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Abstract

In this work, the problem of real-time monitoring
of products’ properties from spectrophotoscopic measure-
ments is presented. Light absorbance spectra are used as
inputs to soft sensors that estimate outputs otherwise dif-
ficult to measure on-line. To overcome the issues associ-
ated to calibrating the estimation models from very high-
dimensional inputs and a reduced number of observations,
we propose to select only a subset of relevant inputs emerg-
ing from the topological structure of the data. The topo-
logically preserving representation is performed using the
Self-Organizing Map (SOM) and the relevance measured
from the U-matrices. Being based on a selection of original
spectral variables, the resulting models retain the chemi-
cal interpretability of the underlying system. Moreover, the
approach is independent on the regression model to be em-
bedded in the soft sensors. In this paper, the utility of the
Measures of Topological Relevance (MTR) over the SOM
is discussed on two full-scale problems from refining and
pharmaceutical industry.

1. Introduction

Real-time monitoring has become an essential compo-
nent of modern process industry for optimizing the produc-
tion toward high-quality products while reducing operating
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costs. The tools of on-line analytical chemistry and chemo-
metrics fulfill the necessary requirements for real-time anal-
ysis of key chemical and physical properties for a broad va-
riety of materials. This paper focuses on monitoring prod-
ucts’ properties from non-invasive and non-destructive mea-
surements obtained by light spectroscopy analysis.

The principle underlying process monitoring from in-
frared (IR), near- and medium-infrared (NIR and MIR)
spectroscopic measurements is the existence of a relation-
ship between the light absorbance spectrum of a given prod-
uct and the property of interest. In fact, the spectrum is con-
ditioned by the composition of the product and, in turns,
the composition determines the property of interest. This
relationship is rarely knowna priori and it is usually recon-
structed by calibrating specific data-derived models, with-
out an explicit regard to first-principle criteria. The re-
sulting spectrophotoscopic models are used to generate in-
teresting insights on the underlying chemistry. Moreover,
the wide availability of continuous-flow spectrophotome-
ters makes the modeling approach suitable for the design
of soft sensing devices that monitor the key properties of
the products starting from the measured spectra [32].

However, the problem of estimating the property (the
output) is defined from very high-dimensional and intrin-
sically redundant inputs (the spectrum). Redundancy is
observed as the inherent collinearity existing between the
spectral inputs. Furthermore, it is not unusual to calibrate
models on a number of observations (the product’s samples)
that is radically smaller than the number of input candidates.
To address these problems, two approaches are commonly
used. One standard solution is to rely on full-spectrum



methods for dimension reduction coupled with regression:
Principal Components Regression (PCR) and Partial Least-
Squares Regression (PLSR) are reference models [11]. The
natural refinement of such an approach is to perform a pre-
liminary selection of relevant spectral ranges [20]. How-
ever, PCR and PLSR models are intrinsically limited by
their linear structure and, because based on combinations
of the original variables, are not trivial to interpret. When
“kernelized” [25] or other nonlinear [21, 3] generalizations
of methods are considered, the insight can be further re-
duced [2]. Analogous considerations apply to the functional
extensions of the methods [22, 9]. The alternative solution
consists of selecting, among all spectral candidates, only
those inputs that truly contribute to a correct estimation of
the output and, that are as much as possible not collinear.
Thus, variable selection is understood as the limit exten-
sion of range selection where the chemical interpretability
of the system is explicitly retained. Some recent advances
in spectroscopic modeling are based on such an idea. In the
absence of a chemical model, the approach is either based
on model properties [1] or on relevance indexes [24]. In ei-
ther cases, however, the computational burden associated to
variable selection can be demanding and the approach un-
practical because of the large number of candidates.

In this study, variable selection is approached by exploit-
ing the metric structure of the spectral data, leading to a
method that identifies only the spectral inputs with a topol-
ogy that best matches the output’s. The topology preserving
modeling of the data is carried out with the Self-Organizing
Map (SOM) over which the Measures of Topological Rel-
evance (MTR) between the inputs and the output are esti-
mated from the Unified-distance matrices (U-matrices). Be-
cause designed on the original spectral inputs, the result-
ing models retain a useful understandability of the underly-
ing chemical system. Being the selection performed before
building the regression models (i.e., according to a filter-
ing approach [13]), the method is also model-independent;
in the sense that, once the input variables are selected, any
estimation technique can be used to reconstruct their rela-
tionship with the output to be estimated.

The presentation is organized as follows. Section 2 in-
troduces the monitoring problem and briefly overviews the
suggested approach to variables selection using the MTR
over the SOM. In Section 3, the applications to two real-
world problems in process monitoring from the refining and
pharmaceutical industry are presented and discussed.

2. Methods and algorithms

The problem of monitoring product properties from light
absorbance spectra can be reformulated within the con-
text of variable selection and associated function estima-
tion. That is, given observations{(xi, yi)}

N
i=1 - where

xi = [xi1, . . . , xid]⊤ andyi are the inputs (on-line spec-
trum) and output (off-line analysis) variables for thei−th
observation, respectively - the task consists of modeling
the underlying functionalityy = f(x) that is assumed to
exist between the observations. Because of the very high
dimensionalityd of x (several hundreds, up to thousands)
and the small numberN of observations (several tens, up to
few hundreds), it is appropriate to operate in a reduced data
space whose dimensionality is circumscribed by the intrin-
sic complexity of the system. Formally, beingx ∈ R

d the
given set of candidate input variables, it is necessary to se-
lect a subseťx ∈ R

s, with s ≪ d, that builds the best model
for f , according to some predefined criterion [19].

Here, a three-stage methodology stemming from [4, 5] is
adopted. The methodology summarizes as follows:

1. the first stage models the input and output observa-
tions onto a Self-Organizing Map where the topologi-
cal structure of the data is preserved;

2. the second stage investigates how the output’s topol-
ogy is related to the topology of the input;

3. only the inputs with a topology that best matches the
topology of the output are selected as relevant.

Once the subseťx of inputs is selected, any regression
model can be used to reconstructf and predict the output
y. The technique preferred in our applications is the Least-
Squares formulation of the Support-Vector Machine (LS-
SVM, [26]). For completeness, we also considered classical
linear models for Ordinary Least Squares (OLS) and Ridge
regression [14]. The meta-parameters of the Ridge and LS-
SVM regression model are validated with resampling meth-
ods that estimate the prediction accuracy; the Leave-One-
Out Cross-Validation (LOO-CV) is here adopted [14].

2.1. Topology preserving mappings with the SOM

The Self-Organizing Map, SOM [17], is an adaptive al-
gorithm to formulate the vector-quantization paradigm [12].
In the following, the basic formulation and essential prop-
erties of the SOM algorithm are briefly reported.

The SOM consists of a low-dimensional (typically,2D)
regular array ofK nodes where a prototype vectormk ∈
R

p is associated with every nodek. Each prototype acts as
an adaptive model vector for the observationsvi ∈ R

p. In
the addressed context of spectroscopy, both the inputs and
the output are considered; i.e.,vi = [xi; yi] andp = d + 1.
During the computation of the map, the observations are
mapped onto the SOM’s array and the prototyping model
vectors adapted according to the learning rule:

mk(t + 1) = mk(t) + α(t)hk,c(vi)

(

mk(t)− vi(t)
)

, (1)



wheret is the discrete-time coordinate of the mapping steps,
and α(t) ∈ (0, 1) the monotonically decreasing learning
rate. The scalar multiplierhk,c(vi) denotes a neighborhood
kernel function centered at the Best Matching Unit (BMU),
the model vectormc that best matches with the observation
vectorvi. The matching is determined according to a com-
petitive criterion based on the Euclidean metric|| · || and, at
each stept, the BMUmc(t) is the prototypemk(t) that is
the closest to the observationvi(t):

||mc(t) − vi(t)|| ≤ ||mk(t) − vi(t)||, ∀k = 1, . . . , K.
(2)

The neighborhood kernelhk,c(vi) centered atmc(t) is
usually chosen in the Gaussian form:

hk,c(vi) = exp
(

−
||rk − rc||

2

2σ2(t)

)

, (3)

where the vectorsrk andrc (in R
2, for a2D map) represent

the geometric location of the nodes on the array, andσ(t)
denotes the monotonically decreasing width of the kernel
that allows for a regular smoothing of the prototypes. On
the array, the effect of the kernel decreases with the distance
between the BMU and the other prototypes.

The map is computed recursively for each observation.
As α(t)hk,c(vi) tends to zero witht, the set of prototype
model vectors{mk}

K
k=1 is updated to represent similar ob-

servations in{vi}
N
i=1 and the prototypes converge toward

their asymptotic limits [23, 8]. The resulting model vectors
form a submanifold in the original data space where the rel-
evant topological and metric properties of the observations
are preserved. Thus, the SOM is to be understood as an or-
dered image of the original high-dimensional data manifold
modelled with a low-dimensional array of prototypes. On
the SOM’s array, the complex nonlinear structures existing
between the data are represented with simple geometric re-
lationships.

The MTR based on the U-matrix of the SOM

The Self-Organizing Map is widely employed to getting a
visual insight of the data and to starting a preliminary in-
vestigation of potential relationships between the compo-
nent variables. From the SOM, dependencies can be ei-
ther searched by looking for similar patterns in identical
positions in component plane and distance-based represen-
tations of the map [28] or estimating the correlation coeffi-
cients between such displays, as proposed in [29].

We propose to identify the relevant inputs by exploiting
the topology preserving properties of the SOM of the input
and output data according to a relevance measure derived
from the assumed continuity of the unknown functionality
y = f(x). Under this hypothesis, if two pointsxi andx

′
i

are close together in the input space, it is expectable that

f(xi) andf(x′
i) are also close together in the output space.

Therefore, the continuity off is also represented in the lo-
cal topology of the data and, thus, recoverable from nearest
neighbors graphs. If the neighborhood continuity is not sat-
isfied (i.e., the pointsyi andy′

i are not close together in the
output space) it can be either due to the presence of noise or
because the inputs are not related to the output. In order to
benefit from the noise-filtering properties of the SOM, this
general principle can be directly explored from the set of
model vectors{ml}

M
l=1 and the U-matrix of the SOM, as

proposed in [5].
The standard approach to recover the topological struc-

ture of the data from the SOM is to compute the Unified-
distance matrix, or U-matrix [27]. The U-matrixU is built
from local distances for each SOM node and, thus, defines
a nearest neighbor graph based on the model vectors of the
map. To represent the local topology of the component vari-
ables, the corresponding U-matrices are calculated indepen-
dently along each direction of the data space; that is,Uxj

(with j = 1, . . . , d) for the input variables, andUy for the
output. The relevance of the inputxj to the outputy is cal-
culated from the distance between the topologies, that is:

D(xj , y) = ||Uxj
− Uy||F , (4)

where the matrix Frobenius metric|| · ||F measures the
closeness between the U-matrices; the closer to0 is the
measure, the more relevant is the input for reconstructing
the output. In order to clearly represent relevance, the mea-
sureD(xj , y) ≥ 0 is preferably inverted and rescaled so
that, larger values indicate stronger relevances.

In principles, variable selection is simply performed by
ranking the inputs according to their relevance to the out-
put, and selecting a reduced but still representative subset
x̌ ∈ R

s. However, this basic selection procedure applied
to spectroscopy data is intrinsically limited by the contin-
uous nature of the light’s wavelengths domain, regardless
the employed relevance index as long as it is continuous. In
fact, it is intuitive that absorbances measured at neighboring
wavelengths are characterized by a relevance to the output
that is very similar. Therefore, the selection of an inputxj

that is found to be relevant to predictingy is naturally ac-
companied by the selection of a broad range of contiguous
inputs also characterized by high relevance, but redundant
because embedding a near-identical informative content.

2.2. An input selection strategy for spectroscopy

In such context, the selection scheme proposed in [4] can
be easily adapted to the topological measures of relevance
defined in Equation 4. The procedure was originally de-
fined for a standard measure of dependence, the Pearson’s



Correlation Coefficient (CC):

R(xj , y) =
E[xjy] − E[xj ]E[y]

√

E[x2
j ] − E[xj ]2

√

E[y2] − E[y]2
, (5)

where, in practice, the expectations are approximated based
on a finite number of observations. However, the CC is only
able to capture dependencies that manifest themselves in the
covariance. This motivates the use of alternative measures
of relevance. In the case of MTR over the SOM, the selec-
tion procedure summarizes as:

1. calculate the full setD = {D(xj , y)}d
j=1 of pairwise

relevances between each input-output pair;

2. select the subset of inputšx with a topology that best
matches the output’s: i.e.,

x̌ = {x̌j∗ ⊂ x : j∗ = argmax
j

D(xj , y)}s
j∗=1.

The procedure identifies only the inputs that are associ-
ated to the local maxima ofD, thus, relevant to predict the
output. In that sense, the selection is optimal with respect
to the problem of predicting the output: in fact, among sim-
ilar inputs, only the maximally relevant ones are retained
and the neighboring redundancies are discarded. Being rel-
evance to the output the only supervising criterion for se-
lection, the procedure is still suboptimal with respect to
problem of selecting inputs that are also minimally redun-
dant. Nevertheless, the selected variables are implicitely as
much as possible dissimilar, because each prototypes differ-
ent subsets of inputs separated by the local minima ofD.

Because the selection scheme is general and valid for
any measure of relevance, as long as it is defines a continu-
ous function in the operating domain of wavelengths of the
spectrophotometer, in this study we also considered other
measures: namely, i) Mutual Information (MI, [6]), and;
ii) Noise Variance Estimates (NVE, [10]). For the sake of
comparison, also CC, MI and NVE results are included in
the experiments performed on the case studies in Section 3.

Mutual information measures the distance between the
joint densityp(xj , y) and the product densityp(xj)p(y)
in the sense of Kullback-Leibler divergence. The analytic
form of the MI is given by:

I(xj , y) =

∫

p(xj , y) log
p(xj , y)

p(xj)p(y)
dxjdy. (6)

It can be shown thatI(xj , y) ≥ 0 andI(xj , y) = 0 if and
only if the variablesxj andy are independent. The inte-
gral can be viewed as a measure of distance between the
actual joint distribution and the joint distribution underthe
assumption of independence of the variables. To estimate
MI we used the estimator introduced in [18].

Noise Variance Estimation is a technique that, under
the assumption that there is a functional relationship be-
tweenxj andy, estimates the part of the output that can-
not be modelled with the given inputs (i.e., the noise). As
such noise variance estimates can be also understood as the
best possible Mean Squared Error (MSE) obtainable by any
model. This task can be done in various ways of which we
chose the well-known estimator proposed by Gasser [10].

3. Applications

The development and the application of the studied soft-
sensors is illustrated with two actual monitoring tasks from
the refining and the pharmaceutical industry. The selected
applications are referenced full-scale problems for variable
selection and interpretation, as well as prediction purposes.

3.1. Study case 1: Predicting the octane number in
finished gasolines

The first application consists of estimating the octane
number in gasolines. The American Society for Testing and
Materials (ASTM) standard for obtaining such a property is
based on an internal combustion engine in which the octane
number is measured [15]. The procedure is time consum-
ing, involves expensive and maintenance-intensive equip-
ment and requires skilled labor and, therefore, is not well
suited for on-line monitoring. Nevertheless, real-time mea-
surements of such a property are of fundamental importance
for both the production and the blending process of finished
gasolines. The application of the methodology is discussed
on a set of spectral measurements and associated evalua-
tions of the octane number provided by Camo A/S (Trond-
heim, Norway), which is gratefully acknowledged.

The absorbance spectra are acquired by means of a spec-
trophotometer operating in the1100−1550nmwavelengths’
range, in Figure 1(a). The absorbance is measured on the
basis of the NIR transmission principle with a2nm res-
olution. The measurements of the octane number (in the
86 − 92 range) are evaluated in laboratory by the reference
ASTM motor tests. Therefore, each sample consists of the
226−channel spectrum of absorbances and the correspond-
ing octane number; that is,x ∈ R

d with d = 226, and
y ∈ R. The dataset consists of24 observations for model
calibration and validation and9 observations for testing the
final model. The data were preliminary preprocessed by
removing the outliers and mean-centering. Although in re-
duced amount, the data are collected over a sufficient period
of time considered to span all the important variations in
the production of the finished product. Being the relation-
ship between the octane and the spectrum distributed among
different inputs, the application is also interesting because



variable selection cannot be easily performed through first-
principle interpretation of the spectra [31, 30].
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Figure 1. Case Study 1: The spectral obser-
vations (a) and the Measure of Topological
Relevance (MTR) on the Self-Organizing Map
(SOM) between the inputs and the output (b).

Variable selection and chemical interpretability

According to the method discussed in Section 2, the 2D
SOM of the input and output observations in the calibration
set was computed. The map consists of a hexagonal array
of nodes initialized in the space spanned by the eigenvec-
tors corresponding to the 2 largest eigenvalues of the covari-
ance matrix of the data. As usual, the ratio between these
eigenvalues was also used to calculate the size (5×5 nodes)
of the SOM. On the map, the set of topological relevances
D = {D(xj , y)}d

j=1 between each input-output pair was

calculated and the subsetx̌ = {x̌j∗}
s
j∗=1 of relevant inputs

was selected,s = 6. Being the6 inputs maximally relevant,
they are identified by the local maxima ofD, in Figure1(b).

The set of selected inputs (Table 1) is in agreement with
the chemical model explaining the influence for the chemi-
cal groups on the octane number [16]. The analyzed spec-
tra show the typical overlapped absorbance bands arising
from different hydrocarbon functional groups and reflect
the samples’ composition. The major absorbance features
in the experimental region are usually assigned to the2nd

overtone (1100 − 1300nm) and to the combination bands
(1300− 1550nm) of the C-H vibrations. In detail:

• the aromatic bonds at∼ 1150nm (x̌1) are related to
an increase in octane number. Conversely, the methy-
lene bonds at∼ 1220nm (x̌2) indicate the presence
of linear hydrocarbons which are responsible for a re-
duction in the gasoline quality. The methyl bonds at
∼ 1200nm indicate a larger amount of branched hy-
drocarbon although the absorbance is also influenced
by the amount of linear paraffin: in fact, its effect on
octane is not readily explained and the contribution,
usually, varies with the gasoline type. Actually, this
occurs with the present spectra in which, even if the
relevanceDs shows an inflection at1200nm, the ab-
sorbance does not correspond to a local maximum and,
thus, the associated input is not selected;

• by the same token, the effect of the combination
bands for methylene (∼ 1395/1416nm), and methyl
(∼ 1360/1345nm) on octane mimics what observed
in the short-wavelength range. With this respect, the
methylene absorbance wavelengths are correctly iden-
tified (x̌4 andx̌5), while x̌3 accounts for the1st methyl
band. As already noticed above, again the2nd methyl
band is only partially recovered by an inflection inDs.

As for variable x̌6, no spectral features are readily
assignable. Its selection can be ascribed to baseline effects.

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

[nm] 1146 1214 1366 1394 1416 1518

Table 1. Case Study 1: The set of selected
inputs and associated wavelengths.

In Figure 2, the results obtained with the absolute Pear-
son’s Correlation Coefficients (Figure 2(a)), Mutual Infor-
mation (Figure 2(b)) and Gasser’s Noise Variance estimates
are presented (Figure 2(c)). Notice that, in the case of NVE,
the local minima reflect the highest relevance. Based on the
depicted results, all the measures are capable of identifying
either part or all the relevant variables and their behavior
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Figure 2. Case Study 1: Other input-output
measures of dependence - Correlation Coef-
ficient (a) and Mutual Information (b) - and the
Gasser’s noise variance estimate (c).

resembles the relevance estimated by the MTR. Neverthe-
less, only the CC is able to represent the smooth nature of
the observations and, thus, allow a direct selection of the
local maxima in the relevance function. As for the MI and
NVE, such property of the data is only partially recovered
preventing an automatic variable selection procedure.

Regression models and prediction results

Finally, both linear (OLS and Ridge Regression) and non-
linear (LS-SVM) models were calibrated to representf
from the 6 selected inputšx. When needed, the meta-
parameters of the models (the penalty term in Ridge regres-
sion and the kernel width and regularization term in LS-
SVM) were validated by LOO-CV. The prediction accuracy
of the models was evaluated in terms of Root Mean Squared
Error (RMSET ) on the independent set of testing data.

In Table 2, the prediction results are compared to the two
standard calibration methods used in spectroscopy, the full-
spectrum PLSR and PCR. The number of latent variables
in the PLSR and PCR model were also selected by LOO-
CV. From the table, it is possible to notice that all the re-
gression models achieve accuracies that are comparable to
the ASTM standard of reference. In detail, the LS-SVM
gives prediction results that are analogous to the standard
PLSR model, whereas the PCR model outperforms all the
other methods. Interestingly, also the linear models produce
accurate results confirming the quality of the selected vari-

Number of Variables RMSET
PCR 3 (latent) 0.21
PLSR 4 (latent) 0.28

OLS 6 (original) 0.34
Ridge 6 (original) 0.31

LS-SVM 6 (original) 0.24

Table 2. Case Study 1: A comparison be-
tween prediction results.

ables. This is also demonstrated by an almost negligible
value of the penalty term selected for the Ridge regression,
indicating a near-absolute absence of shrinkage for the re-
gression coefficients. In fact, the method proved capable
to select only those inputs carrying important information,
thus, leading to parsimonious models based on only6 orig-
inal variables with a clear chemical understandability. To-
gether with the high accuracy, such properties suggest an
efficient implementation of the models for the on-line rat-
ing of octane in gasolines.

3.2. Study case 2: Predicting the composition of
active substance in tablets

The second application consists of estimating the ac-
tive substance content in pharmaceutical tablets. The prob-
lem is discussed in detail for EscitalopramR© tablets pro-
duced by H. Lundbeck A/S (Valby, Denmark) using the
measurements provided by the Spectroscopy and Chemo-
metrics Group at the Faculty of Life Science, University of
Copenhagen (Denmark) which is kindly acknowledged for
sharing the data. The case is interesting because the identifi-
cation of the inputs associated to the active substance can be
prevented by the superposition of interfering artifacts due
to the presence of the excipients and the production pro-
cesses. Moreover, the Good Manufacturing Practice (GMP)
requires pharmaceutical industries to perform frequent Con-
tent Uniformity (CU) controls on the finished products; a re-
quirement that is usually fullfilled by time and solvent con-
suming chromatographic analysis operated by specifically
trained laboratory personnel. Therefore, the production of
such drug would greatly benefit from the availability of fast
and reliable methods alternative to conventional tests.

Four different dosages (5, 10, 15 and20mg) of the drug
are used (Table 3). The10, 15 and20mg tablets have the
same concentration of active substance (i.e., they are dose
proportional with a nominal content equal to8.0%w/w) and
have a slot and a print on one side. The5mg tablets have a
nominal content of active substance equal to5.6%w/w. The
tablets have different total weights and, therefore, also dif-



Nominal active substance Nominal tablet Nominal active substance Number of batches
weight (mg) weight (mg) (% w/w)

5.0 90 5.6 1 full-scale + 3 pilot-scale
10.0 125 8.0 2 full-scale + 3 pilot-scale
15.0 188 8.0 2 full-scale + 3 pilot-scale
20.0 250 8.0 2 full-scale + 3 pilot-scale

4.3-5.7 90 4.8-6.3 3 laboratory-scale
8.3-11.4 125 6.9-9.1 3 laboratory-scale
12.9-17.1 188 6.9-9.1 3 laboratory-scale
17.3-22.8 250 6.9-9.1 3 laboratory-scale

Table 3. Case Study 2: Tablets specifications.

ferent shapes and sizes. Seven full-scale production batches
and twelve batches from pilot plant production are avail-
able. Furthermore, three specially prepared batches were
produced to extend the calibration range to85 − 115% of
the nominal content for each dosage form, giving twelve
additional laboratory-scale batches. In total31 batches are
used, each batch consisting of10 tablets that were individ-
ually analyzed by the spectroscopic method as well as the
reference method. The pilot plant batches are film-coated,
while the full- and laboratory-scale batches are uncoated.
The tablets contain several excipients, the dominating one
being microcrystalline cellulose and, for the coated tablets,
the coating material contains titanium dioxide. In addition,
it is worthwhile noticing that all the laboratory-scale tablets
were stamped with a press using only one punch, whereas
the pilot- and full-scale tablets are produced after a totalof
forty different punches.

The spectra were acquired in the4000 − 14000cm−1

wavenumbers’ range (corresponding to the700 − 2500nm
wavelengths’ range) with a resolution of16cm−1. The
measurements were recorded with an ABB Bomem FT-
NIR model MB-160 performing128 transmittance scans
per sample. The main advantage of the transmission mode,
when compared to the reflectance mode, is that the resulting
spectra contain also information on the inside of the tablets;
thus, making the the method less sensitive to samples het-
erogeneity and use of coating materials. The transmittance
mode is, however, more sensitive to the pressing process
used in producing the tablets. The absorbances are avail-
able only for the7400− 10500cm−1 interval (Figure 3) be-
cause the4000 − 7400cm−1 range was very noisy, while
in 10500 − 14000cm−1 very little information is present.
The content of active substance in each tablet was evaluated
by the reference High Performance Liquid Chromatography
(HPLC) method performed in laboratory. Dyrbyet al. in [7]
provide a detailed description of the experimental setting.

Each observation consists of a404−channel spectrum
(i.e.,x ∈ R

d with d = 404) and the content of active sub-
stance (i.e.,y ∈ R). The available measurements, thus,
summarize to120 laboratory-scale observations,120 pilot-
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Figure 3. Case Study 2: A selection of spec-
tral observations from laboratory (a), pilot-
scale (b) and full-scale (c) production.

scale observations and70 full-scale observations. Our ob-
jective consists in developing an estimation model that, al-
though calibrated using only the laboratory-scale and the
pilot-scale measurements, is directly usable in monitoring
the full-scale production.

Laboratory- and pilot-scale modeling and Full-scale
predictions

For the purpose, a preliminary analysis was performed con-
sidering the three datasets independently and analyzing, for
each, the inputs relevances to the corresponding output. The
results are presented in Figure 4. The NIR spectrum of the
active substance is highly overlapped with the excipients’
in the tablets, leaving just a single working region (around
8800cm−1) relatively free of interference, see Figure 3.
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Figure 4. Case Study 2: The Measures of
Topological relevance (MTR) on the Self-
Organizing map (SOM) for laboratory (a),
pilot-scale (b) and full-scale (c) production.

In this region, the peak corresponding to the active sub-
stance (assigned to the C-H aromatic bond at∼ 8830cm−1),
is visible as the shoulder of the broadband of the primary ex-
cipient (∼ 8200cm−1). As expected, the proposed method
correctly identifies the matching input as the global max-
imum of D for all the production scales, in Figure 4. In
addition to that, other accompanying inputs, whose assign-
ment to specific vibrational bands is beyond the scope of
this work, are also selected in correspondence to the local
maxima. However, it is worthwhile noticing that the pro-
cedure is able to find a match with specific features in the
active substance’s spectrum (for instance,∼ 7500cm−1 and
∼ 8600cm−1) while assigning a reduced relevance to sec-
ondary inputs that are known to be less informative.

Given the analogy between the results obtained with
the different production scales, we considered only the
laboratory-scale and pilot-scale measurements and re-
applied the methodology.

x̌1 x̌2 x̌3 x̌4 x̌5 x̌6

[cm]−1 7539 8200 8631 8831 9101 10116

Table 4. Case Study 2: The set of selected
inputs and associated wavenumbers.

The subset of selected variables is summarized in Table
4 and the corresponding relevances to the output depicted

in Figure 5. The results obtained with the other indexes of
relevance are depicted in Figure 6.
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Figure 5. Case Study 2: The laboratory and
pilot-scale spectral observations (a) and the
corresponding MTR over the SOM between
the inputs and the output (b).

The prediction accuracy of the regression models used
to reconstructf from the6 selected inputšx is reported in
Table 5 together with the full-spectrum PCR and PLSR re-
sults. The results refer to the testing observations consisting
of only the entire set of full-scale measurements. Again, the
proposed method is not only capable to select the relevant
inputs but shows that the associated LS-SVM model gives a
prediction accuracy that outperforms the standard PCR and
PLSR models. Interestingly, from the noise variance esti-
mates reported in Figure 6(c), it possible to notice that the
accuracy of the regression models can be further improved.

Being based on6 original variables, the resulting mod-
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Figure 6. Case Study 2: Other input-output
measures of dependence - Correlation Coef-
ficient (a) and Mutual Information (b) - and the
Gasser’s noise variance estimate (c).

Number of Variables RMSET
PCR 6 (latent) 0.44
PLSR 5 (latent) 0.42

OLS 6 (original) 0.38
Ridge 6 (original) 0.38

LS-SVM 6 (original) 0.22

Table 5. Case Study 2: A comparison be-
tween the results in full-scale production.

els could be successfully embedded in a soft sensing de-
vice capable of obtaining very accurate results and robust
to the different properties tablets deriving from interfering
artifacts and different production operations.

4. Conclusions

In this paper, a methodology for variable selection based
on the Measures of Topological Relevance over the Self-
Organizing Map was presented and discussed within the
context of spectroscopic modeling. The selection methods
was applied to monitoring problems in process industry.

From the obtained results a major consideration can be
drawn. The sparsity of the obtained models and the good
quality of the predictions is, indeed, an advantage because

of the interpretability of the results. Moreover, the reduced
number of selected variables leaded to simple and robust
estimation models that can be readily implemented on-line.

The methodology will be further investigated and val-
idated. It is our goal to assess its potentiality with other
problems of industrial interest.
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