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Abstract. Non-physical techniques for elastic image registration such as
different spline-based optimization methods are often applied in biomedi-
cal applications for image normalization w.r.t. non-rigid transformations.
Since mechanical properties of biological structures to be registered are
usually unknown, a ”ground truth” validation of the results of image
registration is not possible. This article presents a framework for the val-
idation of elastic image registration techniques by a direct comparison
of displacement fields vs analytical or numerical reference solutions of
customizable boundary value problems. The proposed procedure enables
an easy handling of material parameters, domain shapes and boundary
conditions, and provides a flexible benchmark-tool for quantitative vali-
dation of elastic image registration algorithms.

1 Introduction

Elastic registration techniques are widely used for normalization of biomedical
images with respect to non-rigid transformations (deformations). Depending on
core principles utilized for computation of object deformations, these techniques
can be formally subdivided into two major groups: physical and non-physical
approaches. Low number of required image correspondences, straightforward im-
plementation, computational efficiency and robustness make non-physical reg-
istration techniques, such as numerous spline- or optical flow-based methods
[1], appear more advantageous for automatic and routine application compared
to extensive physical approaches which are based on numerical solving partial
differential equations of continuum mechanics. On the other hand, non-physical
methods are still expected to produce realistic deformations of biological tissues.
Since mechanical properties of biological tissues are highly complex and variable,
an exact quantitative validation of the results of image registration by a direct
proof of the ”ground truth” is usually not possible. In practice, the accuracy of
non-rigid registration methods can be benchmarked by exemplary comparison of
a non-physical method with (i) physical methods, e.g. finite element methods, or
(ii) experimentally assessed deformation fields for some biological or surrogate
tissue samples, e.g. the ”truth-cube” [2]. However, the results of such validation
are firstly limited to that particular BVP which was used for benchmarking or
training of an algorithm, and can not be generalized to the cases with different
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material constants, domain shapes, boundary conditions, etc. Further compar-
ative tests with a strongly differing combination of parameters are required to
show the ability of a particular method to cope with a more general class of non-
rigid registration problems and to prove its accuracy. In this article, a framework
for validation of non-physical image registration techniques vs exact analytical or
numerical solutions of elastostatic boundary value problems BVPs is presented,
which enables a flexible handling of canonical material parameters, boundary
conditions and domain shapes for constructing different benchmark-tests.

2 Methods

2.1 Analytical solutions of linear elasticity

Analytical solution of partial differential equations of elasticity theory is possi-
ble only for particularly simple domain shapes and boundary conditions, such
as spheric, cylindric, cubic domains or infinite elastic medium. Nevertheless,
a boundary value problem for an arbitrarily shaped 3D domain can be con-
structed using these special closed-form solutions. To demonstrate the idea of
this approach, we focus on the fundamental solution of linear elasticity, which
describes the response of an infinite 3D elastic medium Ω∞ with the stiffness E
and compressibility ν to the impact of a point-force f(r) = fδ(r) [3]

u(f , r) =
1 + ν

8πE(1− ν)r

(
(3− 4ν)f +

(f r) r
r2

)
(1)

where r is the radial vector from the force application point to an arbitrary
observation point. Assume a compact subset Ω ⊂ Ω∞ with the boundary ΓΩ ,
see Fig. 1. In accordance with the Somigliana identity [4], the displacement field
up for all inner points p ∈ Ω of a homogeneous elastic domain (e.g. particular
image region) can be computed from the displacements uq and tractions tq of
the boundary points q ∈ ΓΩ only [5]

up =
∫

Γ

Gpqtqds−
∫

Γ

Tpquqds (2)

whereas Gpq and Tpq are the fundamental solutions for displacements and trac-
tions, respectively. Typically, non-rigid registration is applied for computation
of displacements of domain deformations for some predefined boundary corre-
spondences. Thus, we can formulate following procedure for benchmarking a
non-rigid registration technique:

– define an arbitrarily shaped spatial domain Ω with the boundary ΓΩ ,
– calculate displacements for all points of Ω and ΓΩ using (1),
– apply your method to compute displacements of inner points uΩ for bound-

ary conditions given by the displacements of boundary points uΓ ,
– compare displacements of inner points obtained with your method vs. refer-

ence displacements from (1).
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2.2 Numerical solutions of elastostatic BVPs

Following the same basic steps as described above, numerical solutions of arbi-
trary elastomechanical BVPs obtained for a finite number of mesh nodes can be
used for benchmarking a non-rigid image registration algorithm. Using numerical
solving techniques such as the finite element method, more complex boundary
conditions and material properties can be simulated. We apply the FEM on
tetrahedral grids for computation of deformations of of a cubic domain modeled
as a St. Venant-Kirchhoff material [6]. Such BVPs resemble the experiments car-
ried out with the ”truth cube” and can be seen as its virtual counterpart with
homogeneous, isotropic and non-linear elastic material properties.

2.3 Correlation of vector fields

For quantification of similarity/dissimilarity between two displacement fields,
the normalized scalar product (NSP ) can be used

NSP (u1,u2) =
u1 u2

|u1| |u2| (3)

(3) serves as a descriptor of the relative spatial orientation for each pair of
vectors, whereas NSP = 1, 0,−1 stands for correlated, uncorrelated and anti-
correlated pairs of vectors, respectively.

2.4 Topology preservation

A natural requirement on a realistic material deformation is the preservation of
local topology of the registered spatial domain. Violation of the topology preser-
vation by elastic image registration algorithms often occurs when the registration
problem is associated with computation of large deformations, and is expressed
in penetration of boundaries, distortion of mesh elements, crossing of field lines,
etc. Monitoring of the local topology preservation on FE meshes can be done by
computing the determinant of the deformation gradient

C = det(I +∇u) (4)

Topology preservation corresponds to positive C > 0, while small or negative
values C ≤ 0 indicate extremely deformed or corrupted elements with violated
local topology.

3 Experimental results

In this section we present some examples of benchmark-tests based on analyt-
ical and numerical solutions of elastostatic BVPs, which can be used for the
validation of elastic image registration algorithms.
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Fig. 1. Fundamental solution of linear elasticity (1) describes a global displacement
field u in an infinite elastic continuum Ω∞ induced by a point-force f

3.1 Construction of a BVP using the fundamental solution

Consider a cubic subdomain Ω of an unloaded infinite elastic medium Ω∞ with
material parameters E = 1 and ν = 0.45. According to (1), a point-force gen-
erates a global displacement field in Ω∞ including boundary and inner points
of Ω ∈ Ω∞. Fig. 2 shows the resulting deformation of Ω for two different cases
of its relative orientation w.r.t. the point-force vector, namely α(r , f) = π and
α(r , f) = π

2 . The displacements of boundary points uΓ yield boundary condi-
tions for computation of the displacements of inner points uΩ with the subse-
quent validation of the result vs the reference solution (1). By varying E and ν in
(1), different material properties can be simulated. In order to avoid unnatural
effects of the r−1 singularity of the Green function, the test-domain Ω should
be placed sufficiently far away from the source point, i.e. r >> 0. The orienta-
tion of Ω relatively to the force vector α(r, f) ∈ [0, π] can be varied to study
cross-contraction effects for different values of the Poisson ratio ν ∈ [0, 0.5].

3.2 FEM benchmark-tests

An advantage of numerical solving techniques such as the finite element method
is that non-linear material properties and arbitrary complex boundary condi-
tions can be simulated. Smooth displacement fields resulting from closed-form
solutions of elasticity theory can, in fact, be approximated by almost any suffi-
ciently smooth spline function. However, non-smooth distributions of deforma-
tion energy, which can arise due to geometrical or physical constraints, such as
material inhomogeneities in multicomposite biological structures, are more dif-
ficult to ”mime” with non-physical registration methods. Alternatively to the
above described BVPs with the fixed outer boundaries and homogenous one-
material model, we suggest FEM benchmark-tests with mixed boundary condi-
tions, including partially-free and -fixed outer and inner boundaries, as well as
non-homogenous material properties.
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Fig. 2. Deformation of a cubic subdomain of an infinite elastic medium Ω∞ for two
different cases of its relative orientation w.r.t. the point-force vector: α(r , f) = π (left)
and α(r , f) = π

2
(right), respectively

4 Conclusion

We have presented a framework for validation of non-rigid image registration
techniques using analytical and numerical solutions of customizable elastostatic
boundary value problems (BVPs). The proposed validation procedure is based on
comparison between theoretically-predicted and simulated displacements of in-
ner domain points computed for predefined boundary displacements. The model-
ing scheme enables a flexible handling of material properties, domain geometries
and boundary conditions for benchmarking non-rigid registration algorithms or
fitting free modeling parameters. Numerical criterions for quantification of de-
gree of similarity/dissimilarity between simulated and reference displacements as
well as monitoring of local domain topology have been proposed. The presented
approach is straightforward in implementation and intends to put the validation
of non-rigid registration algorithms vs theoretical solutions of elasticity theory
on a more accurate and quantifiable platform.
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