basic
types. A simple hierarchy consists of exactly one lin-
ear aggregation path within a dimension (e.g., path
day!month!year in dimensiontime of Figure 3).

A multipledimension hierarchy contains at least two dif-
ferent aggregation paths in a dimension (e.g., the dimen-
sionaccount of Figure 3). A group of aggregation paths
rooted in a common dimension leveld is calledalterna-
tive, if every element ofd belongs to exactly one element
of each higher level (e.g., the paths of Figure 3 starting
in dimension levelorgID ). Moreover, we allowoptional
groups of aggregation paths. Here, we assume that some
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Figure 3: Simplified Fact Schemaaccount facts with measuresfbalance, turnover g and dimensions
faccount, time g.

dimension leveldl has two or more higher levels such that
for every element ofdl there is exactly one element in a
higher level to which that element belongs. For example,
in Figure 3 the group of aggregation paths starting in di-
mension levelcustID is optional, and each element of
dimension levelcustID is related to either aprofes-
sion or abranch ); within an optional group of aggrega-
tion paths a dimension level such ascustID is calledsplit
levelwhereascustomerType is calledjoin level.

In our graphical notation, simple hierarchies and alter-
native groups of aggregation paths are indicated by sim-
ple arrows, pointing from the lower dimension level to the
higher one. Optional groups of aggregation paths are spec-
ified by double lined arrows. A mandatory property at-
tribute is connected via a diamond to its dimension level,
and an optional property attribute without.

Intuitively, aggregations along different aggregation
paths in an alternative group yield the same result. How-
ever, if a group is optional then aggregations along differ-
ent paths within the group represent (partial) aggregation
results for mutually disjoint subsets of the elements of the
terminal dimension level.

We point out that if some element of a dimension level
does not belong to an element of some higher level then all
data related to that element is lost at the higher aggregation
level, resulting in erroneous query results. To avoid such
partial mappings we propose the insertion of an element
<other > into the higher dimension level. After that we
allocate every nonrelated element of the lower level to the
element<other > of the higher one.

4 Data Warehouse Design

In this section, we propose an approach to data warehouse
design that resembles the traditional database design pro-
cess. In Section 4.1 we briefly sketch the overall approach,
then we present the conceptual design phase in detail in
Section 4.2; we refer to [Hue99] for more information on
the remaining phases.
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Figure 4: Process Model For Data Warehouse Design.

4.1 A process model for Data Warehouse design

The data warehouse design process comprises four sequen-
tial phases just like the classical database design process.
In Figure 4 these phases along with their respective input
and output are shown.

Requirements analysis and specification

The operational E/R schema delivers basic information to
determine the multidimensional analysis potential, where
we assume that such a schema is available to the ware-
house designer (if it is not, it could be obtained, for exam-
ple, through techniques of reverse engineering as described
in [FV95]). In this phase business domain experts select
strategically relevant operational database attributes and
specify the purpose to use them as dimensions and/or mea-
sures. For each attribute it is necessary to decide whether it
contains optional data or not. Furthermore, additional com-
plementary requirements in the form of complex derived
measures are added. The resulting requirements specifica-
tion contains a tabular listing of attributes along with their
multidimensional purpose. Supplementary informal infor-
mation (such as relevant business integrity constraints) can
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be added in a textual appendix, which also includes typical
strategic queries.

Conceptual design

The conceptual design phase performs a transformation of
the semi-formal business requirements specification into a
formalized conceptual multidimensional schema. The for-
malization results in a graphical multidimensional diagram,
which comprises fact schemata with their related measures
and dimension hierarchies. For each measure of a fact
scheme the summarizability constraints are formalized in
an tabular appendix. In Section 4.2 we propose a phase
model to derive such diagrams and appendices in a straight-
forward way starting from the requirements specification.

Logical design

The logical design phase converts the conceptual schema
to a logical one with respect to the target logical data
model (mostly relational or multidimensional). The logical
schemata are generated according to transformation rules,
whichonly refer to the developed conceptual diagrams and
summarizability constraints.

Physical design

The data warehouse design process ends in a physical im-
plementation of the logical schemata with respect to the in-
dividual properties of the target database system, including
physical optimization techniques such as commonly known
indexing strategies, partitioning etc., as well as OLAP-
specific adjustments like relational denormalization of di-
mension tables, pre-aggregations or special use of bitmap
indexes.

4.2 Conceptual Data Warehouse Modeling

As we mentioned already, the aim of the conceptual schema
design phase is to produce a graphical multidimensional
schema, which for each measure expresses its multidimen-
sional context in terms of relevant dimensions and their hi-
erarchies.

We assume that a global operational E/R schema such
as the one shown in Figure 2 exists, which describes the
available source information. Moreover, we assume that re-
quirements analysis has been carried out together with do-
main experts, and that the global operational E/R schema
has been analyzed to determine interesting measures, di-
mensions, and initial OLAP queries. The output of this
phase consists of (a) tables such as the extract concern-
ing account information shown in Table 1 (which contains
an informal description for each relevant attribute and in-
dicates whether the attribute may be used as measure or
dimensional attribute and whether the attribute is optional
or not) and (b) standard multidimensional queries such as

“show the average turnover by year and product group” or
“how many current accounts are managed online.”

We note that Table 1 contains additional attributes
that represent multidimensional requirements which are
not part of the operational schema (e.g.,fmonth,
customerType g). In particular, the new dimension level
customerType is introduced in order to represent the
specialization hierarchy concerning different types (e.g.
business and private) of customers as shown in Figure 2.
These attributes extend operational data and augment mul-
tidimensional aggregation possibilities according to multi-
dimensional analysis needs. Further additional attributes
are obtained by an examination of those attributes that are
specified both as measure and dimension. In our case, we
note that related to business management it may not be use-
ful to query an aggregation level on discretebalance and
turnover values. Thus, we define new dimension lev-
els balanceClass, turnoverClass that represent
analysis intervals; moreover, the corresponding original at-
tributesfbalance, turnover g are then rated as non-
dimensional.

A process model to conceptual data warehouse design

We subdivide the process phase of conceptual data ware-
house design into three sequential phases:

1. context definition of measures,

2. dimensional hierarchy design, and

3. definition of summarizability constraints.

Context definition of measures

Given the setM = fm1; : : : ;mkg of measures defined dur-
ing requirements analysis and the setD of dimensional at-
tributes, every fact can be perceived as an element of a
graph of somefunctionfrom dimension levels to measures.
Hence, the conceptual design phase starts by determining
functional dependencies(FDs)1 from dimension levels to
measures. First, we determine a (minimal) keyDi � D for
each measuremi ; then we define the setFKey as consisting
of all FDs of the formDi !mi so obtained. Thus, given an
FD Di !mi 2 FKey, the dimension levels inDi functionally
determine measuremi , but are not functionally determined
by any other level. Hence, they qualify as terminal dimen-
sion levels that are used as roots of dimension hierarchies.
For each terminal dimension level we define a correspond-
ing dimension.

In our running example, we hence obtain the FD(ac-
countID, effectiveDay) ! balance 2 FKey for
measurebalance . Furthermore, all measuresmi ;mj with

1Since functional dependencies are a well-known concept in relational
databases, we assume the reader to be familiar with it; otherwise see, for
example, [BCN92, Vos99].
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Table 1: Requirements Specification.

Attribute Description M D O

effectiveDay data import date no yes no
month time aggregation no yes no
quarter time aggregation no yes no
year time aggregation no yes no
accountID account key no yes no
balance balance at effective day yes no no
balanceClass balance classification no yes no
turnover turnover at effective day yes no no
turnoverClass turnover classification no yes no
creditlimit creditlimit of the account yes no no
interest interest rate yes no no
custID customer key no yes no
custName costumer name no yes no
custAge age of a private customer no yes yes
customerType classification of customers no yes no
profession profession of a private customer no yes yes
branch branch of a business customer no yes yes
productID product description no yes no
productType classification of products no yes no
orgID attending organizational unit no yes no
orgName name of a organizational unit no yes no
orgGroup grouping of organizational units no yes no
orgType classification of organizational units no yes no
businessector classification of orgGroup and orgTypeno yes no

Di = Dj are grouped into the samefact schema, as they
share the same dimensional context.

Table 2 shows the result of this process applied to mea-
suresbalance , turnover , creditlimit , and in-
terest occurring in Table 1. All measures are func-
tionally dependent on the same terminal dimension lev-
els, namelyaccountID and effectiveDay , which
in turn belong to the dimensionsaccount and time ,
resp. Hence, all measures are grouped into a common
fact schemaaccountfacts . At this point, we start the
graphicalconceptual design by modeling fact schemata up
to terminal dimension levels (see Figure 5).
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Figure 5: First Part of the Conceptual Schema.

Dimensional hierarchy design

In the next step, we gradually develop the dimension hi-
erarchies for each dimension. To this end, we determine
all FDs between dimension levels belonging to a dimen-
siondimwith terminal dimension leveldj as follows: Sup-
pose we are given dimension levelsdk;dl 2 D s.t.dk ! dl

is a valid FD and there exists a (potentially transitive) func-
tional dependence ofdk on dj , then we adddk ! dl to the
setFdim.

In our example, fact schemaaccountfacts includes
theaccountID andeffectiveDay as terminal dimen-
sion levels. Starting with terminal dimension levelef-
fectiveDay of dimensiontime we determine the fol-
lowing FDs:

Ftime = feffectiveDay !month,

month ! quarter,

quarter ! year g

Graphically, we derive the simple dimension hierarchy
shown in Figure 6.
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Table 2: Functional Dependencies between Terminal Dimension Levels and Measures.

Fact schema Measure Dimension Terminal dimension level

accountfacts balance, account accountID
turnover,
creditlimit, time effectiveDay
interest

 m onth eff ectiveDay quarter year ... time 

Figure 6: Simple Dimension Hierarchytime .

The dimension levels of dimensionaccount exhibit the
following FDs:

Faccount= f accountID ! orgID ,
accountID ! custID , accountID ! turnoverClass ,
accountID ! balanceClass ,
accountID ! productID ,
productID ! productType ,
orgID ! orgGroup , orgID ! orgType ,
orgType ! businessector ,
orgGroup ! businessector ,
orgID ! orgName ,
custID ! profession , custID ! branch,
profession ! customerType ,
branch ! customerType ,
custID ! custName , custID ! custAge g

In the following, we use the dimensionaccount (see
Figure 7) as running example for the derivation of complex
dimension hierarchies. In a first step, property attributes
and dimension levels have to be distinguished according to
analysis requirements (recall that property attributes may
only be used for selections but not for aggregations). For
example,orgName represents a property attribute, since
aggregations according toorgName are meaningless to
business analysts. Similarly,custName and custAge
are identified as property attributes, whereas all remaining
dimensional attributes represent dimension levels.

Next, in a second step, a rough approximation of the di-
mension hierarchy is obtained by building a directed graph
whose nodes are dimension levels. This graph contains
an edge from dimension leveldi to level dj , if di 6= dj

anddi ! dj is a non-transitive FD, i.e., ifdi ! dj holds
and there is no dimension leveldk (dk 6= di ;dj ) such that
di ! dk ! dj holds.

The graph obtained so far is now augmented with prop-
erty attributes: Property attributedp is attached to dimen-
sion leveldl if the FD dl ! dp is non-transitive. The infor-
mation whether a property attribute is optional or not can
be retrieved from the requirements specification.

Finally, multiple dimension hierarchies have to be
checked whether they contain optional groups of aggre-

gation paths or not. If all dimension levels are manda-
tory according to the requirements specification then all
groups of aggregation paths are alternative. If, however,
some dimension levels are optional (such asprofes-
sion andbranch in our example) then these levels in-
troduce groups of optional aggregation paths. Assume
that dl is a (mandatory) split level that functionally de-
termines the optional dimension levelsdc1; : : :dck. These
optional levels are now grouped by building disjoint sub-
sets offdc1; : : :dckg such that the elements of levels in each
group form a complete and disjoint partitioning of the ele-
ments of split leveldl .

In our example, custID is the split level, and
fprofession , branch g are the optional dimension lev-
els which have to be grouped. Clearly, each element
of custID belongs either toprofession (in case of
a private customer) or tobranch (in case of a busi-
ness customer), which implies that the aggregation paths
from custID to profession and branch form an
optional group of aggregation paths. Moreover,cus-
tomerType is the join level for this group ascus-
tomerType is functionally dependent onprofession
andbranch . We point out that in general, however, (a)
multiple groups may arise and (b) it may be necessary
to introduce new optional levels in order to ensure com-
pleteness for each group. Furthermore, we require that
each group has a join level whose elements indicate for
each element of the split level to which optional level
of the group it belongs. For example, ifcustomer-
Type contains the elements<business customer >

and<private customer > then each customer, i.e.,
each element ofcustID , belongs tobranch if the cus-
tomerType is<business customer > and topro-
fession otherwise. Thus,customerType is a join
level that satisfies our requirements. In general, it might
be necessary to introduce such a join level explicitly.

Definition of summarizability constraints

As already argued in, e.g., [LS97, GMR98, PJ99], not all
possible aggregations of measures within a certain applica-
tion scenario make sense in general. For example, given a
group of customers, summing over as well as taking aver-
ages of account balances may be perfectly reasonable; sim-
ilarly, the computation of average ages may be reasonable,
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Figure 7: Multiple Dimension Hierarchyaccount .

whereas the sum of customer ages will probably be mean-
ingless. Consequently, a conceptual model should provide
means to distinguishmeaningfulaggregations of measures
from meaninglessones, as this information helps analysts
in formulating their queries. In particular, the warehouse
schema should express explicitly which measure may be
aggregated along what dimension hierarchy according to
what aggregation function. Clearly, we could integrate this
information into the graphical fact schemata by connect-
ing each pair of measures and terminal attributes by an
edge that is labeled with all meaningful (or, alternatively,
by all meaningless) aggregate functions. However, for the
schema shown in Figure 1 we would already have to add
at least 8 edges, thereby reducing readability. Hence, we
refrain from representing meaningful aggregations within
graphical schemata, but propose to usesummarizability ap-
pendicesas described next.

Along the lines of [PJ99] we distinguish four degrees of
increasing restriction levels for measures within the con-
text of dimension levels as shown in Table 3. Given a pair
(m;d) of a measurem and a dimension leveld, we asso-
ciate restriction level 1, if all aggregate functions may be
applied to roll-upm from dimension leveld to every func-
tionally dependent higher level. Restriction level 2 is asso-
ciated to those pairs(m;d), where all aggregate functions
but the SUM-Operator are applicable (e.g., age information
along the customer dimension as explained above). The
restriction level 3 represents the highest limitation, where
aggregation is still possible, but only in terms of counting
(e.g., for constant measures). Finally, degree 4 states that
no aggregation function is permissible.

Given the graphical, conceptual schemata so far, the
next step is to define restriction levels for all measures
along the different aggregation paths in every fact schema:
For each pair of measures and dimension levels we define
a restriction level such that every multidimensional query

based on the allowed aggregation functions along every
path is meaningful. We declare a chosen restriction on
a given dimension level implicitly valid for all dependent
higher dimension levels. This does not exclude the possi-
bility to define further constraints with greater restriction
level on higher dimension levels.

The results of this process are arranged within a sum-
marizability appendix such as the one shown in Table 4,
which contains the restriction levels for measures in the fact
schema of Figure 1.

The measurebalance is additive in the dimension
level accountID, so we assign restriction level 1 to it for
all aggregation paths starting inaccountID . In contrast
summing upbalance -values in the dimension levelef-
fectiveDay is meaningless. Nevertheless the analysis
of average values or other statistical characterizing quanti-
ties makes sense, so restriction level 2 is allocated for the
dimension leveleffectiveDay .

5 Discussion

Compared to the approaches [CT98, GMR98], our analysis
of FDs corresponds to the “schema navigation” performed
in those approaches. However, we start by an identifica-
tion of measures and proceed algorithmically from there
on, whereas [CT98, GMR98] start by a rather vague identi-
fication of facts. Moreover, our method is justified by mul-
tidimensional normal forms as we will show next.

First, we recall terminology related to multidimensional
normal forms from [LAW98], suitably adapted to our
framework. We point out that [LAW98] distinguishes weak
FDs (which amount to partial functions) from non-weak
ones (denoting total functions), whereas we (equivalently)
make use of FDs in the usual sense but distinguish optional
from mandatory attributes.

A dimensional schemais a set of dimensional attributes
D where for alldi 2 D there isdj 2 D n fdig such that we
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Table 3: Classification of Restriction Levels.

Restriction level Applicable aggregate functions

1 f SUM, AVG, MIN, MAX, STDDEV, VAR, COUNTg
2 f AVG, MIN, MAX, STDDEV, VAR, COUNTg
3 f COUNTg
4 f g

Table 4: Summarizability Appendix for Fact Schemaaccountfacts .

Fact schema Measure Dimension levels Restriction level

account facts balance accountID 1
effectiveDay 2

turnover accountID 1
effectiveDay 1

creditlimit accountID 2
effectiveDay 2

interest accountID 2
effectiveDay 2

have an FD of the form eitherdi ! dj ordj ! di. A multidi-
mensional schemais a pairM = (fD1; : : : ;Dkg;S), where
fD1; : : : ;Dkg is a set of dimensional schemata andS is a
measure that is functionally determined by the attributes
occurring infD1; : : : ;Dkg. A dimensional attributedt 2 D
is terminal, if there is nod 2 Dnfdtg such thatd! dt . A
dimensional attributed 2 Dnfdtg is acategory attributeif
d is mandatory and there isd0 2Dnfdt ;dg such thatd0 ! d
or d0 is mandatory andd! d0; all other attributes areprop-
erty attributes. Let dt be a terminal attribute,dp a property
attribute, anddc a category attribute of a common dimen-
sion. An elementc of dc is acontext of validityof dp if (a)
for each element ofdt belonging toc there is a value fordp

and (b) for each element ofdt not belonging toc there is no
value fordp.

A dimensional schemaD is in dimensional normal form
if (a) there is exactly one terminal attributedt 2 D, (b) the
elements ofdt are complete (i.e., all real-world concepts
are captured), and (c) all dimensional attributes are manda-
tory. A multidimensional schemaM = (fD1; : : : ;Dkg;S)
is in generalized multidimensional normal form (GMNF)if
the following conditions are satisfied: (1) For each property
attributedp 2 Di there is an element of a category attribute
dc 2 Di denoting the context of validity ofdp. (2) Each
dimensional schema restricted to category attributes is in
dimensional normal form. (3) The dimensions are orthog-
onal to each other, i.e., there are no FDs among attribute
from distinct dimension schemata. (4) MeasureS is full
functionally determined by the set of terminal attributes of

the dimensions.
Now we are ready to relate our approach to the concepts

introduced in [LAW98]:

Lemma 5.1

1. Each dimension hierarchy determined during concep-
tual design is a dimensional schema that is rooted in
exactly one terminal attribute.

2. The dimensions are orthogonal to each other.

3. In dimensions without optional hierarchies all dimen-
sion levels are mandatory.

4. If a dimension contains an optional hierarchy then the
elements of the join level represent contexts of validity
for property attributes.

5. All measures are full functionally determined by the
set of terminal dimension levels of the dimensions.

Using this lemma, we can show the following:

Theorem 5.1 The conceptual design described in Section
4 produces fact schemata in generalized multidimensional
normal form.

It is instructive to note that the distinction of property and
category attributes in the sense of [LAW98] is not neces-
sary in order to characterize schemata in GMNF.

Theorem 5.2 A fact schema is in GMNF if the following
conditions are satisfied.
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1. For each optional dimension level dl in dimension d
there is an element of a mandatory higher level dc de-
noting the context of validity of dl .

2. Each dimensional schema restricted to mandatory at-
tributes is in dimensional normal form.

3. The dimensions are orthogonal to each other.

4. All measures are full functionally determined by the
set of terminal dimension levels of the dimensions.

6 Conclusions

In this paper, we have outlined an approach to conceptual
warehouse design which incorporates new guidelines to ad-
dress specific warehouse needs and which can naturally be
embedded into the traditional database design process. In
this respect, the generalized multidimensional normal form
can be regarded as a quality factor that avoidsaggregation
anomalies(similar to the avoidance of update anomalies
by traditional normal forms for operational databases) and
is therefore of most importance to guarantee correct query
results.

Previously, the method proposed in [GR98] seems to
have been the only existing approach that covers a com-
plete data warehouse design starting from source integra-
tion and requirements analysis, very much in resemblance
of traditional database design. We believe that their over-
all approach is well-suited to data warehouse design, since
the separation of design phases is essential to any design
process, within the context of relational databases or other-
wise. For example, it is the requirements analysis that al-
lows to identify facts, measures, and typical queries, which
are basic ingredients for the following design steps. In
contrast, starting with the conceptual design the approach
[CT98] indicates only that facts and dimensions have to
be identified and selected but contains no hints as how to
achieve this.

Concerning further details on logical schema design, the
reader is referred to [Hue99], which focuses on the rela-
tional model, and develops a straightforward transforma-
tion procedure from the conceptual to the relational model,
where fact schemata are mapped to fact relations and each
dimension level is mapped to a separate table. Interest-
ingly, the final schema turns out to be a fully normalized
snowflake schema (if only a single fact schema occurs) or
galaxy schema (if multiple fact schemata occur and share
some dimensions).
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