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Abstract. In answer set programming (ASP), a search problem is solved by de-
scribing its solutions in the input language of an answer set solver which is then
used to compute solutions to the problem. Usually, the problem is converted to
an intermediate representation before the actual computation of solutions starts.
The current ASP systems employ a number of simplified languages (file formats
or like) for this purpose. In this paper, we review a number of intermediate lan-
guages and analyse their properties. The goal is to identify best features of such
languages to be used as the basis of new designs and thus pave the way for the
standardisation of intermediate languages in ASP.

1 Introduction

Answer set programming (ASP) [1–3] is an approach to knowledge representation and
reasoning in which a search problem is formalised in a logical language so that the
models of the representation, i.e., a logic program, capture solutions to the problem.
Then the models of the program are computed in terms of a dedicated search engine,
hereafter called an answer set solver. A general architecture for an ASP system is de-
picted in Figure 1. A full-fledged ASP system provides a programmer with a rule-based
input language using which problems are encoded. The front-end of the system consists
of a parser for this language and the outcome is an intermediate representation of the
problem in a simplified language directly supported by the search engine. The search
of models, i.e., variable assignments potentially fulfilling additional criteria, is then
performed using the respective answer set solver. The architecture described above is
simplified in the sense that solvers may carry out optional compilation steps—possibly
giving rise to additional intermediate representations of the problem.

The goal of this paper is to analyse such intermediate representations and, in par-
ticular, general requirements for languages on which they are based. Some of these
languages can be merely viewed as machine-readable file formats that are easy to parse
by the respective solver. Other intermediate languages still resemble input languages
in the sense that they come with a concrete human-readable syntax but strict syntactic
restrictions may apply. Drawing the borderline between the two extremes may be diffi-
cult though. In what follows, we briefly review a number of solvers from the ASP and
related domains and point out some intermediate languages of our interest.

– The SMODELS system [4] has its own internal file format—hereafter referred to as
the SMODELS format [5]. The front-end of the system, LPARSE, is responsible for
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grounding and partially evaluating the input program which is then passed to the
SMODELS engine in the internal format. The user can access this representation but
it is not human-readable because of the numerical representation of rules.

– The Center for Discrete Mathematics and Theoretical Computer Science at Rut-
gers University (DIMACS) has specified two formats for propositional satisfiability
problems [6]. The DIMACS/CNF format is the input language for many satisfia-
bility (SAT) solvers1. In analogy to the SMODELS format, this format enables the
representation of propositional theories in conjunctive normal form (CNF).

– A number of ASP systems compile logic programs into propositional theories us-
ing Clark’s completion procedure [7]. However, additional constraints called loop
formulas are incrementally introduced to capture answer sets in general. This is
the strategy behind the ASSAT [8] and CMODELS [9] systems which understand a
subset of the SMODELS format as their input language. The DIMACS/CNF format
is used as an intermediate representation for the completion and loop formulas.
The author [10] has developed a single-shot transformation for the same purpose.
The respective implementation, i.e., the LP2SAT system, supports a subset of the
SMODELS format and produces a DIMACS/CNF representation of the program.

– There are mainly two systems developed for disjunctive logic programming: DLV
[11] and GNT [12]. As reported by Koch et al. [13], the former system exploits
SAT technology in checking the minimality of stable models. This implies that the
DIMACS/CNF is used at least indirectly by DLV but the user has no access to the
representation. On the other hand, the GNT system consists of two cooperating
instances of the SMODELS engine. When GNT is used, disjunctive programs are
instantiated using LPARSE and hence an extension of the SMODELS format is used.
More recently, the CMODELS system was also extended for proper disjunctive rules.

– Boolean circuits (BCs) provide a viable alternative to propositional formulas as
they are able to share structure in a very natural way. The BCSAT system [14] im-
plements a check for BC satisfiability and it is based on a file format of its own [15].
The original BCSAT engine solved BCs in this format directly but now an optimised
translation into DIMACS/CNF is provided to exploit the rapid improvement of SAT
solvers. Therefore we view the BCSAT format as an intermediate language.

– Yet another format has been proposed for pseudo-Boolean solvers which deal with
linear constraints and objective functions rather than plain Boolean constraints. We
include the respective input format of PB06 evaluation [16] in our analysis.

In addition to the development of languages and solvers, the ASP community has
put forward systematic benchmarking in order to keep track what is the current state of

1 Many SAT solvers can be accessed through http://www.satlive.org/.
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Syntactic expression Internal representation
(1) a← b1, . . . ,bp,∼c1, . . . ,∼cn. 1xy#axy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(2) a← l {b1, . . . ,bp,∼c1, . . . ,∼cn}. 2xy#axy(p + n)xynxylxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(3) {a1, . . . ,ah} ← b1, . . . ,bp,∼c1, . . . ,∼cn. 3xyhxy#a1xy . . . xy#ahxy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(4) a← l ≤ [ b1 = w1, . . . ,bp = wp,

∼c1 = wp+1, . . . ,∼cn = wp+n].
5xy#axylxy(p + n)xynxy
#c1xy . . . xy#cnxy#b1xy . . . xy#bpxy
wp+1xy . . . xywp+nxyw1xy . . . xywp←↩

(5) minimize[ b1 = w1, . . . ,bp = wp,
∼c1 = wp+1, . . . ,∼cn = wp+n].

6xy0xy(p + n)xynxy
#c1xy . . . xy#cnxy#b1xy . . . xy#bmxy
wp+1xy . . . xywp+nxyw1xy . . . xywp←↩

(6) a1, . . . ,an 0←↩#a1xya1←↩ . . .←↩#anxyan←↩0←↩

(7) compute{b1, . . . ,bp,∼c1, . . . ,∼cn}. B+←↩#b1←↩ . . .←↩#bp←↩0←↩
B-←↩#c1←↩ . . .←↩#cn←↩0←↩

(8) Trailer when c models are to be computed c←↩

Table 1. The internal file format of the SMODELS system

the art in ASP. The Dagstuhl initiative [17] led to the development of a dedicated bench-
marking system called ASPARAGUS2. Already the first competition showed the need of
commonly agreed representations for benchmark problems. As the first step in this di-
rection, a core language was drafted by the steering committee of the ASP competition
at LPNMR’04 [18]. A variant of the core format, the ground core format (GCORE), has
been recently proposed by Namasivayam et al. [19]. It is natural to address the GCORE
format in this context due to its potential role in future competitions.

The rest of this paper is organised according to the following plan. In Section 2, we
describe some of the formats introduced above in more detail. These pieces of infor-
mation serve as the basis for the analysis and discussion that follows in Section 3. The
interoperability of KR systems and the role of intermediate languages in this respect is
addressed in Section 4. Recommendations presented in Section 5 conclude this paper.

2 Examples of Intermediate Languages

This section provides an introduction to a number of intermediate languages. Some of
them are merely internal file formats exploited by ASP systems in practise whereas
others are of more general syntax and nature—some distinctions in this respects will
be made in Section 3. Meanwhile we will describe the details of five intermediate lan-
guages, i.e., the SMODELS format, the DIMACS/CNF format, the ground CORE format,
the PB06 format, and the BCSAT format. Some extensions to these formats will be dis-
cussed, too. Two special symbols, literally “xy” for (white) space and “←↩” for newline,
appear in the format descriptions for the sake of concise representation.

2 The system is installed under http://asparagus.cs.uni-potsdam.de/.
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Syntactic expression Internal representation
(1) Header for n atoms and c clauses pxycnfxynxyc←↩

(2) Comments cxycomment←↩

(3) b1∨ . . .∨bp ∨ ¬c1∨ . . .∨¬cn. #b1xy . . . xy#bpxy
−#c1xy . . . xy−#cnxy0←↩

Table 2. The DIMACS/CNF format

As suggested by the list above, we begin by describing the SMODELS format that
provides an intermediate format for delivering a logic program from the front-end
LPARSE to the actual SMODELS engine [4] which implements the search for models.
A description of the format is included in the Appendix B of [5] but we present an
abridgment in Table 1. A basic assumption is that each ground atom a is assigned a
unique number denoted by #a. The representation of a program starts with a listing of
its basic rules (1), constraint rules (2), choice rules (3), weight rules (4), and minimize
statements (5) using the respective representations given in Table 1. Each line starts
with a fixed code that identifies the type of the rule in question.3 For instance, a basic
rule a ← b,∼c is represented by a single line “1 1 2 1 3 2←↩”—assuming atom
numbers #a = 1, #b = 2, and #c = 3. The next part (6) provides the symbol table for
the program, i.e., a mapping from atom numbers back to symbols. Programs may in-
volve invisible atoms without a symbolic name. Moreover, compute statements (7) may
be issued in order to constrain models to be computed by the solver. A summary of this
information, i.e., atoms assumed to be true and false, are listed in separate sections each
atom on a line of its own. The representation ends with the number of stable models to
be computed (8). All models should be computed if this count is nil.

Compared to the SMODELS format, the DIMACS/CNF format [6] has a much sim-
pler structure as specified in Table 2. The representation of a propositional theory in
CNF begins with a header line (1) which nicely enables the solver to allocate appropri-
ate data structures for n atoms and c clauses before reading them in. Any number of
comments (2) can be included; also before the header and the representation of clauses
(3). Actually, clauses are delimited by 0s so that grouping to separate lines is not neces-
sary although advisable. Unfortunately, some SAT solvers do not support empty clauses,
i.e., p = n = 0 in (3), which is disappointing in view of logical completeness. The sim-
plicity of the format, however, suggests the DIMACS/CNF format as a machine code
for knowledge representation. This view is present in the design of systems like ASSAT,
CMODELS, and LP2SAT that transform programs represented in the SMODELS format
into a DIMACS/CNF representation. The result of the transformation is usually more
complex/spacious than the original representation which goes back to fact that the ex-
pressiveness of rules under stable models strictly exceeds that of clauses [10].

The current extensions that have been proposed to the SMODELS format are listed in
Table 3. The first rule type (1) with an ordered disjunction in the head [20] is used only
internally by LPARSE, i.e., rules of this kind never appear in its output. The integration of
proper disjunctive rules (2) to the CMODELS system led to the introduction of the code

3 Code 4 is practically unused although the SMODELS engine still supports it.
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Syntactic expression Internal representation
(1) a1× . . .×ah ← b1, . . . ,bp,∼c1, . . . ,∼cn. 7xyhxy#a1xy . . . xy#ahxy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(2) a1| . . . |ah ← b1, . . . ,bp,∼c1, . . . ,∼cn. 8xyhxy#a1xy . . . xy#ahxy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩
(3) b1∨ . . .∨bp ∨ ¬c1∨ . . .∨¬cn. 9xy(p + n)xynxy

#c1xy . . . xy#cnxy#b1xy . . . xy#bp←↩

Table 3. Some extensions to the SMODELS format

8 for such rules. As a result, the new versions of LPARSE are incompatible with the
GNT system [12] which abuses choice rules, represented under code 3, as substitutes
for disjunctive ones. The plan is to remove this discrepancy in the future versions of
GNT. Note that CMODELS is able to handle programs that contain both choice rules
and disjunctive rules. The third extension (3) has arisen in the context of translating
logic programs into clauses. The idea is to enrich the SMODELS format by incorporating
DIMACS/CNF as its subformat. Then tools like LP2SAT can handle rules and clauses
on equal basis and form mixed representations of such expressions if appropriate. The
status of the extensions listed in Table 3 is still unofficial and their existence in the
future is highly dependent on the developers of the tools involved. For now, there is no
official body that would control the evolution of the SMODELS format.

The CORE format [18], as decided by the steering committee of the ASP system
contest, aims to define a common syntax for disjunctive rules of the form (2) in Ta-
ble 3.4 To this end, the format specifies (i) what kind of identifiers are used for constant,
variable, and predicate symbols, (ii) the syntax of atomic formulas, (iii) symbols for
logical connectives, and finally (iv) the syntax of rules. As an extensive example, the
reader may consider a disjunctive rule

4 Note that basic/normal rules (1) from Table 1 form a special case of such rules.

Syntactic expression Internal representation
(1) a← b1, . . . ,bp,∼c1, . . . ,∼cn. v#axy:-xyv#b1,xy . . .,xyv#bp,xy

not v#c1,xy . . .,xynot v#cn.←↩
(2) l{a1, . . . ,ah}u← b1, . . . ,bp,

∼c1, . . . ,∼cn.
lxy{xyv#a1, . . .,v#ah}xyuxy:-xy
v#b1,xy . . .,xyv#bp,xy
not v#c1,xy . . .,xynot v#cn.←↩

(3) a← l{b1, . . . ,bp,∼c1, . . . ,∼cn}u. v#axy:-xylxy{xyv#b1,xy . . .,xyv#bp,xy
not v#c1,xy . . .,xynot v#cnxy}xyu.←↩

(4) a← l ≤
[b1 = w1, . . . ,bp = wp,
∼c1 = wp+1, . . . ,∼cn = wp+n]
≤ u.

v#axy:-xylxy{xy
v#b1=w1,xy . . .,xyv#bp=wp,xy
not v#c1=wp+1,xy . . .,xynot v#cn=wp+nxy
}xyu.←↩

Table 4. Examples of the GCORE format
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Syntactic expression Internal representation
(1) Header for v variables and c constraints *xy#variable=xyv xy#constraint=xyc←↩

(2) Comments *xycomment←↩

(3) Objective function a1v1+ . . . +anvn min:xya1xyx#v1xy . . . xyanxyx#vn ;←↩

(4) a1v1+ . . . +anvn = b a1xyx#v1xy . . . xyanxyx#vnxy=xyb;←↩
(5) a1v1+ . . . +anvn ≥ b a1xyx#v1xy . . . xyanxyx#vnxy>=xyb;←↩

Table 5. The pseudo-Boolean format used at PB06 competition

open(X,Y); closed(X,Y) :- abscissa(X), ordinate(Y).

expressed in the CORE syntax. It may be questionable to view this format as an inter-
mediate language in the first place because it is merely a specification of a common
input language for a number of ASP solvers: A practicality when organising an ASP
solver contest. However, the GCORE format [19] is somewhat closer to the SMODELS
format in the sense that all rules are assumed to be ground. As an indication of this,
atom names are substituted by standard names of the form vn where n is a number. Ta-
ble 4 collects the representations of rules involved in the SMODELS format (recall Table
1) expressed using the GCORE format. Generally speaking, the GCORE format admits
a more liberal use of cardinality and weight constraints, recall the bodies of rules (3)
and (4) in Table 4, respectively, used in the heads and bodies of rules such as

1 {v1, v2} 2 :- 1 {v3, v4}, {v5, v6} 2.

In this sense, the format is more general than the SMODELS format, has features of the
input language of LPARSE but only ground rules are supported. In view of the original
CORE format, however, no representation is reserved for proper disjunctive rules.

The last two formats taken into consideration originate from other paradigms than
ASP. Pseudo-Boolean solving generalises satisfiability checking in terms of traditional
linear constraints and an objective function subject to minimisation. Problems of this
kind are represented in a format described in Table 5. The headers (1) and comments
(2) are analogous to the DIMACS/CNF format. Boolean variables are represented as
in the GCORE format but canonical names start with “x” rather than “v”. The first
non-comment line may include an objective function (3) to be minimised. The pseudo-
Boolean constraints, i.e., equalities (4) and inequalities (5), follow. These constructs
resemble weight constraints used in ASP and an objective function can be expressed
using a minimisation statement (5) from Table 1. It is good to point out that the PB06
format can be viewed as a generalisation of the DIMACS/CNF format because a tradi-
tional Boolean clause b1∨ . . .∨bp ∨ ¬c1∨ . . .∨¬cn can be captured with an inequality
b1+ . . .+bp−c1 . . .−cn ≥ 1− n where bi’s and cj’s take either 0 or 1 as their values.

Boolean circuits provide yet another representation for Boolean functions. The input
language of the BCSAT system provides a flexible representation of Boolean circuits in
terms of gate definitions of the form g:=f where g is the name of the gate and f is a
Boolean formula associated with g. The syntax of formulas is summarised in Table 6.
Together, a set of gate definitions should form a non-circular definition of the Boolean
circuit under consideration. Besides variables, Boolean constants, and standard Boolean
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variable | T | F
F1 == F2 | EQUIV( F1, . . .,Fn )
F1 => F2 | IMPLY( F1 , F2 )
F1 | F2 | OR( F1, . . .,Fn )
F1 & F2 | AND( F1, . . .,Fn )
˜ F1 | NOT( F1 )
F1 ˆ F2 | ODD( F1, . . .,Fn )
EVEN( F1, . . .,Fn )
ITE( F1 , F2 , F3 )
[ l , u ] ( F1, . . .,Fn )
( F1 )

Table 6. Syntax of formulas used in the BCSAT format

connectives there are primitives for parity checking, the if-then-else connective adopted
from binary decision diagrams (BDDs), and cardinality constraints. These extensions
nicely increase the expressiveness of basic Boolean circuits in view of applications.
Gate definitions may be accompanied by gate assignments of the forms “ASSIGN g;”
or “ASSIGN ˜g;” which set a specific gate g to true (T) or false (F), respectively, in
analogy to compute statements in the SMODELS format. Finally, we mention that a file
in the BCSAT format is supposed to start with a header line “BC1.0←↩”.

3 Analysis and Discussion

The purpose of this section is to present an analysis of five intermediate languages intro-
duced in Section 2: the DIMACS/CNF, SMODELS, GCORE, PB06, and BCSAT formats.
In the sequel, a number of properties of these languages will be pointed out and followed
by a discussion on their prevalence among the quintet under consideration. A summary
of these results is collected in Table 7. However, certain properties shared/lacked by all
formats are not mentioned for space reasons but subsequently discussed in Section 3.1.
The labels of the following items refer to the columns of Table 7.

1. FF: The language has been designed as a pure (machine-readable) file format.
This is clearly true for DIMACS/CNF and SMODELS formats. As an indication
of this, it is straightforward to implement a parser for these formats—a simple
automaton will do the job. The ease of parsing is also a goal of the PB06 format
although it insists on a support for arbitrarily long integers. A further aspect of
the these low-level file formats is that they are no longer valid input for the parser
depicted in the general architecture (recall Figure 1), i.e., they do not correspond to
a syntactic fragment of the input language. Indeed, the GCORE format is based on a
simplified LPARSE syntax in which ground atoms are additionally represented using
standard names v1, v2, . . . and so on. This means in principle that programs in the
GCORE format can be recycled through the parser but this may not be feasible for
the sake of efficiency. For instance, a simplified parser called GLPARSE is exploited
by the ASPARAGUS system in order not to affect benchmarking times of solvers by
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Format FF VI CL SN EX
DIMACS/CNF × × ×
SMODELS × × ×
GCORE × ×
PB06 × × ×
BCSAT × × × ×

Table 7. Properties of Certain Intermediate Languages Summarised

the time spent on parsing. It is also worth mentioning LPLIST5 which transforms
problem representations in the SMODELS format, or alternatively DIMACS/CNF,
back to a symbolic representation that can be parsed again. Among the formats
subject to analysis herein, the BCSAT format is in its own category as it is based on
a recursive syntax and thus requires more sophisticated methods for parsing. In any
case, the BCSAT format needs not be a fragment of the input language of the overall
system in analogy to DIMACS/CNF and the SMODELS format.

2. VI: The format includes version information that enables revisions in the future.
This feature boils down to having a header to carry such information in the format.
This is the case for DIMACS/CNF and the BCSAT format although only the latter
has a proper version number incorporated. The other three formats do not have
headers which makes it difficult to detect format versions reliably. For instance,
the extensions of the SMODELS format described in Table 3 cannot be perceived
if no rules under codes 7–8 are present. The integrity of headers is naturally a
prerequisite for reliable detection. Moreover, it does not appear as a good idea to
express version information in comment lines in an ad-hoc manner.

3. CL: The use of comment lines is allowed.
All formats under consideration except the SMODELS format have this property.

4. SN: The language carries symbolic names for (propositional) variables.
This property is significant from the user’s point of view, i.e., it enables the respec-
tive solver to print variable assignments in a human-understandable way in the last
phase of answer set computation (recall Figure 1). The users of SAT solvers have
to live with the lack of this property in DIMACS/CNF and digest lists of integers or
binary vectors in a way or another. Fortunately, the mainstream ASP solvers have
carried symbolic information from the very beginning. To this end, the SMODELS
format includes a symbol table as specified by (6) in Table 1. On the other hand, the
BCSAT format uses symbolic names of variables as lexical elements thus avoiding
loss of information in this respect. The lack of support for symbolic names can be
alleviated to some extent by incorporating such information within comment lines.
But this is only a partial solution because the format itself does not specify the
representation of symbolic names which may therefore diverge.

5. EX: The language is easily extendible with new syntactic expressions.
The poor extendibility of DIMACS/CNF goes back to the type information “cnf”
given in the header. Thus it is unnatural to introduce new expressions unless several

5 At least for now, LPLIST is distributed with CIRC2DLP at http://www.tcs.hut.fi/
Software/circ2dlp/.
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representations are concatenated one after another. The flexibility of the SMODELS
format has already been demonstrated in Table 3 where new codes for rules are
introduced. The encoding of objective functions under the PB06 format (recall Ta-
ble 5) suggests a strategy for extensions using labels for types. The remaining two
formats are easy to extend by new syntax due to flexibility of their grammars.

Interestingly, none of the formats under consideration has all of properties sum-
marised in Table 7. The BCSAT format appears to be closest to having them all. On the
other hand, the coverage of syntactic primitives was not introduced as a criterion for the
analysis because the languages have been designed for slightly different purposes.

3.1 Further Properties

In what follows, we will address further properties of intermediate languages: (i) pros
and cons of binary file formats, (ii) modularity aspects of intermediate languages, and
(iii) the possibility of embedding metadata in intermediate representations.

All the formats addressed above are based on a textual (ASCII) representation either
using numbers or character strings as lexical tokens. Thus none of them is comparable
to binary file formats produced by compilers of conventional programming languages.
This is perhaps advantageous because, on one hand, binary representations are more
tedious to implement in a machine independent way. On the other hand, textual for-
mats provide a less compact representation but can be improved using compression
techniques if space complexity becomes a concern.

The study of module systems and modularity in general are receiving growing atten-
tion in ASP [21–23]. Inspired by modular notions of program equivalence, the author
has implemented a link editor LPCAT6 for programs in SMODELS format—enabling the
construction of larger programs by linking smaller ones together. This is analogous to
the use of object modules and libraries in conventional programming systems. For tools
like LPCAT symbolic information plays a crucial role and thus formats that support sym-
bolic names are best off in view of implementing a module system. For instance, the
SMODELS format does not have a built-in support for modules, i.e., it has been designed
in order to represent a single program consisting of a set of rules. However, due to sepa-
rators used in the SMODELS format, libraries could be formed by simple concatenation
of files. Yet another strategy is to use file archive tools for storing program modules,
e.g., PKZIP provides random access to compressed modules in contrast to the use of
TAR and GZIP. The other format with symbolic names, i.e., the BCSAT format, does
neither have a module system. At least in principle, circuit definitions can be joined
together as long as the acyclicity of definitions is not endangered by such operations.
The headers of circuit descriptions make only a minor obstacle for concatenation.

There are two fundamental pieces of information associated with a symbol: its name
and the unique number assigned to it. Invisible symbols, as addressed in [10], can be
identified with their numbers. The role of symbols and symbol tables can be developed
further in the intermediate languages of ASP systems. Building a proper support for

6 This tool is used in our translation-based implementation of prioritised circumscription, the
PRIO2CIRC system, available at http://www.tcs.hut.fi/Software/circ2dlp/.
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lparse program.lp | smodels
lparse program.lp | lp2atomic | lp2sat | minisat

Table 8. Shell pipelines for computing stable models using SMODELS, LP2SAT, and MINISAT

modular program construction requires the distinction of symbol types in addition to
names. For instance, certain symbols act as the input interface for a module whereas
some other symbols mediate its output to other modules in a program. Further exten-
sions become necessary if the support for external function calls is integrated. In the
wildest scenarios, we should be ready to associate arbitrary metadata with symbols.
Such features are not present in the formats listed in Table 7.

4 On the Interoperability of ASP Tools

The development of feasible intermediate languages for ASP solvers can substantially
enhance their interoperability and usability with other related tools. So far, our expe-
riences have restricted to the use and development of tools based on the SMODELS
format and its extensions as well as DIMACS/CNF. As an example, let us consider the
use of LPARSE and SMODELS according to the general ASP architecture in Figure 1.
The first line in Table 8 shows an exemplary command line for running LPARSE and
SMODELS using a shell pipe “|” in between. When executed, the program in the input
file “program.lp” is read in and grounded by LPARSE. Then the ground program is
forwarded in the SMODELS format through the pipe for the computation of one stable
model by SMODELS; further models could be requested using command line options.

The second command line in Table 8 presents a pipeline for the same task but using
a translator from the SMODELS format to DIMACS/CNF [10] and the MINISAT solver
[24]. The first translator, viz. LP2SAT, removes positive body literals from the pro-
gram which remains in the SMODELS format. In the next step, another translator called
LP2SAT forms the Clark’s completion for the program and outputs a DIMACS/CNF rep-
resentation for it. Finally, MINISAT is used to search a model for the completion. The
use of DIMACS/CNF complicates the task of extracting a stable model from the model
of the completion because symbolic information is lost in the last phase—decreasing
the interoperability of tools involved. However, in order to circumvent this problem in
practise, we include a symbol table in the comment lines of the DIMACS/CNF repre-
sentation and replace MINISAT with a shell script that extracts names of atoms from
comments, stores them in a temporary file, runs MINISAT, extracts a model from its
output, and maps atom numbers in the model back to their symbolic names. By this
procedure we obtain a degree of usability similar to that of SMODELS. These observa-
tions suggests a need for an interface specification for ASP/SAT solvers themselves.

In addition to enhanced interoperability, intermediate languages that are commonly
agreed upon can facilitate the development of new ASP tools. For instance the rapid ad-
vancement of SAT solvers is partly due to a shared format that enables straightforward
exchange of benchmarks among the developers. Similar development is going on in the
area of ASP. For instance, ASSAT and CMODELS are new solvers that have been de-
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veloped around the SMODELS format. Quite recently, the combination of LPARSE and
SMODELS as illustrated in Table 8 is getting a challenger from that of GRINGO7 and
CLASP [25]. Again, an intermediate format plays a role in this development by separat-
ing the phase of parsing and grounding from that of solving and computing models.

In view of the interoperability of systems and tools, it is also worth raising two “po-
litical” aspects for discussion. First of all, we have several examples from the software
industry where file formats are used as vehicles in marketing policy, i.e., to prevent non-
customers from using a particular tool; or to force customers to purchase a new version
of the tool for compatibility reasons. To avoid such side-effects in the ASP community,
the development of intermediate formats should become a joint standardisation effort
the community. The work around the ASP system competition has taken first steps in
this direction [18] but this work is still at preliminary stage. In our group, we have taken
initiatives in this respect in the development of tools like DLPEQ [26] and CIRC2DLP
[27] for disjunctive logic programming. They have been designed to support both GNT
[12] and DLV [11] as their back-end solvers as to benefit the users of both systems. The
second issue is that new versions of intermediate languages tend to emerge from the
initiatives of individual system developers—with little coordination. The same applies
to revisions to existing formats which are prone to divergence if there is no control. For
instance, the assignment of codes 7–9 in Table 3 is a compromise proposed herein in
order to satisfy the needs of a number of tools. A lesson to learn is that, in the long run,
the ASP community should have an official body to regulate intermediate languages
and to coordinate any proposed extensions to them.

5 Conclusion

In this paper, we have presented the details of five existing intermediate languages re-
lated to ASP, brought attention to some of their properties through a systematic analysis,
and raised the enhanced interoperability of ASP tools as one of the main goals in the
development of new formats. On the basis of the analysis presented in Section 3, my
recommendations for any future proposals of intermediate languages are as follows:

1. The format should be easy to extend and for this reason it should also include
version information, e.g., for backward compatibility.

2. The format should carry symbolic information; preferably in the form of a symbol
table. The entries of the table should have optional fields for type information and
metadata, e.g., in view of future extensions.

3. The format should include support for comment lines or a separate section for
comments—enabling the integration of documentation in natural language.

4. The format should be based on a textual or numeric representation of the expres-
sions involved in the intermediate language. In comparison with a binary represen-
tation, savings in space can still be achieved using explicit compression methods.

5. The format should have a proper module architecture which facilitates modular
program development and enables the construction of module libraries.

7 Available at http://www.cs.uni-potsdam.de/~sthiele/gringo/.
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The five items above cover most of the aspects raised in the analysis carried out
in Section 3. However, one aspect of the format remains open in view of Table 7, i.e.,
whether to have a numeric low-level file format or one with a more general syntax
and symbols as lexical elements. This is somewhat a matter of taste and hence no firm
recommendation is spelled out in this respect. It could be even a good idea to have both
given translators between the two variants.8 Nevertheless, the SMODELS and GCORE
formats are closest candidates in this respect but as indicated by the recommendations
above not totally satisfactory as such—which leaves us with a call for new designs.

It is likely that there are other technical requirements that have not been addressed
in this paper and which could serve as a basis for further recommendations. Such factors
may also arise in the sequel when ASP evolves as a paradigm. For instance, the support
for non-ground representations may become a necessity in the future. There are also
other aspects in the development of intermediate formats. Any serious format should be
(i) properly published, (ii) provided with basic input/output routines in a number of pro-
gramming languages, and (iii) equipped with tools, like LPCAT and LPLIST mentioned
above, to handle representations in the format. A great deal of organisational work is
also required if real standard formats are to be developed for the ASP community.

There are also other formats and intermediate languages that can be taken into con-
sideration for the sake of contrast and comparison. In this respect, one candidate is
the specification of an on-line library of benchmarks for satisfiability modulo theories
(SMT-LIB) [28]. However, we excluded the analysis of the SMT-LIB format from the
current paper due to its inherent complexity: The format is based on a many-sorted
version of first-order logic with equality. In any case, the SMT-LIB format provides
an interesting generalisation of propositional theories with external theories and it may
provide useful insight how to incorporate external functions and predicates into inter-
mediate languages designed for ASP. In particular, the representation of aggregates,
such as cardinality and weight constraints introduced above, is of our central interest.

At the moment, the DIMACS/CNF format can be viewed as the de facto standard for
representing satisfiability problems for SAT solvers. An interesting question is whether
some new intermediate language will reach at least similar status in the ASP com-
munity. Hopefully, the five recommendations listed above pave the way in the design
of a good candidate for such a language. To this end, it is high time to make serious
proposals because expected benefits are manifold. For instance, it is likely that the in-
teroperability of ASP tools is enhanced and the development of ASP solvers is boosted
by extensive benchmarking enabled by a standard format. Moreover, a modular format
may turn out highly useful in controlling the complexity of grounding which is viewed
as a bottleneck of current ASP systems.
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