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Abstract. Modern developments in time-lapse microscopy enable the
observation of a variety of processes exhibited by viruses. The dynamic
nature of these processes requires the tracking of viruses over time to
explore the spatio-temporal relationships. In this work, we developed
deterministic and probabilistic approaches for multiple virus tracking. A
quantitative comparison based on synthetic image sequences was carried
out to evaluate the performance of the different algorithms. We have
also applied the algorithms to real microscopy images of HIV-1 parti-
cles and have compared the tracking results with ground truth obtained
from manual tracking. It turns out that the probabilistic approach out-
performs the deterministic schemes.

1 Introduction

Exploration of the spatio-temporal relationships of viruses advances the under-
standing of viral infections, e.g., HIV-1. Modern time-lapse microscopy of these
processes results in a large amount of visual data that, on the one hand, pro-
vides the basis for a solid statistical analysis, yet, on the other hand, requires
automatic image analysis methods. However, the task of virus tracking is ham-
pered by various issues. For instance, viruses are relatively small and exhibit a
complex motion behavior, in particular, abrupt changes in velocity and direction
are observable; this precludes the usage of motion constraints often employed in
other tracking applications. Another problem is the relatively large number of
viruses in the image sequences, which rules out the usage of algorithms that are
only applicable in the case of one or few objects. A further problem is the low
signal-to-noise ratio (SNR), which hinders the accurate localization of particles.

Only few approaches for virus tracking have been described in the literature.
Typically, a deterministic two-step approach is used consisting of: 1) virus detec-
tion, and 2) correspondence finding. For virus detection, most of the algorithms
employ some kind of maximum intensity search strategy, in which the posi-
tion of viruses are associated with intensity peaks. Subsequently, thresholding
techniques or techniques based on the intensity moments of detected candidate
viruses (e.g., [1]) are employed for rejecting noise-induced maxima. The position
of the particles may be refined by model fitting (e.g., [2]). For correspondence
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finding, a nearest-neighbor model, which assumes that a single virus carries
out the smallest possible displacement between two consecutive time steps, is
typically employed. However, in image regions with a high density of viruses,
the search for correspondences becomes ambiguous, since several possibilities
are plausible. To address this issue, approaches that consider the motion of all
viruses between two consecutive time frames have been introduced. For instance,
in [1] the total distance between all viruses is minimized.

We introduce deterministic and probabilistic algorithms for tracking multi-
ple viruses in microscopy time-lapse images. For the first time, a particle filter
approach has been employed for the task of virus tracking.

2 Tracking of multiple virus particles

We have developed four two-step deterministic tracking approaches for virus
particle tracking by combining two virus detection schemes and two correspon-
dence finding techniques. The first virus detection scheme is comprised by the
application of the spot-enhancing filter (”SEF”) [3], based on the Laplacian-of-
Gaussian filter, and a thresholding step, which yields a binarized image from
which viruses can be detected. The second technique is an enhanced 2D Gaus-
sian fitting algorithm (”Gauss”) along with rejection criteria for noise-induced
candidate viruses, such as minimum integrated intensity, and maximum ellip-
ticity of the fitted 2D Gaussian function. For correspondence finding, we have
investigated an algorithm based on a smooth motion model along with a greedy
optimization step (”Smooth”) [4], and an algorithm based on a nearest-neighbor
scheme with an optimization step inspired by an algorithm for the transporta-
tion problem (”NNeigh”) [1]. The first algorithm (”Smooth”) assumes a gradual
change in direction and displacement, and only considers the motion of one virus
at a time to resolve correspondence conflicts. The second algorithm (”NNeigh”)
assumes small displacements between two consecutive time-frames, and mini-
mizes the overall frame-to-frame displacement induced by all viruses.

We have also developed a probabilistic approach for multiple virus tracking,
which formulates the task of tracking as a Bayesian sequential estimation prob-
lem. Such probabilistic approaches are relatively novel in the area of biological
imaging. An initial effort in this direction is introduced in [5], in which a joint
particle filter is utilized for a different tracking application, namely the tracking
of growing microtubules. We have extended and applied this method for the
tracking of multiple viruses. In our case, each virus is represented by a state
vector xt that includes the position, velocity, and intensity. This state evolves in
time according to a predefined dynamic model p(xt | xt−1) (here we used Brow-
nian dynamics) and is observed at discrete times t through measurement vectors
yt. The predictions generated by the dynamic model are tested against the infor-
mation provided by the measurement yt via an observation model p(yt | xt) (in
our case, the probability that the predicted state xt generated a Gaussian inten-
sity distribution in the image, i.e., a virus). Inference on the true state is based
on the posterior distribution p(xt | y1:t), which is conditioned on a sequence of
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Fig. 1. Tracking results for a synthetic image sequence

observations y1:t−1, and which is obtained using Bayes’ theorem:

p(xt | y1:t−1) =
∫

p(xt | xt−1)p(xt−1 | y1:t−1)dxt−1 (1)

p(xt | y1:t) ∝ p(yt | xt)p(xt | y1:t−1) (2)

The numeric implementation of these equations has been done via a joint par-
ticle filter. In contrast to [5], in which manual initialization is employed, in our
algorithm we automatically initialize the tracking via one of the above-mentioned
virus detection approaches. Furthermore, instead of using a fixed value for the
σ parameter which defines the Gaussian intensity distribution in the observa-
tion model p(yt | xt), we automatically compute this parameter based on the
Gaussian fitting results; in this way, we can track virus particles with different
apparent sizes.

3 Experimental results

We have applied our algorithms to both synthetic as well as real microscopy
image sequences. In total, we generated four synthetic image sequences, each
consisting of 50 images (size 400×400 pixels) containing 25-40 simulated moving
viruses using 12 different signal-to-noise ratio (SNR) levels. The noise model was
assumed to be Poisson distributed. To measure the performance, we employed



9

Table 1. Tracking results for a real microscopy image sequence

SEF+Smooth SEF+NNeigh Gaussian+Smooth Gaussian+NNeigh MMPF

Ptrack 60.87% 73.91% 60.87% 69.57% 95.65%

Fig. 2. Sample image from a real microscopy image sequence (a) and results obtained
by the MMPF (b). An enlarged section delineated with a black rectangle in (b) is
shown in (c). The image intensities have been inverted for visualization purposes

(a) t=0 (b) t=138 (c) t=138

the tracking accuracy defined as Ptrack = ntrack,correct
ntrack,total

, which reflects the ratio
between the number of completely correctly computed trajectories ntrack,correct

and the number of all true trajectories ntrack,total. ntrack,correct counts those tra-
jectories that span the same time period as their true counterparts, and yield
a mean-squared error (MSE) between the measured object displacement and
the true object displacement lower than a certain threshold (in our case we
used a threshold of 2). A statistical test (one-way ANOVA) for each of the syn-
thetic sequences yielded no significant differences between the performance of
the different algorithms (see Fig. 1). The reason for this result is probably the
simplistic nature of the synthetic images (e.g., constant number of objects and
constant intensity). We also validated the algorithms based on a real microscopy
image sequence (see Fig. 2), consisting of 250 16-bit images (size 512×512 pix-
els) with 23 well-defined virus particles. In this sequence, fluorescently labeled
HIV-1 particles [6] were imaged using a fluorescence widefield microscope; flu-
orophores were excited with their respective excitation wavelengths and movies
were recorded with a frequency of 10Hz. Ground truth on the virus positions
was obtained by manual tracking using the commercial software MetaMorph.
The experimental results, which have been listed in Table 1, indicate that the
probabilistic approach (MMPF=multimodal particle filter) outperforms the de-
terministic approaches (95.65% accuracy vs. 73.91% and 69.57% for the two best
deterministic approaches, Fig. 2).
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4 Discussion

We have developed deterministic and probabilistic approaches for the tracking
of viruses in microscopy images sequences. Our quantitative comparison based
on real microscopy image sequences shows that among all four deterministic
approaches, the combinations of spot-enhancing filter (SEF) or Gaussian fit-
ting with an enhanced nearest-neighbor motion model achieve the best results.
Overall, the probabilistic approach based on a particle filter outperforms the
deterministic schemes. The developed algorithms provide information on the
displacements, sizes, and intensities of the virus particles. Nevertheless, there
are still some open issues. For instance, in areas of high object density with fast
changing dynamics all algorithms have difficulties in determining the correct
correspondences. In future work, the performance of the algorithms should be
further improved in this regard.
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