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Abstract 
 

In this paper, the determination of defects in 
concrete structures using an ultrasound technique is 
discussed. A diagnostic model for concrete pillars by 
means of Multi Layer Perceptron neural networks is  
developed to locate and classify the defects. Finite 
Elements numerical techniques have been used to 
model a concrete pillar of specified size (i.e., 
rectangular cross section and 2 meters in span) 
affected by defects of different position and size. The 
numerical analyses enable to obtain several received 
signals containing the fault information. These signals 
have been processed by a feature extractor system, 
whose purpose is to reduce the data dimensionality 
and to compute suitable features. Results showed good 
accuracy in the identification of the position and entity 
of the faults. 
 

1. Introduction 
 
Evaluating the integrity of a masonry structure and 
locating the potential defects is a recurrent issue. Non 
Destructive Testing (NDT) allows one to implement a 
control over the material at different stages of its 
evolution and permits to safeguard the integrity of the 
structure during the analysis. 
Several methods have been proposed that use the 
propagation of ultrasonic waves for NDT tasks [1-12]. 
In fact, the wave velocity, amplitude and frequency 
content clearly depend on the state of the material. 
By applying a point impact on the surface of the 
structure under test, a stress pulse propagates into the 
concrete as compressional, shear and surface waves. 
The compressional and shear waves are partly reflected 
by any internal interface or discontinuity such as 
reinforcements, ducts, defects, delaminations. These 
waves are almost completely reflected if the second 
material is air, such as in the presence of a void or at 
the external boundaries of the element under 
investigation.  

The principle of impact echo testing is based on 
multiple reflections of the wave between the surface 
and any internal reflector. These reflected waves are 
picked up by a transducer at the receiver position - just 
besides the impactor - so that compressional wave 
arrivals will be dominant [1].  
In the transparency testing that requires access to two 
surfaces, the receiver is in the opposite surface of the 
transmitter. The first pulse that arrives at the receiving 
transducer will be diffracted around the periphery of 
the eventual defect [1]. 
Compared to the application of elastic waves for NDT 
of metals, NDT in civil engineering is a very 
challenging task. This is due to the strong heterogeneity 
of typical materials like concrete, leading to multiple 
scattering modifying the velocity and the attenuation of 
the received ultrasonic waves. 
Literature reports different approaches to concrete 
strength estimation based on the correlation between 
physical parameters and concrete strength [2,3] and its 
correlation with the compression strength is a classical 
technique that can be applied to each concrete after a 
calibration campaign. These measurements can be 
performed on cores extracted from the structure; thus, 
they are representative of a region with limited and 
supposedly homogeneous size. In [4] the authors 
analysed the longitudinal speeds of propagation of 
ultrasound in various samples of concrete, confirming 
the exponential relationship with the samples’ 
compressive strength characteristics as evaluated 
during destructive testing.  
Imaging and interpretation of the waves in the time 
domain as well as in the frequency domain can be used 
for thickness and defect location measurements. 
In [5] acoustic parameters obtained from received 
signals generated by impact on concrete surface are 
analysed to estimate defect sizes. 
The attenuation of the transmitted [6] or backscattered 
waves [7], the spectrum degeneration [8,9] or the 
evolution of the signal energy [10] are useful ultrasonic 
indicators of the damaging evolution.  



Generally speaking, in wave propagation based 
methods, the user must interpret the recorded signals. 
Qualitative interpretation requires a user experienced in 
waveform recognition. 
Artificial intelligence techniques such as neural 
networks, seem to be particularly suitable to automate 
ultrasonic signals interpretation for their ability of self-
learning and generalization. In [11] a Multi Layer 
Perceptron neural network  is trained to recognize three 
damage conditions in a reinforced concrete beam. The 
beam is divided in eight regions as diagnosis location 
and the damage is simulated by the reduction of the 
material strength. 
In [12] a concrete undamaged detection system is built 
using fuzzy neural networks to obtain the concrete 
strength, processing the rebounding value and the 
carbonation depth. 
At the author’s knowledge of the literature in this area, 
nothing has been recorded about the prediction of 
position and entity of the damage. 
In this paper, a Multi Layer Perceptron (MLP) neural 
network is trained to assess the dimensions and 
location of defects in a concrete pillar. The 
experimental test pillar is modeled using finite 
elements methods. Numerical analysis of a pillar of 
rectangular cross section is performed to generate 
training and testing samples for neural network 
assessing task. In particular, the wave source is due to 
the impact of a force in the pillar surface. The received 
signal, recorded in the opposite face of the pillar, is 
used to feed the network after a suitable preprocessing.  
The paper is organised as follows: section II  describes 
the data set generation, the adopted feature extraction 
technique and the neural model; in section III the 
results are presented and section IV reports the 
conclusions. 
 
2. Proposed Diagnostic Method 
 
The applied diagnostic technique is based on the 
propagation of ultrasonic waves in the test structure. In 
fact, the received wave’s velocity, amplitude and 
frequency content clearly depend on the state of 
concrete. In particular, in the transparency technique a 
mechanical impact is applied on the surface of the 
concrete element and a receiver is located in the 
opposite surface of the structure. The technique is 
based on the detection of elastic waves and their 
conversion into electrical signals. This is accomplished 
by directly coupling piezoelectric transducers 
(accelerometers) on the surfaces of the structure under 
test. Sensors are coupled to the structure by means of a 

fluid couplant and can be secured with tape, adhesive 
bonds or magnetic hold downs.  

Usually, the applied excitation frequency ranges 
from 15 to 75 kHz, and its propagation velocity in a 
mean is a function of the elastic characteristics of the 
mean itself (Young modulus, and Poisson coefficient) 
and of its density. 

Dishomogeneities in the structures (cracks, 
degraded regions, etc.) produce variation of the 
propagation velocity; reflections, refractions, partial 
absorption and attenuation of the wave. The analysis of 
such phenomena can be useful to evaluate the presence 
of such dishomogeneities.  

Fig. 1 shows an experimental set up to apply the 
transparency technique. 

 
2.1. Data Set 

 
The propagation of an elastic wave through a 

concrete pillar has been simulated by means of the 
Finite Element Method (FEM), using LS-DYNA 
module of ANSYS [13]. 

The numerical analyses have been carried out 
simulating an advanced multi-channel acquisition 
system.  

The instrument is based on piezoelectric transducers 
technology, and it can be arranged to generate and 
detect sonic and ultrasonic waves in the masonry 
structures under test. In the examined cases, the 
instrument has been simulated as made up of one 
excitation transducer and 7 receiving transducers 
located in the front and back sides of a pillar, as shown 
in Fig. 2 and Fig. 3. The acquisitions are repeated for 
each position of the excitation.  

The excitation is a force characterized by a triangular 
shape, lasting 50µs, and whose amplitude is equal to 
103 kN [5]. The excitation signal is shown in Fig. 4.  

The generated wave propagates in the pillar until it is 
received by the transducers in the opposite side.  
In the following, a detailed description of the three-

 
Figure 1. Experimental set up 



dimensional model used to generate the synthetic data 
is reported.  

Data have been generated by simulating propagation 
and scattering of elastic waves in the concrete structure 
with defects having different geometrical dimensions. 
The transient numerical analysis has been carried out 

by the finite element method. The general principle 
consists of defining a homogeneous medium equivalent 
to that of concrete and with the same acoustic 
characteristics. 
The geometrical dimensions and the characteristics of 
the pillar are shown in Table I. 
 
Table I - Geometrical dimensions and material 

properties of the concrete pillar 
High [m] 2 

Width [m] 0.3  

Depth [m] 0.3  

Young’s modulus [GN/m2]  33  

Poisson’s coefficient 0.300 

Density [kg/m3] 2300  
 

An analysis of the pillar model without defects has 
been firstly performed. The purpose of this test is to set 
the simulation parameters, i.e., the dimensions of the 
elements in the FEM model, and the sampling time.  

The FEM model of the concrete pillar is reported in 
Fig. 5, while the dimensions of the elements in the 
FEM model, and the sampling time are shown in Table 
II.  

Non reflecting boundaries have been imposed on the 
upper and on the bottom surfaces of the pillar in order 
to simulate an infinite boundary. These constraints are 
typically used to limit the size of the model and to 
prevent artificial wave reflections at the boundary. 
In a second phase, the same pillar has been considered, 
which presents different defects. Varying the location 
and the dimensions of the defect, several simulations 
have been performed. The defects are modelled by 
simply varying the characteristics of a set of elements 
inside the pillar, in order to simulate air regions. 

 
 

Figure 2. Front view of the pillar and 
excitation points 

 
 

Figure 3. Back view of the pillar and 
observing points 

 Figure 4. Excitation signal 



 
 

Table II – Model parameters 

Number of x-axes subdivisions 30 

Number of y-axes subdivisions 100 

Number of z-axes subdivisions 30 

Sampling time [µs] 5 

Excitation frequency [kHz] 50 
 

The defect geometrical and physical characteristics 
are reported in Table III and Table IV. 

The resulting data set is composed by 82 defect cases 
plus the fault free case. The limited number of 
simulations is due to the high CPU time required for 
each of them. 
The three components aggregate, cement, and pores 
constitute concrete as a heterogeneous material. In 
order to take it into account the wave propagation on a 
heterogeneous pillar in presence of a defect has been 
simulated. The heterogeneity has been modelled 
varying the characteristics of a set of elements inside 
the pillar, in order to simulate small air regions. 
The three examples of heterogeneous pillar have been 
used as test set in order to evaluate network robustness. 
 
Table III – Geometrical Defect characteristics 
Defect x-axis barycentre position [m] 0÷0.12 

Defect  y-axis barycentre position [m] 0÷0.2 

Defect  z-axis barycentre position [m]  ±0.08 

Defect high [m] 0.02÷0.1 

Defect width [m] 0.02÷0.1 

Defect depth [m] 0.04÷0.12 

 
Table IV – Physical Defect characteristics 

Young’s modulus [GN/m2] 1.5·10-4 

Poisson’s coefficient 0.1 

Density [kg/m3] 1.3 
 
 
For each defect, the used signals are the waves 

measured in the 7 observing points. 
In order to reduce the data dimensionality, the 

acquired waves obtained from the numerical 
simulations have been surveyed only during prefixed 
time windows. In particular, a time window of 0.005 
seconds has been chosen. This time window contains 
1000 samples. In Fig. 6, the received signals 
corresponding to pillar without and with a defect 
respectively, are reported, in the corresponding time 
windows. 

In general, if D is the number of simulations (D = 83 
in the present paper), S is the number of samples in the 
chosen temporal window (S = 1000 in the present 
paper), and N is the number of receiving transducers 
(N = 7), 3×D different matrices of dimension S×N can 
be built. Let Md, d=1,…D, be the matrix of dimension 
[S×(N×3)] characterizing a particular defective pillar 
or the pillar without defect. Each matrix Md, which 
represents the pattern describing the corresponding 
defect, has been processed (as detailed in the 
following) in order to generate input patterns suitable 
to feed the NN classifier. The corresponding output 
pattern will be constructed associating to the input 
pattern the corresponding coding of the defect, i.e., the 
barycentre position and the dimensions.  

 
Figure 5. 3-D FEM model of the concrete 

pillar 

Figure 6. Transmitted waves corresponding 
to pillar without and with defect. 

 



As outlined, some post processing is necessary on the 
Md matrices, in order to extract the significant features 
and to reduce the data dimensionality. 

 
2.2. Feature Extraction and Data Reduction 

 
A two-dimensional Fast Fourier Transform (FFT-2D) 
has been applied to each of the Md matrices, obtaining 
D new couples of matrices, Ad and Pd, containing the 
amplitude and the phase components of the FFT-2D 
respectively. In fact, it has been verified that the defect 
thickness influences the FFT amplitude, while the 
defect axial length influences the shape of the waves, 
and, consequently, the FFT phase [14,15].  
To reduce the data dimensionality, a subset of K 
amplitude components has been selected from each Ad. 
The K selected components are those whose amplitude 
is greater than the 75% of the maximum value of the 
matrix elements, i.e., 

( )snNnSsij aa
,...1;,...1

max75.0
==

⋅≥  

The coefficient 0.75 has been chosen with a trial and 
error procedure. 
The selected K amplitude components of all the D 
matrices have been stored in a unique matrix of 
dimension K×D, and the corresponding phase 
components have been stored in another matrix of the 
same dimension.  
In the present case, K is equal to 32.  
These two matrices have been normalized so that they 
have mean equal to zero and standard deviation equal 
to 1. 
 
2.3. Neural Network NDT System 

 
The use of model free approaches for NDT, such as 

neural networks, is justified by the difficulty of finding 
a proper solution to this problem by using analytical 
methods. The most widely used neural classifier is the 
Multi-Layer Perceptron. An MLP neural network is 
constituted by an input layer, one or more hidden 
layers, and one output layer of neurons. The neurons of 
each layer are connected with all the neurons of the 
previous layer. The connection weights are the free 
parameters of a learning process. They are determined 
by presenting to the network a set of actual input-
output values (the training set) and searching the 
minimum of a suitable error function, which depends 
on the connections weights.  

Due to the exiguity of data set, leave-one-out cross-
validation on 70 examples is applied to evaluate the 
network performances. In leave-one-out cross-
validation the network is trained several times, each 

time leaving out one of the samples from training, but 
using only the omitted sample to compute the error 
[16]. The resulting estimates of the generalization error 
is used for choosing among network architectures with 
a  different number of hidden neurons. The chosen 
architecture has been trained by using the 70 examples. 
Network performance has been evaluated on an 
independent test set. 

It can be noted that, if the number of examples in the 
training set is limited, as in the present problem, the 
network size (i.e., the number of connection weights) 
has to be limited, in order to avoid the overfitting of the 
network. This can be done by limiting the number of 
hidden layers, or the number of neurons in the hidden 
layers, or by reducing the number of input neurons. 
Since the number of input neurons has to be chosen 
according to the number of independent variables, i.e., 
the number of features used to describe the wave 
reflected by the defect, the feature extraction and 
selection procedure is crucial to limit the network size. 

The following MLP architecture has been used to 
predict the defect position and dimension : 

• 32 input nodes; 
• one hidden layer with 10 nodes and 

hyperbolic tangent activation function;  
• 6 output nodes corresponding to the 

dimension of the defect and the position of the 
barycentre. The output nodes activation 
functions are linear. 

The network has been trained using the Levenberg-
Marquard learning algorithm.  
 
3. Results 
 
The following results refer to the classification errors 
evaluated on an independent test set consisting of 13 
examples, not used during the training procedure.  
Figures from 7 to 12 show the actual values of the 
position of the barycentre and the defect dimensions 
and the corresponding values predicted by the neural 
classifier.  
As can be noted, the classifier is able to detect both the 
defect position and size with high accuracy in the 
majority of the tested configurations. 
The last three examples correspond to the case of 
heterogeneous pillar with small air regions in random 
position. Results show that the network is able to 
identify the defects with a sufficient accuracy even in 
case of input signals perturbed with respect to the 
training examples.  
 



 
Figure 7. Position of the barycentre in the x 

axis: actual and predicted values. 
 

 
Figure 8. X-dimension of the defect: actual 

and predicted values . 
 

 
Figure 9. Position of the barycentre in the y 

axis: actual and predicted values. 
 
 
 

 
Figure 10. Y-dimension of the defect: actual 

and predicted values. 
 

Figure 11. Position of the barycentre in the z 
axis: actual and predicted values. 

 

 
Figure 12. Z-dimension of the defect: actual 

and predicted values . 
 
 

 



4. Conclusion 
 
In the present paper a neural model for non destructive 
evalua tion of concrete’s damaging by using ultrasound 
technology is proposed. The results show that the 
proposed technique can be efficient for the diagnosis 
purpose.  
Future research will investigate the method 
applicability using a more realistic model of the pillar 
including the interaction of the ultrasonic wave with the 
scatterers. Moreover, test on a real world pillar will be 
performed. 

 
5. Acknowledgment 

The work was supported by the Italian Ministry of 
Education under the PRIN Program. 

 

6. References 
[1] C. Colla, G. Schneider, J. Wöstmann, H. Wiggenhauser, 
Automated Impact-Echo: 2- and 3-D Imaging of Concrete 
Elements, NDT.net - May 1999, vol. 4, n. 5. 
[2] Y. Berthaud, ‘Damage measurements in concrete via an 
ultrasonic technique. Part I experiment’, NDT and E 
International, Elsevier, August 1997, n. 4, vol. 30, pp. 264-
264. 
[3] S. Popovics, J.S. Popovics, ‘Effect of stresses on the 
ultrasonic pulse velocity in concrete, Materials and 
Structures’, 1991, vol. 24, pp. 15-23.  
[4] M. Del Rio, A. Jimenez, F. Lopez, F.J. Rosa, M.M. Rufo, 
J.M. Paniagua, ‘Characterization and hardening of concrete 
with ultrasonic testing’, Ultrasonics, April 2004, vol. 42, 
Issues 1-9, pp. 527-530 . 
[5] M. Asano, T. Kamada, M. Kunieda and K. Rokugo, 
“Impact acoustics methods for defect evaluation in concrete”, 

International Symposium Non-Destructive Testing in Civil 
Engineering 2003. 
[6] S. Ould Naffa, M. Goueygoua, B. Piwakowskia, F. 
Buyle-Bodinb, ‘Detection of chemical damage in concrete 
using ultrasound’, Ultrasonics, May 2002, vol. 40, Issues 1-
8, pp. 247- 251.  
[7] J.V. Fuente, L. Vergara, J. Gosalbez, R. Miralles, ‘Time-
Frequency analysis of ultrasonics backscattering noise dor 
nondestructive characterisation on cement pastes’, 8th 
European Conference on Non Destructive Testing, June 17-
21, Barcelona, 2002.  
[8] V. Garnier, G. Corneloup, E. Topani, M. Leygonie, ‘Non 
destructive evaluation of concrete damage by ultrasounds’, 
15th World Conference on Non-Destructive Testing, Rome, 
2000. 
[9] P A Gaydecki, F M Burdekin, W Damaj and D G John, 
‘The propagation and attenuation of medium-frequency 
ultrasonic waves in concrete: a signal analytical approach’, 
Meas. Sci. Technol., January 1992, vol. 3, n. 1, pp. 126-134. 
[10] P. Anugonda, J.S. Wiehn, J.A. Turner, ‘Diffusion of 
ultrasound in concrete’, Ultrasonics, 2001, vol 39, pp. 429-
435.  
[11] D.S. Hsu, C.H. Tsai, ‘Reinforced concrete structural 
damage diagnosis by using artificial neural network’, 
Proceedings of Intelligent Information Systems, 1997, 8-10 
Dec1997. 
[12] S. Yan, J. Xu, G. Yao, ‘Concrete strength evaluation 
based on fuzzy neural networks’, Proceedings of 2004 
International Conference on Machine Learning and 
Cybernetics, 2004, vol. 6, pp. 3344- 3347. 
[13] Ansys Release Note, Version 8.1, 2003.   
[14] A. Oppenhein, J.S. Lim, ‘The importance of the phase in 
Signals’, Proc. of the IEEE,1981, vol. 69, pp. 529-541. 
[15] A. Demma, P.Cawley, M. Lowe, ‘The reflection of the 
fundamental torsional mode from cracks and notches in 
pipes’, J.Acoustic. Soc. Am., 2003, vol. 114, pp. 611-625. 
[16] Bishop C.M., Neural networks for pattern recognition, 
Clarendon Press, Oxford, 1995. 

 


