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Abstract

This paper considers modeling the in-
cylinder residual gas fraction in Spark Ig-
nition (SI) engine with Variable Camshaft
Timing (VCT) based on a limited amount
of experimental data and a simulator built
from prior knowledge. The problem of how
to best incorporate the data provided by the
simulator, possibly biased, into the learning
of the model is addressed. This problem, al-
though particular, is very representative of
numerous situations met in engine control,
and more generally in engineering, where
complex models, more or less accurate, ex-
ist and where the experimental data which
can be used for calibration are difficult or ex-
pensive to obtain. The first proposed method
applies a different loss function on the simu-
lation data allowing for a certain level of in-
accuracy. The second method constrains the
derivatives of the model to be determined to
fit to the derivatives of a prior model previ-
ously estimated on the simulation data. Fi-
nally, a third method considers the combina-
tion of these two forms of prior knowledge.
These approaches are implemented in the lin-
ear programming support vector regression
(LP-SVR) framework by the addition of con-
straints linear in the parameters to the opti-
mization problem. Promising results are ob-
tained on the application.

1 Introduction

The paper deals with the modeling of the
in-cylinder residual gas fraction in Spark Ig-
nition (SI) engine with Variable Camshaft
Timing (VCT) for engine control. In
this context, experimental measurements are
complex and costly to obtain. On the other
hand, a simulator built from physical knowl-
edge can be available but cannot be embed-
ded in a real time controller.

In engine control design (modeling, sim-
ulation, control synthesis, implementation
and test), two types of models are commonly
used:

• Low frequency models or Mean Value
Engine Models (MVEM) with average
parameters on the engine cycle. These
models are often used in real time en-
gine control [2, 6]. However, they must
be calibrated on experiments in suffi-
ciently large number in order to be rep-
resentative.

• High frequency simulation models that
can simulate the evolution of the vari-
ables during the engine cycle [7]. These
models, of various complexity from
zero-dimensional to three-dimensional
models, are mostly based on fewer pa-
rameters with physical meaning. How-
ever, they cannot be embedded in real
time controllers.

The idea is thus to build an embeddable
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black box model by taking into account a
prior simulation model, which is represen-
tative but possibly biased, in order to limit
the number of required measurements. This
problem amounts to a regression problem
in which prior knowledge is available in the
form of simulation data.

In non-linear function approximation, ker-
nel methods, and more particularly Support
Vector Regression (SVR) [25], have proved
to be able to give excellent performances in
various applications [17, 24, 16]. SVR orig-
inally consists in finding the function that
has at most a deviation ε from the training
samples with the smallest complexity [22].
Thus, SVR amounts to solve a constrained
optimization problem, in which the complex-
ity, measured by the norm of the parame-
ters, is minimized. Allowing for the cases
where the constraints can not all be satisfied
(some points have larger deviation than ε)
leads to minimize an ε-insensitive loss func-
tion, which yields a zero loss for a point with
error less than ε and corresponds to an abso-
lute loss for the others. The SVR algorithm
can thus be written as a quadratic program-
ming (QP) problem, where both the ℓ1-norm
of the errors larger than ε and the ℓ2-norm of
the parameters are minimized. To deal with
non-linear tasks, SVR uses kernel functions,
such as the Radial Basis Function (RBF)
kernel, which allow to extend linear methods
to non-linear problems via an implicit map-
ping in a higher dimensional feature space.
Compared to neural networks, SVR has the
following advantages: automatic selection
and sparsity of RBF centers, intrinsic reg-
ularization, no local minima (convex prob-
lem with a unique solution), and good gen-
eralization ability from a limited amount of
samples.

Other formulations of the SVR problem
minimizing the ℓ1-norm of the parameters
can be derived to yield linear programs (LP)
[26, 1, 23, 15]. Some advantages of this lat-
ter approach can be noticed compared to the
QP formulation such as an increased sparsity

of support vectors [26, 1, 23] or the ability to
use more general kernels [14]. The remain-
ing of the paper will thus focus on the LP
formulation of SVR (LP-SVR).

Support Vector Regression aims at learn-
ing an unknown function based only on a
training set of N input-output pairs (xi, yi)
in a black box modeling approach. Incor-
porating prior knowledge into support vec-
tor learning is not trivial and is still a par-
tially open issue. After a presentation of
the LP-SVR problem (section 2), the paper
proposes to extend it with additional con-
straints, that are linear in the parameters,
in order to include prior knowledge in the
learning (section 3). Three methods are ex-
posed respectively for the inclusion of knowl-
edge on the output values (section 3.1), on
the derivatives of the model (section 3.2) and
the combination of both (section 3.3). Sec-
tion 4 discusses the various ways of incorpo-
rating prior knowledge in the form of simula-
tion data with these techniques. Finally, the
methods are tested on the in-cylinder resid-
ual gas fraction data in section 5.

Notations: all vectors are column vec-
tors written in boldface and lowercase let-
ters whereas matrices are boldface and up-
percase, except for the ith column of a ma-
trix A that is denoted Ai. The vectors 0
and 1 are vectors of appropriate dimensions
with all their components respectively equal
to 0 and 1. For A ∈ R

d×m and B ∈ R
d×n

containing d-dimensional sample vectors, the
“kernel” K(A,B) maps R

d×m × R
d×n in

R
m×n with K(A,B)i,j = k(Ai,Bj), where

k : R
d×d → R is the kernel function. In

particular, if x ∈ R
d is a column vector then

K(x,B) is a row vector in R
1×n. The matrix

X ∈ R
N×d contains all the training samples

xi, i = 1, . . . ,N , as rows. The vector y ∈ R
N

gathers all the target values yi for these sam-
ples. The kernel matrix K(XT ,XT ) will
be written K for short. Uppercase Z is a
set containing |Z| vectors that constitute the
rows of the matrix Z.



2 Kernel regression

In non-linear regression by kernel meth-
ods, the function of input x ∈ R

d is approx-
imated by a kernel expansion

f(x) =
∑

i

αik(x,xi)+b = K(x,XT )α+b ,

(1)
where the αi, contained in the vector α,
and b are the parameters of the model and
k(., .) is the kernel function. Typical ker-
nel functions are the linear, Gaussian RBF,
polynomial and sigmoidal kernels. In this
paper, a Gaussian RBF kernel k(x,xi) =
exp

(

−‖x − xi‖
2/2σ2

)

is used.

2.1 Linear programming (LP)

In kernel regression via linear program-
ming (LP), the ℓ1-norm of the parameters α

of the kernel expansion is minimized together
with the ℓ1-norm of the errors ξi = yi−f(xi)
by

min
(α,b)

‖α‖1 + C
N

∑

i=1

|ξi| , (2)

where a hyperparameter C is introduced to
tune the trade-off between the error mini-
mization and the maximization of the func-
tion flatness. Instead of the absolute value
|ξ| involved in the ℓ1-norm of the errors, the
ε-insensitive loss function defined as

|ξ|ε =

{

0 if |ξ| ≤ ε ,

|ξ| − ε otherwise,
(3)

can be used to yield Linear Programming
Support Vector Regression (LP-SVR). A
possible formulation of the corresponding
problem involves 4N + 1 variables [23]. In
this paper, we will follow the approach of
[15] that involves only 3N + 1 variables. In-
troducing two sets of optimization variables,
in two positive slack vectors a and ξ, this
problem can be implemented as the linear
program solvable by standard optimization

softwares such as MATLAB linprog. In this
scheme, the LP-SVR problem becomes

min
(α,b,ξ,a)

1T a + C1T ξ

s.t. −ξ ≤ Kα + b1 − y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a .
(4)

The last set of constraints ensures that 1T a,
which is minimized, bounds ‖α‖1. In prac-
tice, sparsity is obtained as a certain number
of parameters αi will tend to zero. The input
vectors xi for which the corresponding αi are
non-zero are called support vectors (SVs).

The parameter ε can also be introduced
as a variable in the cost function to be tuned
automatically by the algorithm [23, 15].

In the LP formulation, only symmetry of
the kernel is required [15]. It is not necessary
for the kernel to satisfy Mercer’s conditions
(or positive semidefiniteness) as in the orig-
inal QP form of the SVR problem [22].

3 Incorporating prior knowl-

edge

In this section, two different forms of prior
knowledge on the function to be approxi-
mated are included in the learning. The
first one considers a set Z of points xp, p =
1, . . . , |Z|, regrouped in the matrix Z, for
which the output values yp, p = 1, . . . , |Z|,
regrouped in yp, are provided by a prior
model or a simulator. In this setting, the
aim is to enforce the equality constraints

f(xp) = yp, p = 1, . . . |Z| , (5)

on the model f .

The second setting considers the incorpo-
ration of prior knowledge on the derivatives
of the function, possibly given by a prior
model. The combination of both types of
prior knowledge is also considered at the end
of the section.



3.1 Knowledge on output values

Prior knowledge on the function to ap-
proximate is assumed to take the form of
|Z| particular points xp in Z for which the
output values yp are known. However, ap-
plying constraints such as (5) to the prob-
lem (4) would lead to an exact fit to these
points, which may not be advised if these
are given by a simulator possibly biased.
Moreover, all these constraints may lead to
an unfeasible problem if they cannot all be
satisfied simultaneously. To deal with this
case, the equalities (5) can rather be included
as soft constraints by introducing a vector
z = [z1 . . . zp . . . z|Z|]

T of positive slack
variables bounding the error on (5) as

|yp − f(xp)| ≤ zp, p = 1, . . . |Z| . (6)

The ℓ1-norm of the slack vector z is then
added to the criterion of (4), with a trade-off
parameter λ, in order to be minimized. The
trade-off parameter λ allows to tune the in-
fluence of the prior knowledge on the model
and thus incorporate approximate knowl-
edge.

It is also possible to include almost ex-
act or biased knowledge by authorizing viola-
tions of the equality constraints (5) that are
less than a threshold. Using the ε-insensitive
loss function (3) on the prior knowledge er-
rors zp with a threshold εp, different than the
one, ε, used for the training set, leads to the
following linear program

min
(α,b,ξ,a,z)

1T a + C1T ξ + λ1T z

s.t.
−ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

−z ≤ K(ZT ,XT )α + b1 − yp ≤ z

0 ≤ 1εp ≤ z ,
(7)

where the two last sets of |Z| constraints
stand for the inclusion of prior knowledge.

3.2 Knowledge on the derivatives

Knowledge on the derivatives allows to in-
clude information on local maxima or min-
ima, saddle-points and so on. In some appli-
cations, one may also wish to retain certain
properties of a prior model such as the shape
or the roughness at some specific points xp

in Z. This problem corresponds to learn a
new model while constraining certain of its
derivatives to equal those of the prior model
at these particular points.

Consider that prior knowledge on the
derivative of the function f with respect to
the jth component xj of x ∈ R

d is available
as

∂f(x)

∂xj

∣

∣

∣

∣

xp

= y′p, ∀xp ∈ Z . (8)

This prior knowledge can be enforced in the
training by noticing that the kernel expan-
sion (1) is linear in the parameters α, which
allows to write the derivative of the model
output with respect to xj as

∂f(x)

∂xj
=

∑

i

αi

∂k(x,xi)

∂xj
= rj(x)T α , (9)

where rj(x) = [∂xjk(x,x1) . . . ∂xjk(x,xi

. . . ∂xjk(x,xN )]T is of dimension N . The
derivative (9) is linear in α. In fact, the
form of the kernel expansion implies that the
derivatives of any order with respect to any
component are linear in α. The prior knowl-
edge (8) can thus be included by defining

R =
[

rj(x1) . . . rj(xp) . . . rj(x|Z|)
]T

of
dimension |Z|×N , y′

p = [y′1 . . . y′p . . . y′|Z|]
T

and solving the problem

min
(α,b,ξ,a,z)

1T a + C1T ξ + λ1T z

s.t. −ξ ≤ Kα + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

−z ≤ Rα − y′
p ≤ z .

(10)

The extension to any order of derivative is
straightforward. Thus, this method allows to



incorporate prior knowledge on any deriva-
tive for any set of points possibly different for
each derivative. In comparison, the methods
described in [13] and [12] requires the prior
derivative values on all the training points
and these points only.

3.3 Combining both forms of con-
straints

In the case where the training data do not
cover the whole input space, extrapolation
occurs, which can become a problem when
using local kernels such as the RBF kernel.
To avoid this problem, the points xp can be
introduced in the training set as potential
support vectors (or RBF centers). Instead
of simply adding them in the training set, it
is proposed to use a loss function with a dif-
ferent insensitivity width εp for these points.
This method considers the case where the in-
formation on yp is less accurate than on y′p.
In other words, the available prior model is
accurate in shape but biased.

The resulting complete problem reads

min
(α,b,ξ,a,z,v)

1T a + C1T ξ + λ11
T z + λ21

T v

s.t.

−ξ ≤ K(XT ,

[

X

Z

]T

)α + b1− y ≤ ξ

0 ≤ 1ε ≤ ξ

−a ≤ α ≤ a

−z ≤ K(ZT ,

[

X

Z

]T

)α + b1− yp ≤ z

0 ≤ 1εp ≤ z

−v ≤ Rα − y′
p ≤ v ,

(11)
where λ1 and λ2 are respectively the trade-
off parameters for the knowledge on the out-
put values and on the derivatives. In this
problem, the first three sets of constraints
correspond to the standard learning (4) on
the training set (X,y). The difference is
that the samples in Z are added as poten-
tial support vectors. The next two sets of
constraints include prior knowledge on the
output values as in section 3.1. The last set

of constraints involving the slack vector v in-
corporates the information on the derivatives
as in (10). It must be noted that the number
of parameters in the vector α is now N + |Z|
and that the dimension of R has increased
to |Z| × (N + |Z|).

4 Best use of simulation data

This section aims at studying the various
ways of enhancing the learning with simula-
tion data. Consider the problem of model-
ing a function based on a limited amount of
experimental data (the training set) and a
physical simulation model (or simulator). If
large regions of the input space are not cov-
ered by the experimental data, extrapolation
in these areas will be difficult. The simulator
can provide data in these regions. The ques-
tion is: what is the best way of incorporating
these data in the learning of the model?

The first and most simple method consists
in extending the training set of real data with
simulation samples. Then a standard learn-
ing algorithm can take into account all the
information and hopefully provide a better
model. This approach is similar in flavor
to the virtual sample approach extensively
studied in pattern recognition for the incor-
poration of transformation-invariance [18,
19, 10]. In this classification framework, vir-
tual samples are generated by known trans-
formations of the training patterns that leave
their class labels unchanged and then added
to the training set. This approach has been
very successful in the pattern recognition
field [21, 11], where the prior knowledge of
transformation-invariance is exact, i.e., for
example, the statement ”the image of a char-
acter still represents the same character if
translated or rotated by a small amount”
holds true. However, in the case considered
here, the simulation data can be biased as
the physical model may not be fully accu-
rate.

There is therefore a need to control the



influence of simulation data on the learning
so that the resulting model do not fit exactly
to them. The method proposed in section
3.1 uses two different loss functions: one on
the training set and another one, possibly
less restrictive, on the simulation samples.
In practice, the algorithm (7) is used with
the parameter εp set to take into account the
possible bias between the simulation and real
data.

If the physical model is known to be ac-
curate in shape but biased, another solution
consists in constraining the derivatives of the
model to fit to the derivatives of the physi-
cal model. Doing so, one may expect to re-
tain the overall shape of the physical model
while fitting it to the available real data. In
the setting of the following experiments (sec-
tion 5), only the simulation data are avail-
able. In practice, a first model is trained
by a standard LP-SVR algorithm (4) on the
simulation data to yield a prior model. This
prior model can then be used to compute the
derivatives at these same points. The algo-
rithm (10) of section 3.2 is then applied to
build a new model with constrained deriva-
tives.

As noted in section 3.3, the local behavior
of RBF kernels may become a serious draw-
back when reducing the number of training
samples. To circumvent this difficulty, the
simulation data should be added as poten-
tial support vectors. However, if these data
are known to be inaccurate, simply adding
them to the training set will not lead to a
good model. The algorithm (11) allows to
take these potential SVs into account with-
out constraining the model to exactly fit to
them.

5 Application

The various ways of incorporating simula-
tion data into the training will now be stud-
ied on a real-life application described below.

5.1 Estimation of in-cylinder residual
gas fraction

The application deals with the estimation
of residual gases in the cylinders of Spark Ig-
nition (SI) engines with Variable Camshaft
Timing (VCT). VCT allows the timing of
the intake and exhaust valves to be changed
while the engine is in operation. VCT is used
to improve performance in terms of emis-
sions, fuel economy, peak torque, and peak
power [9].

The air path control of SI engines is a
crucial task because the torque provided by
the engine is directly linked to the air mass
trapped in the cylinders [3]. When consid-
ering new air actuators such as VCT, the
estimation of in-cylinder air mass is more
involved than for basic SI engines. Indeed,
VCT authorizes phenomena such as air scav-
enging (from intake to exhaust manifolds,
with turbocharging) or backflow (from ex-
haust manifold to cylinders).

In this context, it is important to estimate
the residual gas mass fraction

χres =
mres

mtot

, (12)

where mtot is the total gas mass trapped in
the cylinder and mres is the mass of residual
gases, which are burned gases present in the
cylinder when the valves are closed before
the new combustion and which are due to
the dead volumes or the backflow. Knowing
this fraction allows to control torque as well
as pollutant emissions.

The residual gas mass fraction χres can be
expressed as a function of the engine speed
Ne, the ratio pman/pexh, where pman and
pexh are respectively the (intake) manifold
pressure and the exhaust pressure, and an
overlapping factor OF , which is an image of
the time during which the valves are opened
together. There exists a corresponding mean
value model [4], that includes some constants
to be identified from experiments on a partic-
ular engine. Beside this mean value model,



there is no standard sensor to measure this
fraction online.

The available data are provided, on one
hand, from the modeling and simulation en-
vironment Amesim [8], which uses a high
frequency zero-dimensional thermodynamic
model [5] and, on the other hand, from off
line measurements, which are accurate, but
complex and costly to obtain, by direct in-
cylinder sampling [5]. The problem is thus
as follows. How to obtain a simple, embed-
dable, black box model with a good accuracy
and a large validity range for the real engine,
from precise real measurements as less nu-
merous as possible and a representative, but
possibly biased, prior simulation model?

The problem thus posed, although partic-
ular, is very representative of numerous situ-
ations met in engine control, and more gen-
erally in engineering, where complex mod-
els, more or less accurate, exist and where
the experimental data which can be used for
calibration are difficult or expensive to ob-
tain.

5.2 Experiments and results

Three datasets are built from the available
data composed of 26 experimental samples
plus 26 simulation samples:

• the training set composed of a limited
amount of real data (N samples),

• the test set composed of independent
real data (26 − N samples),

• the simulation set composed of data
provided by the simulator (26 sam-
ples).

Various sizes N of the training set will be
considered in order to study the effect of the
number of training samples on the model.
The test samples are assumed to be unknown
during the training and are retained for test-
ing only.

The residual gas mass fraction χres, given
in percentages, takes values in the range
[5, 30]. The ranges of values for the three

inputs are: Ne (rpm) ∈ {1000, 2000},
pman/pexh ∈ [0.397, 0.910] and OF (◦CA/m)
∈ [0, 2.8255]. The datasets are shown in Fig-
ure 1 for N = 3.

The different situations and the various
ways of incorporating the simulation data
are considered in the following models.

1. Experimental model: the simulation
data are not available. Standard LP-
SVR training (4) on the training set
only is used to determine the model.

2. Prior model: the experimental data are
not available. LP-SVR training (4) on
the simulation set only is used to de-
termine the model.

3. Mixed model: all the data are available
and mixed together. LP-SVR training
(4) on the training set extended with
the simulation data is used to deter-
mine the model.

4. O-model: the simulation data are con-
sidered as prior knowledge on Output
values. Algorithm (7) is used to train
the model.

5. D-model: the simulation data are used
to build a prior model, which is then
used to provide prior knowledge on
Derivative values with respect to the
input pman/pexh . Algorithm (10) with
derivative constraints is used to train
the model.

6. OD-model: the simulation data are
both considered as prior knowledge on
Output values and used to build a prior
model in order to give prior knowledge
on Derivative values as for model 5.
Algorithm (11) is used to train the OD-
model.

These models are evaluated on the basis
of three indicators defined below.

• RMSE total: root mean square error
on the whole real dataset (26 samples)

• RMSE test: root mean square error on
the test set (26 − N samples) that is
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Figure 1. Residual gas mass fraction χres in percentages as a function of the ratio
pman/pexh for two engine speeds Ne and different overlapping factors OF . The 26
experimental data are represented by plus signs ( +) with a superposed circle ( ⊕)
for the 3 points retained as training samples. The 26 simulat ion data appear as
asterisks ( ∗).



not used for training

• MAE total: maximum absolute error
on the whole real dataset (26 samples)

Before training, the variables are normal-
ized with respect to their mean and stan-
dard deviation. When both experimental
and simulation data are available, the simu-
lation data are preferred since they are sup-
posed to cover a wider region of the input
space. Thus, the mean and standard devia-
tion are determined on the simulation data
for all the models except for the experimen-
tal model, in which case the training set must
be used to determine the normalization pa-
rameters.

The different hyperparameters are set ac-
cording to the following heuristics. One goal
of the problem is to obtain a model that is
accurate on both the training and test sam-
ples (the training points are part of the per-
formance index RMSE total). Thus C is set
to a large value (C = 1000) in order to en-
sure a good approximation of the training
points. Accordingly, ε is set to 0.001 in or-
der to approximate the real data well. Since
all standard deviations of the inputs equal 1
after normalization, the RBF kernel width σ
is set to 1. Besides, when using prior knowl-
edge on output values (model 4) and setting
εp, one has both the real and simulation data
at hand. Thus, it is possible to compute
an estimate of the maximum absolute error
(MAE) obtained by the simulator by looking
at the MAE obtained by the prior model on
the training set (available real data). εp is
then set accordingly by taking into account
the normalization step (εp = 1.6). For the
training of both models 4 and 5, the trade-
off parameter λ is set to 10. For model 6, λ1

is set to 1 since including the prior knowledge
weighted by λ1 is not the main concern. It
is mainly used to add potential support vec-
tors in the training with a large εp in order
not to fit exactly to these points. The infor-
mation assumed to be more relevant in this
case concerns the derivatives. λ2 is thus set

to 10.

Results. The number N of points retained
as training samples is first set to 15, which
is about half of the available experimental
data. The results in this setting appear at
the top of Table 1. These show that the
model of the simulator, the prior model, is
actually biased and leads a large error when
tested on the real data. As a consequence,
the mixed model that simply considers simu-
lation data as training samples cannot yield
good results from inhomogeneous and con-
tradictory data. However, when the simula-
tion data are incorporated in the O-model by
the proposed method of section 3.1, which
allows for a certain amount of inaccuracy
with respect to these data, better results
can be obtained in comparison to the experi-
mental model trained on the limited amount
of real data. Interestingly, though includ-
ing prior knowledge on the derivatives in the
D-model does not yield better results, com-
bining both types of prior knowledge on the
function values and on the derivatives in the
OD-model leads to a notable decrease of the
error. This improvement may also be the re-
sult of adding the simulation data as poten-
tial support vectors. This effect will become
more obvious in the following experiments.

Now, the effect of reducing the number of
training samples N is studied in order to test
the limits of the method. Two sets of exper-
iments are performed for N = 6 and N = 3.
The results in Table 1 show that models 1
and 3 cannot deal with these cases. More-
over, when the number of training points be-
comes too small (N = 3), models 4 and 5,
that do not incorporate the simulation data
as potential support vectors, become almost
constant and thus inefficient. This is due to
the fact that these models have not enough
free parameters (only 3 plus a bias term)
and thus cannot accurately model the data.
In these cases, the RMSE is irrelevant. On
the contrary, the OD-model does not suffer
from this problem and can yield good results
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Figure 2. Errors on the experimental data (training and test samples) for the prior
model (∗) and the OD-model (◦) trained with only three samples ( N = 3).



Table 1. Errors on the residual gas mass fraction for various training set sizes N .
’–’ appears when the result is irrelevant (model mostly cons tant).

N Model RMSE total RMSE test MAE total

1 (experimental model) 1.53 2.35 4.10
2 (prior model) 4.93 5.02 9.74

15 3 (mixed model) 4.22 5.09 7.80
4 (O-model) 1.49 2.29 4.05
5 (D-model) 1.60 2.46 3.93
6 (OD-model) 0.73 1.12 2.29

1 (experimental model) 6.00 6.84 15.83
2 (prior model) 4.93 4.86 9.74

6 3 (mixed model) 4.88 4.85 9.75
4 (O-model) 3.38 3.86 9.78
5 (D-model) 3.50 3.99 10.42
6 (OD-model) 2.14 2.44 5.94

1 (experimental model) – – –
2 (prior model) 4.93 4.93 9.74

3 3 (mixed model) 4.86 4.89 9.75
4 (O-model) – – –
5 (D-model) – – –
6 (OD-model) 2.64 2.81 5.36

compared to the prior model with very few
training samples, as shown in Figure 2. The
performance is still reasonable, though be-
ing less than for N = 15, and decreases only
slightly when reducing the training set size
from 6 to 3. It must be noted that the error
of this model is about half of the errors ob-
tained by the prior and mixed models, which
correspond to the standard methods to in-
clude simulation data.

6 Conclusion

This paper provided simple and effec-
tive techniques for the incorporation of prior
knowledge into LP-SVR learning. The prior
information that can be taken into account
may be given in terms of output values as
well as derivative values on a set of points.
Various methods based on these techniques
have been studied for the inclusion of knowl-
edge in the form of simulation data. The

proposed methods have been tested on the
estimation of in-cylinder residual gas frac-
tion application. In this context, real data
are available only in a limited number due to
the cost of experimental measurements but
additional data can be obtained thanks to
a complex physical simulator. The output
of the simulator being biased but providing
rather good information on the overall shape
of the model, the best method constrains the
derivatives of the model to fit to the ones of a
prior model trained on the simulation data.
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A. Artés-Rodriguez. Support vector regression
for the simultaneous learning of a multivariate
function and its derivatives. Neurocomputing,
69:42–61, 2005.

[14] O. Mangasarian. Generalized support vec-
tor machines. In A. Smola, P. Bartlett,
B. Schölkopf, and D. Schuurmans, editors, Ad-
vances in Large Margin Classifiers, pages 135–
146, Cambridge, MA, USA, 2000. MIT Press.

[15] O. L. Mangasarian and D. R. Musicant. Large
scale kernel regression via linear programming.
Machine Learning, 46(1-3):255–269, 2002.

[16] D. Mattera and S. Haykin. Support vector ma-
chines for dynamic reconstruction of a chaotic
system. In Advances in kernel methods: support
vector learning [20], pages 211–241.

[17] K.R. Müller, A. Smola, G. Rätsch, B. Schölkopf,
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ear programs for automatic accuracy control in
regression. In Proc. of the 9th Int. Conf. on
Artificial Neural Networks, Edinburgh, UK, vol-
ume 2, pages 575–580, 1999.

[24] M. O. Stitson, A. Gammerman, V. Vapnik,
V. Vovk, C. Watkins, and J. Weston. Support
vector regression with ANOVA decomposition
kernels. In Schölkopf et al. [20], pages 285–291.

[25] V. N. Vapnik. The nature of statistical learning
theory. Springer-Verlag, New York, NY, USA,
1995.

[26] J. Weston, A. Gammerman, M. O. Stitson,
V. Vapnik, V. Vovk, and C. Watkins. Support
vector density estimation. In Schölkopf et al.
[20], pages 293–305.


